Problem A1. Prove that every finite language is regular.

Problem A2. Sketch an algorithm for deciding whether two regular expressions \(R, S \) are equivalent (i.e., whether \(L[R] = L[S] \)).

Problem A3. Given any language \(L \subseteq \Sigma^* \), let

\[
L^R = \{ w^R \mid w \in L \},
\]

the reversal language of \(L \) (where \(w^R \) denotes the reversal of the string \(w \)). Prove that if \(L \) is regular, then \(L^R \) is also regular.

Problem B1 (60 pts). Let \(D = (Q, \Sigma, \delta, q_0, F) \) be a deterministic finite automaton. Define the relations \(\approx \) and \(\sim \) on \(\Sigma^* \) as follows:

\[
 x \approx y \quad \text{if and only if, for all} \quad p \in Q, \quad \delta^*(p, x) \in F \iff \delta^*(p, y) \in F,
\]

and

\[
 x \sim y \quad \text{if and only if, for all} \quad p \in Q, \quad \delta^*(p, x) = \delta^*(p, y).
\]

(a) Show that \(\approx \) is a left-invariant equivalence relation and that \(\sim \) is an equivalence relation that is both left and right invariant. (A relation \(R \) on \(\Sigma^* \) is left invariant iff \(uRv \) implies that \(uwRvw \) for all \(w \in \Sigma^* \), and \(R \) is right invariant iff \(uRv \) implies that \(uwRvw \) for all \(w \in \Sigma^* \).

(b) Let \(n \) be the number of states in \(Q \) (the set of states of \(D \)). Show that \(\approx \) has at most \(2^n \) equivalence classes and that \(\sim \) has at most \(n^n \) equivalence classes.

(c) Given any language \(L \subseteq \Sigma^* \), define the relations \(\lambda_L \) and \(\mu_L \) on \(\Sigma^* \) as follows:

\[
 u \lambda_L v \quad \text{iff, for all} \quad z \in \Sigma^*, \quad zu \in L \iff zv \in L,
\]
and
\[u \mu_L v \iff, \text{ for all } x, y \in \Sigma^*, \quad xuy \in L \iff xyv \in L. \]

Prove that \(\lambda_L \) is left-invariant, and that \(\mu_L \) is left and right-invariant. Prove that if \(L \) is regular, then both \(\lambda_L \) and \(\mu_L \) have a finite number of equivalence classes.

Hint: Show that the number of classes of \(\lambda_L \) is at most the number of classes of \(\approx \), and that the number of classes of \(\mu_L \) is at most the number of classes of \(\sim \).

Problem B2 (70 pts). Let \(L \) be any regular language over some alphabet \(\Sigma \). Define the languages

\[
L^\infty = \bigcup_{k \geq 1} \{w^k \mid w \in L\},
\]

\[
L^{1/\infty} = \{w \mid w^k \in L, \text{ for all } k \geq 1\}, \quad \text{and}
\]

\[
\sqrt{L} = \{w \mid w^k \in L, \text{ for some } k \geq 1\}.
\]

Also, for any natural number \(k \geq 1 \), let

\[
L^{(k)} = \{w^k \mid w \in L\},
\]

and

\[
L^{(1/k)} = \{w \mid w^k \in L\}.
\]

(a) Prove that \(L^{(1/3)} \) is regular. What about \(L^{(3)} \)?

(b) Let \(k \geq 1 \) be any natural number. Prove that there are only finitely many languages of the form \(L^{(1/k)} = \{w \mid w^k \in L\} \) and that they are all regular. (In fact, if \(L \) is accepted by a DFA with \(n \) states, there are at most \(2^{n^2} \) languages of the form \(L^{(1/k)} \)).

(c) Is \(L^{1/\infty} \) regular or not? Is \(\sqrt{L} \) regular or not? What about \(L^\infty \)?

Problem B3 (60 pts). Which of the following languages are regular? Justify each answer.

(a) \(L_1 = \{wcw \mid w \in \{a,b\}^*\} \)

(b) \(L_2 = \{xy \mid x, y \in \{a,b\}^* \text{ and } |x| = |y|\} \)

(c) \(L_3 = \{a^n \mid n \text{ is a prime number}\} \)

(d) \(L_4 = \{a^m b^n \mid \gcd(m,n) = 17\} \).

Problem B4 (50 pts). (a) Prove again that the intersection, \(L_1 \cap L_2 \), of two regular languages, \(L_1 \) and \(L_2 \), is regular, using the Myhill-Nerode characterization of regular languages.

(b) Let \(h : \Sigma^* \to \Delta^* \) be a homomorphism, as defined on pages 24-26 of the slides on DFA’s and NFA’s. For any regular language, \(L' \subseteq \Delta^* \), prove that \(h^{-1}(L') \) is regular, using the Myhill-Nerode characterization of regular languages. Prove that the number of states
of any minimal DFA for $h^{-1}(L')$ is at most the number of states of any minimal DFA for L'. Can it be strictly smaller?

Problem B5 (60 pts). The purpose of this problem is to get a fast algorithm for testing state equivalence in a DFA. Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton. Recall that state equivalence is the equivalence relation \equiv on Q, defined such that,

$$p \equiv q \iff \forall z \in \Sigma^* \delta^*(p, z) \in F \iff \delta^*(q, z) \in F,$$

and that i-equivalence is the equivalence relation \equiv_i on Q, defined such that,

$$p \equiv_i q \iff \forall z \in \Sigma^*, |z| \leq i \delta^*(p, z) \in F \iff \delta^*(q, z) \in F.).$$

A relation $S \subseteq Q \times Q$ is a forward closure iff it is an equivalence relation and whenever $(p, q) \in S$, then $(\delta(p, a), \delta(q, a)) \in S$, for all $a \in \Sigma$.

We say that a forward closure S is good iff whenever $(p, q) \in S$, then $\text{good}(p, q)$, where $\text{good}(p, q)$ holds iff either both $p, q \in F$, or both $p, q \notin F$.

Given any relation $R \subseteq Q \times Q$, recall that the smallest equivalence relation R_\approx containing R is the relation $(R \cup R^{-1})^*$ (where $R^{-1} = \{(q, p) \mid (p, q) \in R\}$, and $(R \cup R^{-1})^*$ is the reflexive and transitive closure of $(R \cup R^{-1})$). We define the sequence of relations $R_i \subseteq Q \times Q$ as follows:

$$R_0 = R_\approx$$
$$R_{i+1} = (R_i \cup \{(\delta(p, a), \delta(q, a)) \mid (p, q) \in R_i, a \in \Sigma\})_\approx.$$

(i) Prove that $R_{i_0 + 1} = R_{i_0}$ for some least i_0. Prove that R_{i_0} is the smallest forward closure containing R.

We denote the smallest forward closure R_{i_0} containing R as R^\dagger, and call it the forward closure of R.

(ii) Prove that $p \equiv q$ iff the forward closure R^\dagger of the relation $R = \{(p, q)\}$ is good.

TOTAL: 300 points.