Spring 2025 CIS 5110

Introduction to the Theory of Computation Jean Gallier

Homework 2

February 4, 2025; Due February 27, 2025

Problem B1 (40 pts). Let $\Sigma = \{a_1, \ldots, a_n\}$ be an alphabet of *n* symbols, with $n \ge 2$.

(1) Construct an NFA with 2n+1 states accepting the set L_n of strings over Σ such that, every string in L_n has an odd number of a_i , for some $a_i \in \Sigma$. Equivalently, if L_n^i is the set of all strings over Σ with an odd number of a_i , then $L_n = L_n^1 \cup \cdots \cup L_n^n$.

(2) Prove that there is a DFA with 2^n states accepting the language L_n .

(3) Prove that every DFA accepting L_n has at least 2^n states.

Hint. If a DFA D with $k < 2^n$ states accepts L_n , show that there are two strings u, v with the property that, for some $a_i \in \Sigma$, u contains an odd number of a_i 's, v contains an even number of a_i 's, and D ends in the same state after processing u and v. From this, conclude that D accepts incorrect strings.

Problem B2 (50 pts). Let R be any regular language over some alphabet Σ . Prove that the language

$$L = \{ u \in \Sigma^* \mid \exists v \in \Sigma^*, \, uv \in R, \, |u| = |v| \}$$

is regular.

Hint. Think nondeterministically; use a (nonstandard) cross-product construction.

Problem B3 (50 pts). (a) Let $T = \{0, 1, 2\}$, let C be the set of 20 strings of length three over the alphabet T,

$$C = \{ u \in T^3 \mid u \notin \{110, 111, 112, 101, 121, 011, 211\} \},\$$

let $\Sigma = \{0, 1, 2, c\}$, and consider the language

$$L_M = \{ w \in \Sigma^* \mid w = u_1 c u_2 c \cdots c u_n, n \ge 1, u_i \in C \}.$$

Prove that L_M is regular (there is a DFA with 7 states).

(b) The language L_M has a geometric interpretation as a certain subset of \mathbb{R}^3 (actually, \mathbb{Q}^3), as follows: Given any string, $w = u_1 c u_2 c \cdots c u_n \in L_M$, denoting the *j*th character in u_i

by u_i^j , where $j \in \{1, 2, 3\}$, we obtain three strings

$$\begin{aligned} w^1 &= u_1^1 u_2^1 \cdots u_n^1 \\ w^2 &= u_1^2 u_2^2 \cdots u_n^2 \\ w^3 &= u_1^3 u_2^3 \cdots u_n^3. \end{aligned}$$

For example, if w = 0.12c001c222c122 we have $w^1 = 0.021$, $w^2 = 1.022$, and $w^3 = 2.122$. Now, a string $v \in T^+$ can be interpreted as a decimal real number written in base three! Indeed, if

 $v = b_1 b_2 \cdots b_k$, where $b_i \in \{0, 1, 2\} = T$ $(1 \le i \le k)$,

we interpret v as $n(v) = 0.b_1b_2\cdots b_k$, i.e.,

$$n(v) = b_1 3^{-1} + b_2 3^{-2} + \dots + b_k 3^{-k}$$

Finally, a string, $w = u_1 c u_2 c \cdots c u_n \in L_M$, is interpreted as the point, $(x_w, y_w, z_w) \in \mathbb{R}^3$, where

$$x_w = n(w^1), y_w = n(w^2), z_w = n(w^3).$$

Therefore, the language, L_M , is the encoding of a set of rational points in \mathbb{R}^3 , call it M. This turns out to be the rational part of a fractal known as the *Menger sponge*.

Describe recursive rules to create the set M, starting from a unit cube in \mathbb{R}^3 . Justify as best as you can how these rules are derived from the description of the coordinates of the points of M defined above (which points are omitted, included, ...).

Draw some pictures illustrating this process and showing approximations of the Menger sponge.

Extra Credit (30 points). Write a computer program to draw the Menger sponge (based on the ideas above).

Problem B4 (60 pts). Recall from class that given any DFA $D = (Q, \Sigma, \delta, q_0, F)$, a congruence \equiv on D is an equivalence relation \equiv on Q satisfying the following conditions:

- (1) For all $p, q \in Q$ and all $a \in \Sigma$, if $p \equiv q$, then $\delta(p, a) \equiv \delta(q, a)$.
- (2) For all $p, q \in Q$, if $p \equiv q$ and $p \in F$, then $q \in F$.

(a) Given a congruence \equiv on a DFA D, we define the quotient DFA D/\equiv as follows: denoting the equivalence class of a state $p \in Q$ as [p],

$$D/\equiv = (Q/\equiv, \Sigma, \delta/\equiv, [q_0], F/\equiv),$$

where the transition function $\delta \equiv i s$ given by

$$\delta \equiv ([p], a) = [\delta(p, a)]$$

for all $p \in Q$ and all $a \in \Sigma$.

