
Spring 2025 CIS 5110

Introduction to the Theory of Computation

Jean Gallier

Homework 2

February 4, 2025; Due February 27, 2025

Problem B1 (40 pts). Let Σ = {a1, . . . , an} be an alphabet of n symbols, with n ≥ 2.

(1) Construct an NFA with 2n+1 states accepting the set Ln of strings over Σ such that,
every string in Ln has an odd number of ai, for some ai ∈ Σ. Equivalently, if Li

n is the set
of all strings over Σ with an odd number of ai, then Ln = L1

n ∪ · · · ∪ Ln
n.

(2) Prove that there is a DFA with 2n states accepting the language Ln.

(3) Prove that every DFA accepting Ln has at least 2n states.

Hint . If a DFA D with k < 2n states accepts Ln, show that there are two strings u, v with
the property that, for some ai ∈ Σ, u contains an odd number of ai’s, v contains an even
number of ai’s, and D ends in the same state after processing u and v. From this, conclude
that D accepts incorrect strings.

Problem B2 (50 pts). Let R be any regular language over some alphabet Σ. Prove that
the language

L = {u ∈ Σ∗ | ∃v ∈ Σ∗, uv ∈ R, |u| = |v|}

is regular.
Hint . Think nondeterministically; use a (nonstandard) cross-product construction.

Problem B3 (50 pts). (a) Let T = {0, 1, 2}, let C be the set of 20 strings of length three
over the alphabet T ,

C = {u ∈ T 3 | u /∈ {110, 111, 112, 101, 121, 011, 211}},

let Σ = {0, 1, 2, c}, and consider the language

LM = {w ∈ Σ∗ | w = u1cu2c · · · cun, n ≥ 1, ui ∈ C}.

Prove that LM is regular (there is a DFA with 7 states).

(b) The language LM has a geometric interpretation as a certain subset of R3 (actually,
Q3), as follows: Given any string, w = u1cu2c · · · cun ∈ LM , denoting the jth character in ui
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by uji , where j ∈ {1, 2, 3}, we obtain three strings

w1 = u11u
1
2 · · ·u1n

w2 = u21u
2
2 · · ·u2n

w3 = u31u
3
2 · · ·u3n.

For example, if w = 012c001c222c122 we have w1 = 0021, w2 = 1022, and w3 = 2122. Now,
a string v ∈ T+ can be interpreted as a decimal real number written in base three! Indeed,
if

v = b1b2 · · · bk, where bi ∈ {0, 1, 2} = T (1 ≤ i ≤ k),

we interpret v as n(v) = 0.b1b2 · · · bk, i.e.,

n(v) = b13
−1 + b23

−2 + · · ·+ bk3−k.

Finally, a string, w = u1cu2c · · · cun ∈ LM , is interpreted as the point, (xw, yw, zw) ∈ R3,
where

xw = n(w1), yw = n(w2), zw = n(w3).

Therefore, the language, LM , is the encoding of a set of rational points in R3, call it M . This
turns out to be the rational part of a fractal known as the Menger sponge.

Describe recursive rules to create the set M , starting from a unit cube in R3. Justify as
best as you can how these rules are derived from the description of the coordinates of the
points of M defined above (which points are omitted, included, ...).

Draw some pictures illustrating this process and showing approximations of the Menger
sponge.

Extra Credit (30 points). Write a computer program to draw the Menger sponge (based
on the ideas above).

Problem B4 (60 pts). Recall from class that given any DFA D = (Q,Σ, δ, q0, F ), a
congruence ≡ on D is an equivalence relation ≡ on Q satisfying the following conditions:

(1) For all p, q ∈ Q and all a ∈ Σ, if p ≡ q, then δ(p, a) ≡ δ(q, a).

(2) For all p, q ∈ Q, if p ≡ q and p ∈ F , then q ∈ F .

(a) Given a congruence ≡ on a DFA D, we define the quotient DFA D/ ≡ as follows:
denoting the equivalence class of a state p ∈ Q as [p],

D/ ≡= (Q/ ≡,Σ, δ/ ≡, [q0], F/ ≡),

where the transition function δ/ ≡ is given by

δ/ ≡ ([p], a) = [δ(p, a)]
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for all p ∈ Q and all a ∈ Σ.

