Fall, 2021 CIS 511

Introduction to the Theory of Computation Jean Gallier

Homework 3

October 11, 2021; Due October 25, 2021

Problem B1 (60 pts). Let $D = (Q, \Sigma, \delta, q_0, F)$ be a *trim* DFA. Consider the following procedure:

- (1) Form an NFA, N^R , by reversing all the transitions of D, i.e., there is a transition from p to q on input $a \in \Sigma$ in N iff $\delta(q, a) = p$ in D.
- (2) Apply the subset construction to the NFA, N^R , obtained in (1), taking the start state to be the set F. The final states of the DFA obtained by applying the subset construction to N^R are all the subsets containing q_0 . Then, trim the resulting DFA, to obtain the DFA D^R .

Observe that $L(D^R) = L(D)^R$.

Now, apply the above procedure to D, getting D^R , and apply this procedure again, to get D^{RR} . Prove that D^{RR} is a minimal DFA for L = L(D).

Hint. First prove that if δ_R is the transition function of D^R , then for every $w \in \Sigma^*$ and for every state, $T \subseteq Q$, of D^R ,

$$\delta_R^*(T, w) = \{ q \in Q \mid \delta^*(q, w^R) \in T \}.$$

Problem B2 (60 pts). Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton. Define the relations \approx and \sim on Σ^* as follows:

$$\begin{aligned} x \approx y \quad \text{if and only if,} \quad \text{for all} \quad p \in Q, \\ \delta^*(p, x) \in F \quad \text{iff} \quad \delta^*(p, y) \in F, \end{aligned}$$

and

$$x \sim y$$
 if and only if, for all $p \in Q$, $\delta^*(p, x) = \delta^*(p, y)$

(1) Show that \approx is a left-invariant equivalence relation and that \sim is an equivalence relation that is both left and right invariant. (A relation R on Σ^* is *left invariant* iff uRv implies that wuRwv for all $w \in \Sigma^*$, and R is *left and right invariant* iff uRv implies that xuyRxvy for all $x, y \in \Sigma^*$.)

(2) Let n be the number of states in Q (the set of states of D). Show that \approx has at most 2^n equivalence classes and that \sim has at most n^n equivalence classes.

Hint. In the case of \approx , consider the function $f: \Sigma^* \to 2^Q$ given by

$$f(u) = \{ p \in Q \mid \delta^*(p, u) \in F \}, \quad u \in \Sigma^*$$

and show that $x \approx y$ iff f(x) = f(y). In the case of \sim , let Q^Q be the set of all functions from Q to Q and consider the function $g: \Sigma^* \to Q^Q$ defined such that g(u) is the function given by

 $g(u)(p) = \delta^*(p, u), \quad u \in \Sigma^*, \ p \in Q,$

and show that $x \sim y$ iff g(x) = g(y).

(3) Given any language $L \subseteq \Sigma^*$, define the relations λ_L and μ_L on Σ^* as follows:

$$u \lambda_L v$$
 iff, for all $z \in \Sigma^*$, $zu \in L$ iff $zv \in L$,

and

$$u \mu_L v$$
 iff, for all $x, y \in \Sigma^*$, $xuy \in L$ iff $xvy \in L$

Prove that λ_L is left-invariant, and that μ_L is left and right-invariant. Prove that if L is regular, then both λ_L and μ_L have a finite number of equivalence classes.

Hint: Show that the number of classes of λ_L is at most the number of classes of \approx , and that the number of classes of μ_L is at most the number of classes of \sim .

Problem B3 (100 pts). Which of the following languages are regular? Justify each answer.

- (1) $L_1 = \{wcw \mid w \in \{a, b\}^*\}$. (here $\Sigma = \{a, b, c\}$).
- (2) $L_2 = \{xy \mid x, y \in \{a, b\}^* \text{ and } |x| = |y|\}.$ (here $\Sigma = \{a, b\}$)
- (3) $L_3 = \{a^n \mid n \text{ is a prime number}\}.$ (here $\Sigma = \{a\}$).
- (4) $L_4 = \{a^m b^n \mid gcd(m, n) = 23\}.$ (here $\Sigma = \{a, b\}$).
- (5) Consider the language

$$L_5 = \{a^{4n+3} \mid 4n+3 \text{ is prime}\}.$$

Assuming that L_5 is infinite, prove that L_5 is not regular.

