
Spring, 2014 CIS 511

Introduction to the Theory of Computation

Jean Gallier

Homework 2

February 4, 2014; Due February 18, 2014, beginning of class

“A problems” are for practice only, and should not be turned in.

Problem A1. Recall that two regular expressions R and S are equivalent, denoted as
R ∼= S, iff they denote the same regular language L[R] = L[S]. Show that the following
identities hold for regular expressions:

R∗∗ ∼= R∗

(R + S)∗ ∼= (R∗ + S∗)∗

(R + S)∗ ∼= (R∗S∗)∗

(R + S)∗ ∼= (R∗S)∗R∗

Problem A2. Recall that a homomorphism h : Σ∗ → ∆∗ is a function such that h(uv) =
h(u)h(v) for all u, v ∈ Σ∗. Given any language L ⊆ Σ∗, we define h(L) as

h(L) = {h(w) | w ∈ L}.

Given any language L′ ⊆ ∆∗, we define h−1(L′) as

h−1(L′) = {w ∈ Σ∗ | h(w) ∈ L′}.

Prove that if L ⊆ Σ∗ and L′ ⊆ ∆∗ are regular languages, then so are h(L) and h−1(L′).

Problem A3. Construct an NFA accepting the language L = {aa, aaa}∗. Apply the subset
construction to get a DFA accepting L.

“B3 problems” must be turned in.

Problem B1 (40 pts). Let Σ = {a1, . . . , an} be an alphabet of n symbols.

(a) Construct an NFA with 2n + 1 (or 2n) states accepting the set Ln of strings over Σ
such that, every string in Ln has an odd number of ai, for some ai ∈ Σ. Equivalently, if Li

n

is the set of all strings over Σ with an odd number of ai, then Ln = L1
n ∪ · · · ∪ Ln

n.

(b) Prove that there is a DFA with 2n states accepting the language Ln.

(c) Prove that every DFA accepting Ln has at least 2n states.
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Hint : If a DFA D with k < 2n states accepts Ln, show that there are two strings u, v with
the property that, for some ai ∈ Σ, u contains an odd number of ai’s, v contains an even
number of ai’s, and D ends in the same state after processing u and v. From this, conclude
that D accepts incorrect strings.

Problem B2 (30 pts). (a) Let T = {0, 1, 2}, let C be the set of 20 strings of length three
over the alphabet T ,

C = {u ∈ T 3 | u /∈ {110, 111, 112, 101, 121, 011, 211}},

let Σ = {0, 1, 2, c} and consider the language

LM = {w ∈ Σ∗ | w = u1cu2c · · · cun, n ≥ 1, ui ∈ C}.

Prove that LM is regular.

(b) The language LM has a geometric interpretation as a certain subset of R3 (actually,
Q3), as follows: Given any string, w = u1cu2c · · · cun ∈ LM , denoting the jth character in ui
by uji , where j ∈ {1, 2, 3}, we obtain three strings

w1 = u11u
1
2 · · ·u1n

w2 = u21u
2
2 · · ·u2n

w3 = u31u
3
2 · · ·u3n.

For example, if w = 012c001c222c122 we have w1 = 0021, w2 = 1022, and w3 = 2122. Now,
a string v ∈ T+ can be interpreted as a decimal real number written in base three! Indeed,
if

v = b1b2 · · · bk, where bi ∈ {0, 1, 2} = T (1 ≤ i ≤ k),

we interpret v as n(v) = 0.b1b2 · · · bk, i.e.,

n(v) = b13
−1 + b23

−2 + · · ·+ bk3−k.

Finally, a string, w = u1cu2c · · · cun ∈ LM , is interpreted as the point, (xw, yw, zw) ∈ R3,
where

xw = n(w1), yw = n(w2), zw = n(w3).

Therefore, the language, LM , is the encoding of a set of rational points in R3, call it M . This
turns out to be the rational part of a fractal known as the Menger sponge.

Explain the best you can what are the recursive rules to create the Menger sponge,
starting from a unit cube in R3. Draw some pictures illustrating this process and showing
approximations of the Menger sponge.

Extra Credit (20 points). Write a computer program to draw the Menger sponge (based
on the ideas above).

Problem B3 (60 pts). Let R be any regular language over some alphabet Σ.
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(1) Prove that the language

L1 = {u | ∃v ∈ Σ∗, uv ∈ R, |v| = 2|u|}

is regular.

(2) Let k ≥ 1 be any integer. Prove that the language

Lk
1 = {u | ∃v ∈ Σ∗, uv ∈ R, |v| = k|u|}

is regular.

Problem B4 (30 pts). Let L be a regular language. Are the following languages regular,
and if so, give a proof (or construction).

(a) Pre(L) = {u | u is a prefix of some w ∈ L}
(b) Suf(L) = {u | u is a suffix of some w ∈ L}
(c) Sub(L) = {u | u is a substring of some w ∈ L}

Problem B5 (20 pts). Let L be any language over some alphabet Σ.