Why is D/\equiv well defined? Prove that there is a surjective proper homomorphism $\pi: D \to D/\equiv$, and thus, that $L(D) = L(D/\equiv)$ (you may use results from HW1).

(b) Given a DFA $D = (Q, \Sigma, \delta, q_0, F)$, the state equivalence relation \equiv_D is defined such that

$$p \equiv_D q$$
 iff $(\forall w \in \Sigma^*)(\delta^*(p, w) \in F \text{ iff } \delta^*(q, w) \in F).$

It is shown in the class notes that \equiv_D is a congruence, you don't need to prove this fact.

Prove that the state equivalence relation \equiv_D is the coarsest congruence on D (this means that if \equiv is any congruence on D, then $\equiv \subseteq \equiv_D$).

(c) Given two DFA's $D_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ and $D_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$, with D_1 trim, prove that the following properties hold.

(1) There is a DFA morphism $h: D_1 \to D_2$ iff

$$\simeq_{D_1} \subseteq \simeq_{D_2}$$
.

(2) There is a DFA *F*-map $h: D_1 \to D_2$ iff

$$\simeq_{D_1} \subseteq \simeq_{D_2}$$
 and $L(D_1) \subseteq L(D_2);$

(3) There is a DFA *B*-map $h: D_1 \to D_2$ iff

$$\simeq_{D_1} \subseteq \simeq_{D_2}$$
 and $L(D_2) \subseteq L(D_1)$.

Furthermore, in all three cases, h is surjective iff D_2 is trim. Conclude that if D_1, D_2 are trim and $L(D_1) = L(D_2)$, then there is a unique surjective proper homomorphism $h: D_1 \to D_2$ iff

 $\simeq_{D_1} \subseteq \simeq_{D_2}$.

(you may use results from HW1).

Problem B5 (60 pts). Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton.

A relation $S \subseteq Q \times Q$ is a *forward closure* iff it is an equivalence relation and

(1) Whenever $(p,q) \in S$, then $(\delta(p,a), \delta(q,a)) \in S$, for all $a \in \Sigma$.

Given any relation $R \subseteq Q \times Q$, recall that the smallest equivalence relation R_{\approx} containing R is the relation $(R \cup R^{-1})^*$ (where $R^{-1} = \{(q, p) \mid (p, q) \in R\}$, and $(R \cup R^{-1})^*$ is the reflexive and transitive closure of $(R \cup R^{-1})$). We define the sequence of relations $R_i \subseteq Q \times Q$ as follows:

$$R_0 = R_{\approx}$$

$$R_{i+1} = (R_i \cup \{ (\delta(p, a), \delta(q, a)) \mid (p, q) \in R_i, \ a \in \Sigma \})_{\approx}.$$

(i) Prove that $R_{i_0+1} = R_{i_0}$ for some least i_0 . Prove that R_{i_0} is the smallest forward closure containing R.

We denote the smallest forward closure R_{i_0} containing R as R^{\dagger} , and call it the *forward* closure of R.

In the rest of this problem, all DFA's under consideration use the same alphabet Σ .

(ii) Let $D_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ and $D_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ be DFA's (not necessarily trim). A triple (D, i_1, i_2) is a coproduct of D_1 and D_2 , where D is a DFA, $i_1: D_1 \to D$ and $i_2: D_2 \to D$ are DFA F-maps, if for every DFA M and any DFA F-maps $f: D_1 \to M$ and $g: D_2 \to M$, there is a unique DFA F-map $h: D \to M$ so that

The above uniqueness condition is called the *the universal mapping property* of coproducts.

Given D_1 and D_2 , the disjoint union $D_1 + D_2$ of the two DFA's D_1, D_2 is defined as the state diagram

$$D_1 + D_2 = (Q_1 \cup Q_2, \Sigma, \delta_1 + \delta_2, F_1 \cup F_2),$$

where Q_1 and Q_2 are renamed apart if necessary so that they are disjoint, and where $\delta_1 + \delta_2$ agrees with δ_1 on Q_1 , and with δ_2 on Q_2 , namely

$$(\delta_1 + \delta_2)(p, a) = \begin{cases} \delta_1(p, a) & \text{if } p \in Q_1 \\ \delta_2(p, a) & \text{if } p \in Q_2. \end{cases}$$

In other words, just put D_1 and D_2 side by side, making sure that Q_1 and Q_2 are disjoing sets, and ignoring that q_{01} and q_{02} are initial states, since this is irrelevant to what follows. Let $F = F_1 \cup F_2$.

