Spring, 2014 CIS 511

Introduction to the Theory of Computation
Jean Gallier

Homework 2

February 4, 2014; Due February 18, 2014, beginning of class

“A problems” are for practice only, and should not be turned in.

Problem A1l. Recall that two regular expressions R and S are equivalent, denoted as
R = S, iff they denote the same regular language L[R] = L[S]. Show that the following
identities hold for regular expressions:
R ~ R*
(R+S8)"= (R + 85"
(R+S) = (R*S™)”
(R+S)" = (R*S)"R"

Problem A2. Recall that a homomorphism h: ¥* — A* is a function such that h(uv) =
h(u)h(v) for all u,v € ¥*. Given any language L C ¥*, we define h(L) as

h(L) = {h(w) | w € L}.
Given any language L' C A*, we define h=(L') as
L) ={weX* | hw) € L'}.

Prove that if L C ¥* and L' C A* are regular languages, then so are h(L) and h~'(L’).

Problem A3. Construct an NFA accepting the language L = {aa, aaa}*. Apply the subset
construction to get a DFA accepting L.

“B3 problems” must be turned in.

Problem B1 (40 pts). Let ¥ = {ay,...,a,} be an alphabet of n symbols.

(a) Construct an NFA with 2n + 1 (or 2n) states accepting the set L,, of strings over X
such that, every string in L,, has an odd number of a;, for some a; € ¥. Equivalently, if L,
is the set of all strings over ¥ with an odd number of a;, then L, = L} U--- U L".

(b) Prove that there is a DFA with 2" states accepting the language L,,.
(c) Prove that every DFA accepting L,, has at least 2" states.
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Hint: If a DFA D with k£ < 2" states accepts L,,, show that there are two strings u,v with
the property that, for some a; € 3, u contains an odd number of a;’s, v contains an even
number of a;’s, and D ends in the same state after processing v and v. From this, conclude
that D accepts incorrect strings.

Problem B2 (30 pts). (a) Let T'= {0, 1,2}, let C' be the set of 20 strings of length three
over the alphabet T,

C={uecT*|u¢{110,111,112,101,121,011,211}},
let ¥ ={0,1,2,¢} and consider the language
Ly ={w e X" |w=ujcugc---cup, n>1,u; € C}.

Prove that L), is regular.

(b) The language Ly, has a geometric interpretation as a certain subset of R3 (actually,
Q?), as follows: Given any string, w = uicusc- - - cu, € Ly, denoting the jth character in u;
by u], where j € {1,2,3}, we obtain three strings

2 2,2 2
w — U1U2"'Un
3 3,3 3
wo o= ujuy .

For example, if w = 012c001¢222¢122 we have w! = 0021, w? = 1022, and w? = 2122. Now,
a string v € T can be interpreted as a decimal real number written in base three! Indeed,
if

v ="0byby---bg, where b; €{0,1,2} =T (1<i<k),

we interpret v as n(v) = 0.byby - - - by, i.e.,
TL(U) = 613_1 + b23_2 + -4 bk?)_k

Finally, a string, w = ujcugc---cu, € Ly, is interpreted as the point, (Zw,Yuw,2w) € R?,
where
Ty = n(wh), Yo = n(w?), 2, = n(w?).

Therefore, the language, Ly, is the encoding of a set of rational points in R?, call it M. This
turns out to be the rational part of a fractal known as the Menger sponge.

Explain the best you can what are the recursive rules to create the Menger sponge,
starting from a unit cube in R3. Draw some pictures illustrating this process and showing
approximations of the Menger sponge.

Extra Credit (20 points). Write a computer program to draw the Menger sponge (based
on the ideas above).

Problem B3 (60 pts). Let R be any regular language over some alphabet 3.
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(1) Prove that the language
Ly ={u|3Jv e, uw € R, |v|] =2Jul}

is regular.

(2) Let k > 1 be any integer. Prove that the language
LY ={u| e, weR, |v|=klu|}

is regular.

Problem B4 (30 pts). Let L be a regular language. Are the following languages regular,
and if so, give a proof (or construction).

(a) Pre(L) = {u | u is a prefix of some w € L}
(b) Suf(L) = {u | u is a suffix of some w € L}
(c) Sub(L) = {u | u is a substring of some w € L}
Problem B5 (20 pts). Let L be any language over some alphabet 3.
(a) Prove that L = LT iff LL C L.
(b) Prove that (L =0 or L =L*) iff LL = L.

