Fall 2021 CIS 511

Introduction to the Theory of Computation Jean Gallier Homework 2

September 27, 2021; Due October 11, 2021

Problem B1 (40 pts). Let $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ be an alphabet of n symbols, with $n \geq 2$.
(1) Construct an NFA with $2 n+1$ states accepting the set L_{n} of strings over Σ such that, every string in L_{n} has an odd number of a_{i}, for some $a_{i} \in \Sigma$. Equivalently, if L_{n}^{i} is the set of all strings over Σ with an odd number of a_{i}, then $L_{n}=L_{n}^{1} \cup \cdots \cup L_{n}^{n}$.
(2) Prove that there is a DFA with 2^{n} states accepting the language L_{n}.
(3) Prove that every DFA accepting L_{n} has at least 2^{n} states.

Hint. If a DFA D with $k<2^{n}$ states accepts L_{n}, show that there are two strings u, v with the property that, for some $a_{i} \in \Sigma, u$ contains an odd number of a_{i} 's, v contains an even number of a_{i} 's, and D ends in the same state after processing u and v. From this, conclude that D accepts incorrect strings.

Problem B2 (50 pts). Let R be any regular language over some alphabet Σ. Prove that the language

$$
L=\left\{u \in \Sigma^{*}\left|\exists v \in \Sigma^{*}, u v \in R,|u|=|v|\right\}\right.
$$

is regular.
Hint. Think nondeterministically; use a (nonstandard) cross-product construction.
Problem B3 (50 pts). (a) Let $T=\{0,1,2\}$, let C be the set of 20 strings of length three over the alphabet T,

$$
C=\left\{u \in T^{3} \mid u \notin\{110,111,112,101,121,011,211\}\right\}
$$

let $\Sigma=\{0,1,2, c\}$, and consider the language

$$
L_{M}=\left\{w \in \Sigma^{*} \mid w=u_{1} c u_{2} c \cdots c u_{n}, n \geq 1, u_{i} \in C\right\} .
$$

Prove that L_{M} is regular (there is a DFA with 7 states).
(b) The language L_{M} has a geometric interpretation as a certain subset of \mathbb{R}^{3} (actually, \mathbb{Q}^{3}), as follows: Given any string, $w=u_{1} c u_{2} c \cdots c u_{n} \in L_{M}$, denoting the j th character in u_{i}
by u_{i}^{j}, where $j \in\{1,2,3\}$, we obtain three strings

$$
\begin{aligned}
w^{1} & =u_{1}^{1} u_{2}^{1} \cdots u_{n}^{1} \\
w^{2} & =u_{1}^{2} u_{2}^{2} \cdots u_{n}^{2} \\
w^{3} & =u_{1}^{3} u_{2}^{3} \cdots u_{n}^{3} .
\end{aligned}
$$

For example, if $w=012 c 001 c 222 c 122$ we have $w^{1}=0021, w^{2}=1022$, and $w^{3}=2122$. Now, a string $v \in T^{+}$can be interpreted as a decimal real number written in base three! Indeed, if

$$
v=b_{1} b_{2} \cdots b_{k}, \quad \text { where } \quad b_{i} \in\{0,1,2\}=T(1 \leq i \leq k)
$$

we interpret v as $n(v)=0 . b_{1} b_{2} \cdots b_{k}$, i.e.,

$$
n(v)=b_{1} 3^{-1}+b_{2} 3^{-2}+\cdots+b_{k} 3^{-k}
$$

Finally, a string, $w=u_{1} c u_{2} c \cdots c u_{n} \in L_{M}$, is interpreted as the point, $\left(x_{w}, y_{w}, z_{w}\right) \in \mathbb{R}^{3}$, where

$$
x_{w}=n\left(w^{1}\right), y_{w}=n\left(w^{2}\right), z_{w}=n\left(w^{3}\right)
$$

Therefore, the language, L_{M}, is the encoding of a set of rational points in \mathbb{R}^{3}, call it M. This turns out to be the part consisting of the rational points having a finite decimal representation in base 3 of a fractal known as the Menger sponge.

Describe recursive rules to create the set M, starting from a unit cube in \mathbb{R}^{3}. Justify as best as you can how these rules are derived from the description of the coordinates of the points of M defined above (which points are omitted, included, ...).

Draw some pictures illustrating this process and showing approximations of the Menger sponge.
Extra Credit (30 points). Write a computer program to draw the Menger sponge (based on the ideas above).