Why is D/ ≡ well defined? Prove that there is a surjective proper homomorphism
π : D → D/ ≡, and thus, that L(D) = L(D/ ≡) (you may use results from HW1).

(b) Given a DFA D = (Q,Σ, δ, q0, F ), the state equivalence relation ≡D is defined such
that

p ≡D q iff (∀w ∈ Σ∗)(δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F ).

It is shown in the class notes that ≡D is a congruence, you don’t need to prove this fact.

Prove that the state equivalence relation ≡D is the coarsest congruence on D (this means
that if ≡ is any congruence on D, then ≡⊆≡D).

(c) Given two DFA’s D1 = (Q1,Σ, δ1, q0,1, F1) and D2 = (Q2,Σ, δ2, q0,2, F2), with D1 trim,
prove that the following properties hold.

(1) There is a DFA morphism h : D1 → D2 iff

'D1 ⊆'D2 .

(2) There is a DFA F -map h : D1 → D2 iff

'D1 ⊆'D2 and L(D1) ⊆ L(D2);

(3) There is a DFA B-map h : D1 → D2 iff

'D1 ⊆'D2 and L(D2) ⊆ L(D1).

Furthermore, in all three cases, h is surjective iff D2 is trim. Conclude that if D1, D2 are trim
and L(D1) = L(D2), then there is a unique surjective proper homomorphism h : D1 → D2

iff
'D1 ⊆'D2 .

(you may use results from HW1).

Problem B5 (60 pts). Let D = (Q,Σ, δ, q0, F ) be a deterministic finite automaton.

A relation S ⊆ Q×Q is a forward closure iff it is an equivalence relation and

(1) Whenever (p, q) ∈ S, then (δ(p, a), δ(q, a)) ∈ S, for all a ∈ Σ.

Given any relation R ⊆ Q×Q, recall that the smallest equivalence relation R≈ containing
R is the relation (R∪R−1)∗ (where R−1 = {(q, p) | (p, q) ∈ R}, and (R∪R−1)∗ is the reflexive
and transitive closure of (R ∪ R−1)). We define the sequence of relations Ri ⊆ Q × Q as
follows:

R0 = R≈

Ri+1 = (Ri ∪ {(δ(p, a), δ(q, a)) | (p, q) ∈ Ri, a ∈ Σ})≈.
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(i) Prove that Ri0+1 = Ri0 for some least i0. Prove that Ri0 is the smallest forward
closure containing R.

We denote the smallest forward closure Ri0 containing R as R†, and call it the forward
closure of R.

In the rest of this problem, all DFA’s under consideration use the same alphabet Σ.

(ii) Let D1 = (Q1,Σ, δ1, q01, F1) and D2 = (Q2,Σ, δ2, q02, F2) be DFA’s (not necessarily
trim). A triple (D, i1, i2) is a coproduct of D1 and D2, where D is a DFA, i1 : D1 → D and
i2 : D2 → D are DFA F -maps, if for every DFA M and any DFA F -maps f : D1 → M and
g : D2 →M , there is a unique DFA F -map h : D →M so that

f = h ◦ i1 and g = h ◦ i2.

D1
f

""D
DD

DD
DD

D

i1
��
D h // M

D2.

i2

OO

g

<<zzzzzzzz

The above uniqueness condition is called the the universal mapping property of coproducts.

Given D1 and D2, the disjoint union D1 +D2 of the two DFA’s D1, D2 is defined as the
state diagram

D1 +D2 = (Q1 ∪Q2,Σ, δ1 + δ2, F1 ∪ F2),

where Q1 and Q2 are renamed apart if necessary so that they are disjoint, and where δ1 + δ2
agrees with δ1 on Q1, and with δ2 on Q2, namely

(δ1 + δ2)(p, a) =

{
δ1(p, a) if p ∈ Q1

δ2(p, a) if p ∈ Q2.

In other words, just put D1 and D2 side by side, making sure that Q1 and Q2 are disjoing
sets, and ignoring that q01 and q02 are initial states, since this is irrelevant to what follows.
Let F = F1 ∪ F2.

