Spring 2025 CIS 5110

Introduction to the Theory of Computation
Jean Gallier

Homework 2

February 4, 2025; Due February 27, 2025

Problem B1 (40 pts). Let ¥ = {ay,...,a,} be an alphabet of n symbols, with n > 2.

(1) Construct an NFA with 2n+1 states accepting the set L,, of strings over ¥ such that,
every string in L, has an odd number of a;, for some a; € ¥. Equivalently, if L is the set
of all strings over ¥ with an odd number of a;, then L, = L, U---U L™

(2) Prove that there is a DFA with 2" states accepting the language L,,.
(3) Prove that every DFA accepting L,, has at least 2" states.

Hint. If a DFA D with k£ < 2" states accepts L,,, show that there are two strings u, v with
the property that, for some a; € ¥, u contains an odd number of a;’s, v contains an even
number of a;’s, and D ends in the same state after processing v and v. From this, conclude
that D accepts incorrect strings.

Problem B2 (50 pts). Let R be any regular language over some alphabet 3. Prove that
the language
L={ue¥|wel weR, [u=]v|}

is regular.
Hint. Think nondeterministically; use a (nonstandard) cross-product construction.

Problem B3 (50 pts). (a) Let T'= {0, 1,2}, let C' be the set of 20 strings of length three
over the alphabet T,

C={ueT?|ud¢{110,111,112,101,121,011,211}},
let ¥ ={0,1,2,c}, and consider the language
Ly ={w € X | w=ujcusc---cuy, n>1,u; € C}.

Prove that Ly is regular (there is a DFA with 7 states).

(b) The language Ly, has a geometric interpretation as a certain subset of R3 (actually,
Q?), as follows: Given any string, w = ujcusc- - - cu, € Ly, denoting the jth character in w;
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by ug, where j € {1,2,3}, we obtain three strings

w2 = u%u; o .. ui
w® = uiup-ul.

For example, if w = 012c001¢222¢122 we have w! = 0021, w? = 1022, and w?® = 2122. Now,
a string v € T can be interpreted as a decimal real number written in base three! Indeed,
if

v =>biby---by, where b €{0,1,2} =T (1<i<k),

we interpret v as n(v) = 0.b1bg - - - by, i.e.,
n(v) = b3+ 0372+ + 37N

Finally, a string, w = wuycusc---cu,, € Lyy, is interpreted as the point, (2, Yuw, 20) € R3,
where
Ty = n(wh), Yo = n(w?), 2, = n(w?).

Therefore, the language, Ly, is the encoding of a set of rational points in R?, call it M. This
turns out to be the rational part of a fractal known as the Menger sponge.

Describe recursive rules to create the set M, starting from a unit cube in R3. Justify as
best as you can how these rules are derived from the description of the coordinates of the
points of M defined above (which points are omitted, included, ...).

Draw some pictures illustrating this process and showing approximations of the Menger
sponge.

Extra Credit (30 points). Write a computer program to draw the Menger sponge (based
on the ideas above).

Problem B4 (60 pts). Recall from class that given any DFA D = (Q,X%,6,q, F), a
congruence = on D is an equivalence relation = on () satisfying the following conditions:

(1) For all p,q € Q and all a € 3, if p = ¢, then §(p,a) = (g, a).

(2) Forall pge Q,ifp=qgand p € F, then q € F.

(a) Given a congruence = on a DFA D, we define the quotient DFA D/ = as follows:
denoting the equivalence class of a state p € Q as [p],

D/E:<Q/ 57276/ = [CJQ],F/ E)?

where the transition function 6/ = is given by



for all p € @ and all a € X..

Why is D/ = well defined? Prove that there is a surjective proper homomorphism
7n: D — D/ =, and thus, that L(D) = L(D/ =) (you may use results from HW1).

(b) Given a DFA D = (Q, %, 9, qo, I'), the state equivalence relation =, is defined such
that
p=pq iff (YweX)(6"(p,w)e F iff §*(q,w) € F).

It is shown in the class notes that =p is a congruence, you don’t need to prove this fact.

Prove that the state equivalence relation =p, is the coarsest congruence on D (this means
that if = is any congruence on D, then = C =p).

(C) Given two DFA’S Dl = (Ql, 2, (51, qul, Fl) and D2 = (QQ, Z, (52, q0,27 Fg), Wlth Dl trim,
prove that the following properties hold.

(1) There is a DFA morphism h: Dy — Dy iff

~p, C>~p, .

(2) There is a DFA F-map h: Dy — D, iff

~p C~p, and L(D;)C L(Dy);

(3) There is a DFA B-map h: Dy — Dy iff

>~p, g =D, and L(Dg) Q L(Dl)

Furthermore, in all three cases, h is surjective iff Dy is trim. Conclude that if Dy, Dy are trim
and L(D;) = L(Dy), then there is a unique surjective proper homomorphism h: Dy — D,
iff

~p, € ~p, .

(you may use results from HW1).

Problem B5 (60 pts). Let D = (Q, 3,0, qo, F') be a deterministic finite automaton.
A relation S C Q x Q is a forward closure iff it is an equivalence relation and
(1) Whenever (p,q) € S, then (§(p,a),d(q,a)) € S, for all a € X.