We define the DFA $D_1 \coprod D_2$ as the quotient

$$(D_1 + D_2) / \sim$$
, where $\sim = \{(q_{01}, q_{02})\}^{\dagger}$,

defined as follows: The set of states of $D_1 \coprod D_2$ is the set of equivalence classes of states of $D_1 + D_2$ modulo the equivalence relation \sim , the start state is the equivalence class of q_{01} (which is the same as the equivalence class of q_{02} , since they are identified by \sim), the set of final states \mathcal{F} is the set of equivalence classes that contain some state in $F_1 \cup F_2$, and the transition function Δ is defined such that

$$\Delta([p]_{\sim}, a) = [(\delta_1 + \delta_2)(p, a)]_{\sim}$$

for all $p \in Q_1 \cup Q_2$ and all $a \in \Sigma$.

Check that $D_1 \coprod D_2$ is indeed a DFA. Define $i_1 \colon D_1 \to D_1 \coprod D_2$ and $i_2 \colon D_2 \to D_1 \coprod D_2$ so that

$$i_1(p_1) = [p_1]_{\sim}$$
 and $i_2(p_2) = [p_2]_{\sim}$

for all $p_1 \in Q_1$ and all $p_2 \in Q_2$. Check that i_1 and i_2 are DFA *F*-maps (since ~ is forward closed).

Let $f: D_1 \to M$ and $g: D_2 \to M$ be DFA *F*-maps. Define the relation \cong on the disjoint union $Q_1 \cup Q_2$ by

$$p \cong q \quad \text{iff} \quad \begin{cases} f(p) = f(q) & \text{if } p, q \in Q_1, \\ f(p) = g(q) & \text{if } p \in Q_1, q \in Q_2, \\ g(p) = f(q) & \text{if } p \in Q_2, q \in Q_1, \\ g(p) = g(q) & \text{if } p, q \in Q_2. \end{cases}$$

Prove that \cong is a forward-closed equivalence relation that contains $\{(q_{0,1}, q_{0,2})\}$. (Proving transitivity involves eight cases). From this, deduce that $\sim \subseteq \cong$.

(iii) Using (ii), prove that the function $h: D_1 \coprod D_2 \to M$ defined so that

$$h([p]) = \begin{cases} f(p) & \text{if } p \in Q_1, \\ g(p) & \text{if } p \in Q_2, \end{cases}$$

is a well-defined DFA F-map, and is the unique DFA F-map such that

$$f = h \circ i_1$$
 and $g = h \circ i_2$.

Thus, $(D_1 \mid D_2, i_1, i_2)$ is indeed a coproduct of D_1 and D_2 .

(iv) Prove or disprove that $L(D_1 \coprod D_2) = L(D_1) \cup L(D_2)$.

(v) (Extra credit (30 pts) Given three DFA's D_1, D_2, D_3 and any two DFA *F*-maps $f: D_3 \to D_1$ and $g: D_3 \to D_2$, a triple (D, i_1, i_2) is pushout of $f: D_3 \to D_1$ and $g: D_3 \to D_2$ if $i_1: D_1 \to D$ and $i_2: D_2 \to D$ are DFA *F*-maps

so that

$$i_1 \circ f = i_2 \circ g,$$

and if for every DFA M and any DFA F-maps $f': D_1 \to M$ and $g': D_2 \to M$

$$\begin{array}{ccc} D_3 & \stackrel{f}{\longrightarrow} & D_1 \\ g & & & \downarrow^{f'} \\ D_2 & \stackrel{g'}{\longrightarrow} & M \end{array}$$

such that

$$f' \circ f = g' \circ g$$

there is a unique DFA F-map $h: D \to M$ so that

$$f' = h \circ i_1$$
 and $g' = h \circ i_2$,

as illustrated by the following commutative diagram:

The above uniqueness condition is called the *universal mapping property of pushouts*.

Construct the DFA $D_1 \coprod_{D_3} D_2$ as the quotient

$$(D_1 + D_2) / \sim$$
, where $\sim = \{ (f(p), g(p)) \in Q_1 \times Q_2 \mid p \in Q_3 \}^{\dagger},$

defined in the obvious way, as in (ii).

Check that $D_1 \coprod_{D_3} D_2$ is indeed a DFA. Define $i_1 \colon D_1 \to D_1 \coprod_{D_3} D_2$ and $i_2 \colon D_2 \to D_1 \coprod_{D_3} D_2$, so that

$$i_1(p_1) = [p_1]_{\sim}$$
 and $i_2(p_2) = [p_2]_{\sim}$

for all $p_1 \in Q_1$ and all $p_2 \in Q_2$.

Prove that $(D_1 \coprod_{D_3} D_2, i_1, i_2)$ is indeed a pushout of $f: D_3 \to D_1$ and $g: D_3 \to D_2$.

(vi) If (D, i_1, i_2) and (D', i'_1, i'_2) are two pushouts of $f: D_3 \to D_1$ and $g: D_3 \to D_2$, prove that there is a unique DFA isomorphism between D and D' (this means that there are unique DFA F-maps $h: D \to D'$ and $h': D' \to D$ so that $h' \circ h = \mathrm{id}_D$ and $h \circ h' = \mathrm{id}_{D'}$ satisfying the universal mapping property of pushouts).

TOTAL: 260 points + 60 extra credit.