(6) Let $F_n = 2^{2^n} + 1$, for any integer $n \ge 0$, and let

$$L_6 = \{ a^{F_n} \mid n \ge 0 \}.$$

Here $\Sigma = \{a\}$.

Extra Credit (from 10 up to 10^{100} pts). Find explicitly what F_0, F_1, F_2, F_3 are, and check that they are prime. What about F_4 and F_5 ?

Is the language

$$L_7 = \{a^{F_n} \mid n \ge 0, F_n \text{ is prime}\}$$

regular?

Extra Credit (20 pts). Prove that there are infinitely many primes of the form 4n + 3.

The list of such primes begins with

 $3, 7, 11, 19, 23, 31, 43, \cdots$

Say we already have n + 1 of these primes, denoted by

$$3, p_1, p_2, \cdots, p_n,$$

where $p_i > 3$. Consider the number

$$m = 4p_1p_2\cdots p_n + 3.$$

If $m = q_1 \cdots q_k$ is a prime factorization of m, prove that $q_j > 3$ for $j = 1, \ldots k$ and that no q_j is equal to any of the p_i 's. Prove that one of the q_j 's must be of the form 4n + 3, which shows that there is a prime of the form 4n + 3 greater than any of the previous primes of the same form.

Problem B4 (80 pts). This problem illustrates the power of the congruence version of Myhill-Nerode.

Recall that the reversal of a string, $w \in \Sigma^*$, is defined inductively as follows:

$$\epsilon^R = \epsilon$$
$$(ua)^R = au^R,$$

for all $u \in \Sigma^*$ and all $a \in \Sigma$.

Let ~ be a congruence (on Σ^*) and assume that ~ has *n* equivalence classes. Define ~_R and \approx by

$$u \sim_R v$$
 iff $u^R \sim v^R$, for all $u, v \in \Sigma^*$ and $\approx = \sim \cap \sim_R A$

(1) Prove that the equivalence class $[u]_{\sim_R}$ of any string $u \in \Sigma^*$ is given by

$$[u]_{\sim_R} = ([u^R]_{\sim})^R.$$

Consider the map $\rho \colon (\Sigma^*/\sim_R) \to (\Sigma^*/\sim)$ given by

$$\rho([u]_{\sim_R}) = [u^R]_{\sim}.$$

Prove that

$$\rho([u]_{\sim_R}) = ([u]_{\sim_R})^R,$$

which shows that the map ρ is well defined.

(2) Prove that ρ is bijective. Prove that \sim and \sim_R have the same number of equivalence classes.

(3) Prove that the relation \approx is a congruence. Prove that \approx has at most n^2 equivalence classes.

(4) Given any regular language L over Σ^* let

$$L^{(1/2)} = \{ w \in \Sigma^* \mid ww^R \in L \}.$$

Prove that $L^{(1/2)}$ is also regular using the relation \approx of part (1).

(5) Let L be any regular language over some alphabet Σ . For any natural number $k \geq 2$, let

$$L^{(1/k)} = \{ w \in \Sigma^* \mid (ww^R)^{k-1} \in L \} = \{ w \in \Sigma^* \mid \underbrace{ww^R ww^R \cdots ww^R}_{k-1} \in L \}$$

Also the languages $L^{1/\infty}$ and L^{∞} are defined by

$$L^{1/\infty} = \{ w \in \Sigma^* \mid (ww^R)^{k-1} \in L, \text{ for all } k \ge 2 \}, \text{ and} L^{\infty} = \{ w \in \Sigma^* \mid (ww^R)^{k-1} \in L, \text{ for some } k \ge 2 \}.$$

Prove that every language $L^{(1/k)}$ is regular.

(6) Prove that there are only finitely many distinct languages of the form $L^{(1/k)}$ (this means that the set of languages $\{L^{(1/k)}\}_{k\geq 2}$ is finite). Prove that $L^{1/\infty}$ and L^{∞} are regular.

TOTAL: 300 + 40 points.