We define the DFA D1

∐
D2 as the quotient

(D1 +D2)/ ∼, where ∼= {(q01, q02)}†,

defined as follows: The set of states of D1

∐
D2 is the set of equivalence classes of states of

D1 + D2 modulo the equivalence relation ∼, the start state is the equivalence class of q01
(which is the same as the equivalence class of q02, since they are identified by ∼), the set of
final states F is the set of equivalence classes that contain some state in F1 ∪ F2, and the
transition function ∆ is defined such that

∆([p]∼, a) = [(δ1 + δ2)(p, a)]∼
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for all p ∈ Q1 ∪Q2 and all a ∈ Σ.

Check that D1

∐
D2 is indeed a DFA. Define i1 : D1 → D1

∐
D2 and i2 : D2 → D1

∐
D2

so that
i1(p1) = [p1]∼ and i2(p2) = [p2]∼

for all p1 ∈ Q1 and all p2 ∈ Q2. Check that i1 and i2 are DFA F -maps (since ∼ is forward
closed).

Let f : D1 →M and g : D2 →M be DFA F -maps. Define the relation ∼= on the disjoint
union Q1 ∪Q2 by

p ∼= q iff


f(p) = f(q) if p, q ∈ Q1,
f(p) = g(q) if p ∈ Q1, q ∈ Q2,
g(p) = f(q) if p ∈ Q2, q ∈ Q1,
g(p) = g(q) if p, q ∈ Q2.

Prove that ∼= is a forward-closed equivalence relation that contains {(q0,1, q0,2)}. (Proving
transitivity involves eight cases). From this, deduce that ∼⊆∼=.

(iii) Using (ii), prove that the function h : D1

∐
D2 →M defined so that

h([p]) =

{
f(p) if p ∈ Q1,
g(p) if p ∈ Q2,

is a well-defined DFA F -map, and is the unique DFA F -map such that

f = h ◦ i1 and g = h ◦ i2.

Thus, (D1

∐
D2, i1, i2) is indeed a coproduct of D1 and D2.

(iv) Prove or disprove that L(D1

∐
D2) = L(D1) ∪ L(D2).

(v) (Extra credit (30 pts) Given three DFA’s D1, D2, D3 and any two DFA F -maps
f : D3 → D1 and g : D3 → D2, a triple (D, i1, i2) is pushout of f : D3 → D1 and g : D3 → D2

if i1 : D1 → D and i2 : D2 → D are DFA F -maps

D3
f //

g

��

D1

i1
��

D2 i2
// D

so that
i1 ◦ f = i2 ◦ g,

and if for every DFA M and any DFA F -maps f ′ : D1 →M and g′ : D2 →M

D3
f //

g

��

D1

f ′

��
D2

g′
//M
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such that
f ′ ◦ f = g′ ◦ g,

there is a unique DFA F -map h : D →M so that

f ′ = h ◦ i1 and g′ = h ◦ i2,

as illustrated by the following commutative diagram:

D3
f //

g

��

D1

i1
��

f ′

��2
22
22
22
22
22
22
22

D2
i2 //

g′
((QQ

QQQ
QQQ

QQQ
QQQ

QQ D

h
!!
M.

The above uniqueness condition is called the universal mapping property of pushouts .

Construct the DFA D1

∐
D3
D2 as the quotient

(D1 +D2)/ ∼, where ∼= {(f(p), g(p)) ∈ Q1 ×Q2 | p ∈ Q3}†,

defined in the obvious way, as in (ii).

Check that D1

∐
D3
D2 is indeed a DFA. Define i1 : D1 → D1

∐
D3
D2 and

i2 : D2 → D1

∐
D3
D2, so that

i1(p1) = [p1]∼ and i2(p2) = [p2]∼

for all p1 ∈ Q1 and all p2 ∈ Q2.

Prove that (D1

∐
D3
D2, i1, i2) is indeed a pushout of f : D3 → D1 and g : D3 → D2.

(vi) If (D, i1, i2) and (D′, i′1, i
′
2) are two pushouts of f : D3 → D1 and g : D3 → D2, prove

that there is a unique DFA isomorphism between D and D′ (this means that there are unique
DFA F -maps h : D → D′ and h′ : D′ → D so that h′ ◦ h = idD and h ◦ h′ = idD′ satisfying
the universal mapping property of pushouts).

TOTAL: 260 points + 60 extra credit.
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