Fall, 2021 CIS 511

Introduction to the Theory of Computation Jean Gallier Homework 3

October 11, 2021; Due October 25, 2021

Problem B1 (60 pts). Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a trim DFA. Consider the following procedure:
(1) Form an NFA, N^{R}, by reversing all the transitions of D, i.e., there is a transition from p to q on input $a \in \Sigma$ in N iff $\delta(q, a)=p$ in D.
(2) Apply the subset construction to the NFA, N^{R}, obtained in (1), taking the start state to be the set F. The final states of the DFA obtained by applying the subset construction to N^{R} are all the subsets containing q_{0}. Then, trim the resulting DFA, to obtain the DFA D^{R}.

Observe that $L\left(D^{R}\right)=L(D)^{R}$.
Now, apply the above procedure to D, getting D^{R}, and apply this procedure again, to get $D^{R R}$. Prove that $D^{R R}$ is a minimal DFA for $L=L(D)$.
Hint. First prove that if δ_{R} is the transition function of D^{R}, then for every $w \in \Sigma^{*}$ and for every state, $T \subseteq Q$, of D^{R},

$$
\delta_{R}^{*}(T, w)=\left\{q \in Q \mid \delta^{*}\left(q, w^{R}\right) \in T\right\} .
$$

Problem B2 (60 pts). Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a deterministic finite automaton. Define the relations \approx and \sim on Σ^{*} as follows:

$$
\begin{array}{ll}
x \approx y & \text { if and only if, for all } \quad p \in Q, \\
& \delta^{*}(p, x) \in F \quad \text { iff } \quad \delta^{*}(p, y) \in F,
\end{array}
$$

and

$$
x \sim y \quad \text { if and only if, for all } p \in Q, \quad \delta^{*}(p, x)=\delta^{*}(p, y)
$$

(1) Show that \approx is a left-invariant equivalence relation and that \sim is an equivalence relation that is both left and right invariant. (A relation R on Σ^{*} is left invariant iff $u R v$ implies that $w u R w v$ for all $w \in \Sigma^{*}$, and R is left and right invariant iff $u R v$ implies that xuyRxvy for all $x, y \in \Sigma^{*}$.)
(2) Let n be the number of states in Q (the set of states of D). Show that \approx has at most 2^{n} equivalence classes and that \sim has at most n^{n} equivalence classes.
Hint. In the case of \approx, consider the function $f: \Sigma^{*} \rightarrow 2^{Q}$ given by

$$
f(u)=\left\{p \in Q \mid \delta^{*}(p, u) \in F\right\}, \quad u \in \Sigma^{*}
$$

and show that $x \approx y$ iff $f(x)=f(y)$. In the case of \sim, let Q^{Q} be the set of all functions from Q to Q and consider the function $g: \Sigma^{*} \rightarrow Q^{Q}$ defined such that $g(u)$ is the function given by

$$
g(u)(p)=\delta^{*}(p, u), \quad u \in \Sigma^{*}, \quad p \in Q,
$$

and show that $x \sim y$ iff $g(x)=g(y)$.
(3) Given any language $L \subseteq \Sigma^{*}$, define the relations λ_{L} and μ_{L} on Σ^{*} as follows:

$$
u \lambda_{L} v \quad \text { iff, for all } \quad z \in \Sigma^{*}, \quad z u \in L \quad \text { iff } \quad z v \in L,
$$

and

$$
u \mu_{L} v \quad \text { iff, } \quad \text { for all } \quad x, y \in \Sigma^{*}, \quad x u y \in L \quad \text { iff } \quad x v y \in L .
$$

Prove that λ_{L} is left-invariant, and that μ_{L} is left and right-invariant. Prove that if L is regular, then both λ_{L} and μ_{L} have a finite number of equivalence classes.
Hint: Show that the number of classes of λ_{L} is at most the number of classes of \approx, and that the number of classes of μ_{L} is at most the number of classes of \sim.

Problem B3 (100 pts). Which of the following languages are regular? Justify each answer.
(1) $L_{1}=\left\{w c w \mid w \in\{a, b\}^{*}\right\}$. (here $\Sigma=\{a, b, c\}$).
(2) $L_{2}=\left\{x y \mid x, y \in\{a, b\}^{*}\right.$ and $\left.|x|=|y|\right\}$. (here $\Sigma=\{a, b\}$)
(3) $L_{3}=\left\{a^{n} \mid n\right.$ is a prime number $\}$. (here $\Sigma=\{a\}$).
(4) $L_{4}=\left\{a^{m} b^{n} \mid \operatorname{gcd}(m, n)=23\right\}$. (here $\Sigma=\{a, b\}$).
(5) Consider the language

$$
L_{5}=\left\{a^{4 n+3} \mid 4 n+3 \text { is prime }\right\} .
$$

Assuming that L_{5} is infinite, prove that L_{5} is not regular.
(6) Let $F_{n}=2^{2^{n}}+1$, for any integer $n \geq 0$, and let

$$
L_{6}=\left\{a^{F_{n}} \mid n \geq 0\right\} .
$$

Here $\Sigma=\{a\}$.
Extra Credit (from 10 up to 10^{100} pts). Find explicitly what $F_{0}, F_{1}, F_{2}, F_{3}$ are, and check that they are prime. What about F_{4} and F_{5} ?

