Spring, 2014 CIS 511

Introduction to the Theory of Computation Jean Gallier
 Homework 2

February 4, 2014; Due February 18, 2014, beginning of class
"A problems" are for practice only, and should not be turned in.
Problem A1. Recall that two regular expressions R and S are equivalent, denoted as $R \cong S$, iff they denote the same regular language $\mathcal{L}[R]=\mathcal{L}[S]$. Show that the following identities hold for regular expressions:

$$
\begin{aligned}
& R^{* *} \cong R^{*} \\
&(R+S)^{*} \cong\left(R^{*}+S^{*}\right)^{*} \\
&(R+S)^{*} \cong\left(R^{*} S^{*}\right)^{*} \\
&(R+S)^{*} \cong\left(R^{*} S\right)^{*} R^{*}
\end{aligned}
$$

Problem A2. Recall that a homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ is a function such that $h(u v)=$ $h(u) h(v)$ for all $u, v \in \Sigma^{*}$. Given any language $L \subseteq \Sigma^{*}$, we define $h(L)$ as

$$
h(L)=\{h(w) \mid w \in L\} .
$$

Given any language $L^{\prime} \subseteq \Delta^{*}$, we define $h^{-1}\left(L^{\prime}\right)$ as

$$
h^{-1}\left(L^{\prime}\right)=\left\{w \in \Sigma^{*} \mid h(w) \in L^{\prime}\right\} .
$$

Prove that if $L \subseteq \Sigma^{*}$ and $L^{\prime} \subseteq \Delta^{*}$ are regular languages, then so are $h(L)$ and $h^{-1}\left(L^{\prime}\right)$.
Problem A3. Construct an NFA accepting the language $L=\{a a, a a a\}^{*}$. Apply the subset construction to get a DFA accepting L.
"B3 problems" must be turned in.
Problem B1 (40 pts). Let $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ be an alphabet of n symbols.
(a) Construct an NFA with $2 n+1$ (or $2 n$) states accepting the set L_{n} of strings over Σ such that, every string in L_{n} has an odd number of a_{i}, for some $a_{i} \in \Sigma$. Equivalently, if L_{n}^{i} is the set of all strings over Σ with an odd number of a_{i}, then $L_{n}=L_{n}^{1} \cup \cdots \cup L_{n}^{n}$.
(b) Prove that there is a DFA with 2^{n} states accepting the language L_{n}.
(c) Prove that every DFA accepting L_{n} has at least 2^{n} states.

Hint: If a DFA D with $k<2^{n}$ states accepts L_{n}, show that there are two strings u, v with the property that, for some $a_{i} \in \Sigma, u$ contains an odd number of a_{i} 's, v contains an even number of a_{i} 's, and D ends in the same state after processing u and v. From this, conclude that D accepts incorrect strings.

Problem B2 (30 pts). (a) Let $T=\{0,1,2\}$, let C be the set of 20 strings of length three over the alphabet T,

$$
C=\left\{u \in T^{3} \mid u \notin\{110,111,112,101,121,011,211\}\right\}
$$

let $\Sigma=\{0,1,2, c\}$ and consider the language

$$
L_{M}=\left\{w \in \Sigma^{*} \mid w=u_{1} c u_{2} c \cdots c u_{n}, n \geq 1, u_{i} \in C\right\} .
$$

Prove that L_{M} is regular.
(b) The language L_{M} has a geometric interpretation as a certain subset of \mathbb{R}^{3} (actually, \mathbb{Q}^{3}), as follows: Given any string, $w=u_{1} c u_{2} c \cdots c u_{n} \in L_{M}$, denoting the j th character in u_{i} by u_{i}^{j}, where $j \in\{1,2,3\}$, we obtain three strings

$$
\begin{aligned}
w^{1} & =u_{1}^{1} u_{2}^{1} \cdots u_{n}^{1} \\
w^{2} & =u_{1}^{2} u_{2}^{2} \cdots u_{n}^{2} \\
w^{3} & =u_{1}^{3} u_{2}^{3} \cdots u_{n}^{3} .
\end{aligned}
$$