Problem B6 (90 pts). (wqo’s) We let N denote the set {0,1,2,...} of natural numbers,
and N, denote the set {1,2,...} of positive natural numbers. Given a set S, an infinite
sequence is a function s : Ny — S. An infinite sequence s is also denoted by (s;);>1, or by
(S1,82,...,58i,...). Given an infinite sequence s = (s;);>1, an infinite subsequence of s is any
infinite sequence s’ = (s});>1 such that there is a strictly monotonic function f: Ny — N,
and s, = sy for all ¢ > 0 (recall that a function f: Ny — N, is strictly monotonic (or
increasing) iff for all 4,5 > 0, i < j implies that f(i) < f(j)). An infinite subsequence s’ of
s associated with the function f is also denoted as s" = (s73;))i>1-

We now review preorders and well-foundedness.

Given a set A, a binary relation < C A x A on the set A is a preorder (or quasi-order) iff
it is reflexive and transitive. A preorder that is also antisymmetric is called a partial order.
A preorder is total iff for every x,y € A, either x < y or y < x. The relation > is defined
such that x > y iff y < x, the relation < such that

r<y iff =y and y A=z,

and the relation > such that x > y iff y < z. We say that x and y are incomparable iff x A y
and y A z, and this is also denoted by z | y.

Given a preorder < over a set A, an infinite sequence (z;);>; is an infinite decreasing
chain iff z; > x;4; for all ¢ > 1. An infinite sequence (z;);>1 is an infinite antichain iff z; | x;
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for all 7,7, 1 < i < j. We say that < is well-founded and that > is Noetherian iff there are
no infinite decreasing chains w.r.t. >.

We now turn to the fundamental concept of a well quasi-order (wqo).

Given a preorder < over a set A, an infinite sequence (a;);>1 of elements in A is termed
good iff there exist positive integers ¢, j such that 7 < j and a; < a;, and otherwise, it is
termed a bad sequence. A preorder < is a well quasi-order, abbreviated as wqo, iff every
infinite sequence of elements of A is good.

Prove that the standard total ordering < on N is a wqo. If <is a wqo on a set A, a finite
sequence is not necessarily good (why?).

(a) Prove the following characterizations of wqo’s. Given a preorder < on a set A, the
following conditions are equivalent:

(1) Every infinite sequence is good (w.r.t. =<).
(2) There are no infinite decreasing chains and no infinite antichains (w.r.t. =<).

Given a preorder =< on a set A, say that a member s; of an infinite sequence s is terminal
iff there is no j > ¢ such that s; <'s;.

(b) Prove that the following statements are equivalent:

(1) <is a wgo on A.

(2) Every infinite sequence s = (s;);>1 over A contains some infinite subsequence s =
(54(:))i=1 such that sg;) < s41) for all ¢ > 0.

Hint. First, prove that if < is a wqo, then the number of terminal elements in any infinite

sequence s is finite.

Given two preorders (=<, A1) and (=3, As), the cartesian product A; x A, is equipped
with the preorder < defined such that (a;,as2) <X (a},a)) iff a1 =1 @} and as <5 db.

(c) Prove that if <; and <5 are wqo, then < is a wgo on A; X Aj.

Remark: This is due to Nash-Williams.
(d) Prove the following result.

Let n be any integer such that n > 1. Given any infinite sequence (s;);>1 of n-tuples of
natural numbers, there exist positive integers ¢, j such that ¢ < j and s; <,, s;, where <,, is
the partial order on n-tuples of natural numbers induced by the natural ordering < on N

Remark: This is due to Dickson, 1913!

Let C be a preorder on a set A. We define the preorder < (string embedding) on A* as
follows:



e < u for each u € A*, and, for any two strings u = wjus...u, and v = vius...v,,
1<m <n,
UTUL .« . . Uy KL V1V ... Uy

iff there exist integers ji,...,jm such that 1 < j; < jo < ... < Jm_1 < Jm < n and

ulgvjl, ey umgvjm.

(e) Prove that < is a preorder. Prove that < is a partial order if C is a partial order.
Prove that < is the least preorder on A* satisfying the following two properties:

(1) (deletion property) uv < uav, for all u,v € A* and a € A;
(2) (monotonicity) uav < ubv whenever a C b, for all u,v € A* and a,b € A.

Remark: The following theorem due to Higman can be proved, but the proof is quite tricky.
Theorem If C is a wgo on A, then < is a wgo on A*.

TOTAL: 270 + 20 points.