Is the language

$$
L_{7}=\left\{a^{F_{n}} \mid n \geq 0, F_{n} \text { is prime }\right\}
$$

regular?
Extra Credit (20 pts). Prove that there are infinitely many primes of the form $4 n+3$.
The list of such primes begins with

$$
3,7,11,19,23,31,43, \cdots
$$

Say we already have $n+1$ of these primes, denoted by

$$
3, p_{1}, p_{2}, \cdots, p_{n}
$$

where $p_{i}>3$. Consider the number

$$
m=4 p_{1} p_{2} \cdots p_{n}+3
$$

If $m=q_{1} \cdots q_{k}$ is a prime factorization of m, prove that $q_{j}>3$ for $j=1, \ldots k$ and that no q_{j} is equal to any of the p_{i} 's. Prove that one of the q_{j} 's must be of the form $4 n+3$, which shows that there is a prime of the form $4 n+3$ greater than any of the previous primes of the same form.

Problem B4 (80 pts). This problem illustrates the power of the congruence version of Myhill-Nerode.

Recall that the reversal of a string, $w \in \Sigma^{*}$, is defined inductively as follows:

$$
\begin{aligned}
\epsilon^{R} & =\epsilon \\
(u a)^{R} & =a u^{R}
\end{aligned}
$$

for all $u \in \Sigma^{*}$ and all $a \in \Sigma$.
Let \sim be a congruence $\left(\right.$ on $\left.\Sigma^{*}\right)$ and assume that \sim has n equivalence classes. Define \sim_{R} and \approx by

$$
u \sim_{R} v \quad \text { iff } \quad u^{R} \sim v^{R}, \quad \text { for all } u, v \in \Sigma^{*} \quad \text { and } \quad \approx=\sim \cap \sim_{R}
$$

(1) Prove that the equivalence class $[u]_{\sim_{R}}$ of any string $u \in \Sigma^{*}$ is given by

$$
[u]_{\sim_{R}}=\left(\left[u^{R}\right]_{\sim}\right)^{R}
$$

Consider the map $\rho:\left(\Sigma^{*} / \sim_{R}\right) \rightarrow\left(\Sigma^{*} / \sim\right)$ given by

$$
\rho\left([u]_{\sim_{R}}\right)=\left[u^{R}\right]_{\sim} .
$$

Prove that

$$
\rho\left([u]_{\sim_{R}}\right)=\left([u]_{\sim_{R}}\right)^{R},
$$

which shows that the map ρ is well defined.
(2) Prove that ρ is bijective. Prove that \sim and \sim_{R} have the same number of equivalence classes.
(3) Prove that the relation \approx is a congruence. Prove that \approx has at most n^{2} equivalence classes.
(4) Given any regular language L over Σ^{*} let

$$
L^{(1 / 2)}=\left\{w \in \Sigma^{*} \mid w w^{R} \in L\right\} .
$$

Prove that $L^{(1 / 2)}$ is also regular using the relation \approx of part (1).
(5) Let L be any regular language over some alphabet Σ. For any natural number $k \geq 2$, let

$$
L^{(1 / k)}=\left\{w \in \Sigma^{*} \mid\left(w w^{R}\right)^{k-1} \in L\right\}=\{w \in \Sigma^{*} \mid \underbrace{w w^{R} w w^{R} \cdots w w^{R}}_{k-1} \in L\} .
$$

Also the languages $L^{1 / \infty}$ and L^{∞} are defined by

$$
\begin{aligned}
L^{1 / \infty} & =\left\{w \in \Sigma^{*} \mid\left(w w^{R}\right)^{k-1} \in L, \quad \text { for all } k \geq 2\right\}, \quad \text { and } \\
L^{\infty} & =\left\{w \in \Sigma^{*} \mid\left(w w^{R}\right)^{k-1} \in L, \quad \text { for some } k \geq 2\right\} .
\end{aligned}
$$

Prove that every language $L^{(1 / k)}$ is regular.
(6) Prove that there are only finitely many distinct languages of the form $L^{(1 / k)}$ (this means that the set of languages $\left\{L^{(1 / k)}\right\}_{k \geq 2}$ is finite). Prove that $L^{1 / \infty}$ and L^{∞} are regular.

TOTAL: $300+40$ points.

