Introduction to the Theory of Computation
Jean Gallier

Homework 2
July 12, 2017; Due July 19, 2017
Beginning of class

“A problems” are for practice only, and should not be turned in.

Problem A1. Recall that two regular expressions R and S are equivalent, denoted as $R \equiv S$, iff they denote the same regular language $L[R] = L[S]$. Show that the following identities hold for regular expressions:

- $R^{**} \equiv R^*$
- $(R + S)^* \equiv (R^* + S^*)^*$
- $(R + S)^* \equiv (R^*S)^*^*$
- $(R + S)^* \equiv (R^*S)^*R^*$

Problem A2. Recall that a homomorphism $h : \Sigma^* \rightarrow \Delta^*$ is a function such that $h(uv) = h(u)h(v)$ for all $u, v \in \Sigma^*$. Given any language, $L \subseteq \Sigma^*$, we define $h(L)$ as

$h(L) = \{h(w) \mid w \in L\}$.

Prove that if $L \subseteq \Sigma^*$ is a regular language, then so is $h(L)$.

Problem A3. Construct an NFA accepting the language $L = \{aa, aaa\}^*$. Apply the subset construction to get a DFA accepting L.

“B problems” must be turned in.

Problem B1 (30 pts). Let $\Sigma = \{a_1, \ldots, a_n\}$ be an alphabet of n symbols.

- (a) Construct an NFA with $2n + 1$ states accepting the set L_n of strings over Σ such that, every string in L_n has an odd number of a_i, for some $a_i \in \Sigma$. Equivalently, if L_i^n is the set of all strings over Σ with an odd number of a_i, then $L_n = L_1^n \cup \cdots \cup L_n^n$.
- (b) Prove that there is a DFA with 2^n states accepting the language L_n.
- (c) Prove that every DFA accepting L_n has at least 2^n states.

Hint: If a DFA D with $k < 2^n$ states accepts L_n, show that there are two strings u, v with the property that, for some $a_i \in \Sigma$, u contains an odd number of a_i’s, v contains an even
number of \(a_i \)'s, and \(D \) ends in the same state after processing \(u \) and \(v \). From this, conclude that \(D \) accepts incorrect strings.

Problem B2 (30 pts). (a) Let \(T = \{0, 1, 2\} \), let \(C \) be the set of 20 strings of length three over the alphabet \(T \),
\[
C = \{ u \in T^3 \mid u \notin \{110, 111, 112, 101, 121, 011, 211\} \},
\]
let \(\Sigma = \{0, 1, 2, c\} \) and consider the language
\[
L_M = \{ w \in \Sigma^* \mid w = u_1cu_2\cdots cu_n, \ n \geq 1, u_i \in C \}.
\]
Prove that \(L \) is regular.

(b) The language \(L_M \) has a geometric interpretation as a certain subset of \(\mathbb{R}^3 \) (actually, \(\mathbb{Q}^3 \)), as follows: Given any string, \(w = u_1cu_2\cdots cu_n \in L_M \), denoting the \(j \)th character in \(u_i \) by \(u^j_i \), where \(j \in \{1, 2, 3\} \), we obtain three strings
\[
\begin{align*}
w^1 &= u^1_1u^1_2\cdots u^1_n \\
w^2 &= u^2_1u^2_2\cdots u^2_n \\
w^3 &= u^3_1u^3_2\cdots u^3_n.
\end{align*}
\]
For example, if \(w = 012c001c222c122 \) we have \(w^1 = 0021 \), \(w^2 = 1022 \), and \(w^3 = 2122 \). Now, a string \(v \in T^+ \) can be interpreted as a decimal real number written in base three! Indeed, if
\[
v = b_1b_2\cdots b_k, \quad \text{where} \quad b_i \in \{0, 1, 2\} = T \ (1 \leq i \leq k),
\]
we interpret \(v \) as \(n(v) = 0.b_1b_2\cdots b_k \), i.e.,
\[
n(v) = b_13^{-1} + b_23^{-2} + \cdots + b_k3^{-k}.
\]
Finally, a string, \(w = u_1cu_2\cdots cu_n \in L_M \), is interpreted as the point, \((x_w, y_w, z_w) \in \mathbb{R}^3 \), where
\[
x_w = n(w^1), \ y_w = n(w^2), \ z_w = n(w^3).
\]
Therefore, the language, \(L_M \), is the encoding of a set of rational points in \(\mathbb{R}^3 \), call it \(M \). This turns out to be the rational part of a fractal known as the Menger sponge.

Extra Credit (20 points). Write a computer program to draw the Menger sponge (based on the ideas above).

Problem B3 (40 pts). Let \(D = (Q, \Sigma, \delta, q_0, F) \) be a deterministic finite automaton. Define the relations \(\approx \) and \(\sim \) on \(\Sigma^* \) as follows:
\[
\begin{align*}
x &\approx y \quad \text{if and only if} \quad \text{for all} \quad p \in Q, \\
\delta^*(p, x) &\in F \quad \text{iff} \quad \delta^*(p, y) \in F,
\end{align*}
\]

and
\[x \sim y \text{ if and only if, for all } p \in Q, \delta^*(p, x) = \delta^*(p, y). \]

(a) Show that \(\approx \) is a left-invariant equivalence relation and that \(\sim \) is an equivalence relation that is both left and right invariant. (A relation \(R \) on \(\Sigma^* \) is \textit{left invariant} iff \(uRv \) implies that \(wuRwv \) for all \(w \in \Sigma^* \), and \(R \) is \textit{right invariant} iff \(uRv \) implies that \(uwRvw \) for all \(w \in \Sigma^* \).)

(b) Let \(n \) be the number of states in \(Q \) (the set of states of \(D \)). Show that \(\approx \) has at most \(2^n \) equivalence classes and that \(\sim \) has at most \(n^n \) equivalence classes.

(c) Given any language \(L \subseteq \Sigma^* \), define the relations \(\lambda_L \) and \(\mu_L \) on \(\Sigma^* \) as follows:
\[u \lambda_L v \text{ iff, for all } z \in \Sigma^*, zu \in L \text{ iff } zv \in L, \]
and
\[u \mu_L v \text{ iff, for all } x, y \in \Sigma^*, xuy \in L \text{ iff } xvy \in L. \]

Prove that \(\lambda_L \) is left-invariant, and that \(\mu_L \) is left and right-invariant. Prove that if \(L \) is regular, then both \(\lambda_L \) and \(\mu_L \) have a finite number of equivalence classes.

\textit{Hint:} Show that the number of classes of \(\lambda_L \) is at most the number of classes of \(\approx \), and that the number of classes of \(\mu_L \) is at most the number of classes of \(\sim \).

\textbf{Problem B4 (10 pts).} Is the following language regular? Justify your answer.
\[L_3 = \{ a^n \mid n \text{ is a prime number} \} \]

\textbf{TOTAL: 110 + 20 points.}