Problem B4 (60 pts). Recall from class that given any DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, a congruence \equiv on D is an equivalence relation \equiv on Q satisfying the following conditions:
(1) For all $p, q \in Q$ and all $a \in \Sigma$, if $p \equiv q$, then $\delta(p, a) \equiv \delta(q, a)$.
(2) For all $p, q \in Q$, if $p \equiv q$ and $p \in F$, then $q \in F$.
(a) Given a congruence \equiv on a DFA D, we define the quotient $D F A D / \equiv$ as follows: denoting the equivalence class of a state $p \in Q$ as $[p]$,

$$
D / \equiv=\left(Q / \equiv, \Sigma, \delta / \equiv,\left[q_{0}\right], F / \equiv\right)
$$

where the transition function δ / \equiv is given by

$$
\delta / \equiv([p], a)=[\delta(p, a)]
$$

for all $p \in Q$ and all $a \in \Sigma$.
Why is D / \equiv well defined? Prove that there is a surjective proper homomorphism $\pi: D \rightarrow D / \equiv$, and thus, that $L(D)=L(D / \equiv)$ (you may use results from HW1).
(b) Given a DFA D, prove that the state equivalence relation \equiv_{D} is the coarsest congruence on D (this means that if \equiv is any congruence on D, then $\equiv \subseteq \equiv_{D}$).
(c) Given two DFA's $D_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0,1}, F_{1}\right)$ and $D_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0,2}, F_{2}\right)$, with D_{1} trim, prove that the following properties hold.
(1) There is a DFA morphism $h: D_{1} \rightarrow D_{2}$ iff

$$
\simeq_{D_{1}} \subseteq \simeq_{D_{2}} .
$$

(2) There is a DFA F-map $h: D_{1} \rightarrow D_{2}$ iff

$$
\simeq_{D_{1}} \subseteq \simeq_{D_{2}} \quad \text { and } \quad L\left(D_{1}\right) \subseteq L\left(D_{2}\right) ;
$$

(3) There is a DFA B-map $h: D_{1} \rightarrow D_{2}$ iff

$$
\simeq_{D_{1}} \subseteq \simeq_{D_{2}} \quad \text { and } \quad L\left(D_{2}\right) \subseteq L\left(D_{1}\right)
$$

Furthermore, in all three cases, h is surjective iff D_{2} is trim. Conclude that if D_{1}, D_{2} are trim and $L\left(D_{1}\right)=L\left(D_{2}\right)$, then there is a unique surjective proper homomorphism $h: D_{1} \rightarrow D_{2}$ iff

$$
\simeq_{D_{1}} \subseteq \simeq_{D_{2}} .
$$

(you may use results from HW1).
Prove that for any trim DFA D, there is a unique surjective proper homomorphism from D to any minimal DFA D_{m} accepting $L=L(D)$.
(d) Given a regular language L, prove that a minimal DFA D_{m} for L is characterized by the property that there is unique surjective proper homomorphism $h: D \rightarrow D_{m}$ from any trim DFA D accepting L to D_{m}.
Problem B5 (50 pts). (Ultimate periodicity) A subset U of the set $\mathbb{N}=\{0,1,2,3, \ldots\}$ of natural numbers is ultimately periodic if there exist $m, p \in \mathbb{N}$, with $p \geq 1$, so that $n \in U$ iff $n+p \in U$, for all $n \geq m$.
(i) Prove that $U \subseteq \mathbb{N}$ is ultimately periodic iff either U is finite or there is a finite subset $F \subseteq \mathbb{N}$ and there are $k \leq p$ numbers m_{1}, \ldots, m_{k}, with $m_{1}<m_{2}<\cdots<m_{k}<m_{1}+p$, and with m_{1} the smallest element of U so that for some $p \geq 1, n \in U$ iff $n+p \in U$, for all $n \geq m_{1}$, so that

$$
U=F \cup \bigcup_{i=1}^{k}\left\{m_{i}+j p \mid j \in \mathbb{N}\right\} .
$$

Give an example of an ultimately periodic set U such that m and p are not necessarily unique, i.e., U is ultimately periodic with respect to m_{1}, p_{1} and m_{2}, p_{2}, with $m_{1} \neq m_{2}$ and $p_{1} \neq p_{2}$.

Remark: A subset of \mathbb{N} of the form $\{m+i p \mid i \in \mathbb{N}\}$ (allowing $p=0$) is called a linear set, and a finite union of linear sets is called a semilinear set. Thus, (i) says that a set is ultimately periodic iff it is semilinear.
(ii) Let $L \subseteq\{a\}^{*}$ be a language over the one-letter alphabet $\{a\}$. Prove that L is a regular language iff the set $\left\{m \in \mathbb{N} \mid a^{m} \in L\right\}$ is ultimately periodic. Prove that the family of semilinear sets is closed under union, intersection and complementation (i.e., it is a boolean algebra).
(iii) Let $L \subseteq \Sigma^{*}$ be a regular language over any alphabet Σ (not necessarily consisting of a single letter). Prove that the set

$$
|L|=\{|w| \mid w \in L\}
$$

is ultimately periodic.
TOTAL: 250 points +30 extra credit.