Given any relation R C () x @), recall that the smallest equivalence relation R containing
R is the relation (RUR™)* (where R™! = {(q,p) | (p,q) € R}, and (RUR™1)* is the reflexive
and transitive closure of (R U R™')). We define the sequence of relations RB; C @ x Q as
follows:

Ry = Re
Rit1 = (RiU{((p,a),0(q,a)) | (p,q) € Ri, a € X})~.



(i) Prove that R;+1 = R;, for some least 5. Prove that R;, is the smallest forward
closure containing R.

We denote the smallest forward closure R;, containing R as R, and call it the forward
closure of R.

In the rest of this problem, all DFA’s under consideration use the same alphabet X.

(i) Let Dy = (Q1,%, 61, qo1, F1) and Dy = (Q2, %, 02, Go2, F5) be DFA’s (not necessarily
trim). A triple (D, i1,1i9) is a coproduct of Dy and Dy, where D is a DFA iy: D; — D and
i9: Dy — D are DFA F-maps, if for every DFA M and any DFA F-maps f: Dy — M and
g: Dy — M, there is a unique DFA F-map h: D — M so that

f=hoiy and ¢g=hoi,.
D,

| N
11
D M
|| A
Ds.
The above uniqueness condition is called the the universal mapping property of coproducts.
Given D; and D,, the disjoint union D; + D5 of the two DFA’s Dy, D, is defined as the

state diagram
Dy + Dy = (Q1UQ9, %, 01 + 6, F1 U Fy),

where ()1 and (), are renamed apart if necessary so that they are disjoint, and where d; 4 9
agrees with d; on )1, and with d5 on ()2, namely

61(]7, CL) lfp € Ql
(52(]), a) 1fp € QQ.

In other words, just put D, and D, side by side, making sure that ); and @), are disjoing
sets, and ignoring that qo; and ¢y are initial states, since this is irrelevant to what follows.
Let F' = F1 U Fg.

We define the DFA D; [[ Dy as the quotient

(D1 + D)/ ~, where ~ = {(qo1,q02)}",

defined as follows: The set of states of Dy [ Do is the set of equivalence classes of states of
D1 + Dy modulo the equivalence relation ~, the start state is the equivalence class of gy
(which is the same as the equivalence class of gg2, since they are identified by ~), the set of
final states F is the set of equivalence classes that contain some state in F; U F,, and the
transition function A is defined such that

Allpl~, @) = (01 + 62)(p, @)~

(61 + 02)(p, a) = {
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forall p e Q1 U@, and all a € 3.

Check that Dy [ D9 is indeed a DFA. Define i1: D1 — Dy [[ Dy and ig: Dy — Dy [[ Do
so that

ir(p1) = [pl~  and  iz(p2) = [p2)~

for all p; € @1 and all py € Q3. Check that i; and i are DFA F-maps (since ~ is forward
closed).

Let f: Dy - M and g: Dy — M be DFA F-maps. Define the relation = on the disjoint
union ()1 U @2 by

f(p)=flq) ifp,qe,
pg it /@ =9l ifpeQi g€y,
g(p) = flq) ifpe€ Qs qec,

9(p) = 9(q) ifp,qe Q.
Prove that = is a forward-closed equivalence relation that contains {(go1,go2)}. (Proving
transitivity involves eight cases). From this, deduce that ~ C =,

(iii) Using (ii), prove that the function h: Dy [[ Do — M defined so that
i ={) hE8:
is a well-defined DFA F-map, and is the unique DFA F-map such that
f=hoi; and ¢g=hois.
Thus, (D; [[ D2, i1,12) is indeed a coproduct of Dy and Ds.
(iv) Prove or disprove that L(D; [[ D) = L(D;y) U L(Dy).

(v) (Extra credit (30 pts) Given three DFA’s Dy, Dy, D3 and any two DFA F-maps
f: D3 — Dy and g: D3 — Ds, a triple (D, iy,14s) is pushout of f: D3 — Dy and g: D3 — Dy
if 77: D1 — D and i5: Dy — D are DFA F-maps

D3*f> D,

DQT‘D

so that
7:1 © f = i? °g,
and if for every DFA M and any DFA F-maps f': Dy — M and ¢': Dy — M

D3*f> D,

gl if,

D24/>M
g
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such that
flof=4gog,
there is a unique DFA F-map h: D — M so that

f'=hoi; and ¢ =hoiy,

as illustrated by the following commutative diagram:

Dy~ D,

The above uniqueness condition is called the universal mapping property of pushouts.

Construct the DFA D; ] Ds D5 as the quotient

(D1+ Dy)/ ~, where ~={(f(p).g(p)) € Q1 x Q2 |p € Qs},

defined in the obvious way, as in (ii).
Check that D, ]_[D3 D, is indeed a DFA. Define ¢;: Dy — D; HDg D, and
i9: Doy — Dy HD3 D27 so that

i1(p1) =[]~ and  da(p2) = [p2]~

for all p; € Q1 and all py € Q.
Prove that (D ]_[D3 Dy, iq,19) is indeed a pushout of f: D3 — D; and g: D3 — Ds.

(vi) If (D, iy,149) and (D', i}, 1)) are two pushouts of f: D3 — Dy and g: D3 — Ds, prove
that there is a unique DFA isomorphism between D and D’ (this means that there are unique
DFA F-maps h: D — D" and h': D" — D so that ' o h = idp and h o b/ = idp: satisfying
the universal mapping property of pushouts).

TOTAL: 260 points + 60 extra credit.