(a) Prove that L = L+ iff LL ⊆ L.

(b) Prove that (L = ∅ or L = L∗) iff LL = L.

Problem B6 (90 pts). (wqo’s) We let N denote the set {0, 1, 2, . . .} of natural numbers,
and N+ denote the set {1, 2, . . .} of positive natural numbers. Given a set S, an infinite
sequence is a function s : N+ → S. An infinite sequence s is also denoted by (si)i≥1, or by
〈s1, s2, . . . , si, . . .〉. Given an infinite sequence s = (si)i≥1, an infinite subsequence of s is any
infinite sequence s′ = (s′j)j≥1 such that there is a strictly monotonic function f : N+ → N+

and s′i = sf(i) for all i > 0 (recall that a function f : N+ → N+ is strictly monotonic (or
increasing) iff for all i, j > 0, i < j implies that f(i) < f(j)). An infinite subsequence s′ of
s associated with the function f is also denoted as s′ = (sf(i))i≥1.

We now review preorders and well-foundedness.

Given a set A, a binary relation � ⊆ A×A on the set A is a preorder (or quasi-order) iff
it is reflexive and transitive. A preorder that is also antisymmetric is called a partial order .
A preorder is total iff for every x, y ∈ A, either x � y or y � x. The relation � is defined
such that x � y iff y � x, the relation ≺ such that

x ≺ y iff x � y and y 6� x,

and the relation � such that x � y iff y ≺ x. We say that x and y are incomparable iff x 6� y
and y 6� x, and this is also denoted by x | y.

Given a preorder � over a set A, an infinite sequence (xi)i≥1 is an infinite decreasing
chain iff xi � xi+1 for all i ≥ 1. An infinite sequence (xi)i≥1 is an infinite antichain iff xi | xj
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for all i, j, 1 ≤ i < j. We say that � is well-founded and that � is Noetherian iff there are
no infinite decreasing chains w.r.t. �.

We now turn to the fundamental concept of a well quasi-order (wqo).

Given a preorder � over a set A, an infinite sequence (ai)i≥1 of elements in A is termed
good iff there exist positive integers i, j such that i < j and ai � aj, and otherwise, it is
termed a bad sequence. A preorder � is a well quasi-order , abbreviated as wqo, iff every
infinite sequence of elements of A is good.

Prove that the standard total ordering ≤ on N is a wqo. If � is a wqo on a set A, a finite
sequence is not necessarily good (why?).

(a) Prove the following characterizations of wqo’s. Given a preorder � on a set A, the
following conditions are equivalent:

(1) Every infinite sequence is good (w.r.t. �).

(2) There are no infinite decreasing chains and no infinite antichains (w.r.t. �).

Given a preorder � on a set A, say that a member si of an infinite sequence s is terminal
iff there is no j > i such that si � sj.

(b) Prove that the following statements are equivalent:

(1) � is a wqo on A.

(2) Every infinite sequence s = (si)i≥1 over A contains some infinite subsequence s′ =
(sf(i))i≥1 such that sf(i) � sf(i+1) for all i > 0.

Hint . First, prove that if � is a wqo, then the number of terminal elements in any infinite
sequence s is finite.

Given two preorders 〈�1, A1〉 and 〈�2, A2〉, the cartesian product A1 × A2 is equipped
with the preorder � defined such that (a1, a2) � (a′1, a

′
2) iff a1 �1 a

′
1 and a2 �2 a

′
2.

(c) Prove that if �1 and �2 are wqo, then � is a wqo on A1 × A2.

Remark: This is due to Nash-Williams.

(d) Prove the following result.

Let n be any integer such that n > 1. Given any infinite sequence (si)i≥1 of n-tuples of
natural numbers, there exist positive integers i, j such that i < j and si �n sj, where �n is
the partial order on n-tuples of natural numbers induced by the natural ordering ≤ on N

Remark: This is due to Dickson, 1913!

Let v be a preorder on a set A. We define the preorder � (string embedding) on A∗ as
follows:
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ε � u for each u ∈ A∗, and, for any two strings u = u1u2 . . . um and v = v1u2 . . . vn,
1 ≤ m ≤ n,

u1u2 . . . um � v1v2 . . . vn

iff there exist integers j1, . . . , jm such that 1 ≤ j1 < j2 < . . . < jm−1 < jm ≤ n and

u1 v vj1 , . . . , um v vjm .

(e) Prove that � is a preorder. Prove that � is a partial order if v is a partial order.
Prove that � is the least preorder on A∗ satisfying the following two properties:

(1) (deletion property) uv � uav, for all u, v ∈ A∗ and a ∈ A;

(2) (monotonicity) uav � ubv whenever a v b, for all u, v ∈ A∗ and a, b ∈ A.

Remark: The following theorem due to Higman can be proved, but the proof is quite tricky.

Theorem If v is a wqo on A, then � is a wqo on A∗.

TOTAL: 270 + 20 points.
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