For example, if $w=012 c 001 c 222 c 122$ we have $w^{1}=0021, w^{2}=1022$, and $w^{3}=2122$. Now, a string $v \in T^{+}$can be interpreted as a decimal real number written in base three! Indeed, if

$$
v=b_{1} b_{2} \cdots b_{k}, \quad \text { where } \quad b_{i} \in\{0,1,2\}=T(1 \leq i \leq k)
$$

we interpret v as $n(v)=0 . b_{1} b_{2} \cdots b_{k}$, i.e.,

$$
n(v)=b_{1} 3^{-1}+b_{2} 3^{-2}+\cdots+b_{k} 3^{-k}
$$

Finally, a string, $w=u_{1} c u_{2} c \cdots c u_{n} \in L_{M}$, is interpreted as the point, $\left(x_{w}, y_{w}, z_{w}\right) \in \mathbb{R}^{3}$, where

$$
x_{w}=n\left(w^{1}\right), y_{w}=n\left(w^{2}\right), z_{w}=n\left(w^{3}\right) .
$$

Therefore, the language, L_{M}, is the encoding of a set of rational points in \mathbb{R}^{3}, call it M. This turns out to be the rational part of a fractal known as the Menger sponge.

Explain the best you can what are the recursive rules to create the Menger sponge, starting from a unit cube in \mathbb{R}^{3}. Draw some pictures illustrating this process and showing approximations of the Menger sponge.
Extra Credit (20 points). Write a computer program to draw the Menger sponge (based on the ideas above).

Problem B3 (60 pts). Let R be any regular language over some alphabet Σ.
(1) Prove that the language

$$
L_{1}=\left\{u\left|\exists v \in \Sigma^{*}, u v \in R,|v|=2\right| u \mid\right\}
$$

is regular.
(2) Let $k \geq 1$ be any integer. Prove that the language

$$
L_{1}^{k}=\left\{u\left|\exists v \in \Sigma^{*}, u v \in R,|v|=k\right| u \mid\right\}
$$

is regular.
Problem B4 (30 pts). Let L be a regular language. Are the following languages regular, and if so, give a proof (or construction).
(a) $\operatorname{Pre}(L)=\{u \mid u$ is a prefix of some $w \in L\}$
(b) $\operatorname{Suf}(L)=\{u \mid u$ is a suffix of some $w \in L\}$
(c) $\operatorname{Sub}(L)=\{u \mid u$ is a substring of some $w \in L\}$

Problem B5 (20 pts). Let L be any language over some alphabet Σ.
(a) Prove that $L=L^{+}$iff $L L \subseteq L$.
(b) Prove that $\left(L=\emptyset\right.$ or $\left.L=L^{*}\right)$ iff $L L=L$.

Problem B6 (90 pts). (wqo's) We let \mathbb{N} denote the set $\{0,1,2, \ldots\}$ of natural numbers, and \mathbb{N}_{+}denote the set $\{1,2, \ldots\}$ of positive natural numbers. Given a set S, an infinite sequence is a function $s: \mathbf{N}_{+} \rightarrow S$. An infinite sequence s is also denoted by $\left(s_{i}\right)_{i \geq 1}$, or by $\left\langle s_{1}, s_{2}, \ldots, s_{i}, \ldots\right\rangle$. Given an infinite sequence $s=\left(s_{i}\right)_{i \geq 1}$, an infinite subsequence of s is any infinite sequence $s^{\prime}=\left(s_{j}^{\prime}\right)_{j \geq 1}$ such that there is a strictly monotonic function $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$ and $s_{i}^{\prime}=s_{f(i)}$ for all $i>0$ (recall that a function $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$is strictly monotonic (or increasing) iff for all $i, j>0, i<j$ implies that $f(i)<f(j))$. An infinite subsequence s^{\prime} of s associated with the function f is also denoted as $s^{\prime}=\left(s_{f(i)}\right)_{i \geq 1}$.

We now review preorders and well-foundedness.
Given a set A, a binary relation $\preceq \subseteq A \times A$ on the set A is a preorder (or quasi-order) iff it is reflexive and transitive. A preorder that is also antisymmetric is called a partial order. A preorder is total iff for every $x, y \in A$, either $x \preceq y$ or $y \preceq x$. The relation \succeq is defined such that $x \succeq y$ iff $y \preceq x$, the relation \prec such that

$$
x \prec y \quad \text { iff } \quad x \preceq y \quad \text { and } \quad y \npreceq x,
$$

and the relation \succ such that $x \succ y$ iff $y \prec x$. We say that x and y are incomparable iff $x \npreceq y$ and $y \npreceq x$, and this is also denoted by $x \mid y$.

Given a preorder \preceq over a set A, an infinite sequence $\left(x_{i}\right)_{i \geq 1}$ is an infinite decreasing chain iff $x_{i} \succ x_{i+1}$ for all $i \geq 1$. An infinite sequence $\left(x_{i}\right)_{i \geq 1}$ is an infinite antichain iff $x_{i} \mid x_{j}$
for all $i, j, 1 \leq i<j$. We say that \preceq is well-founded and that \succ is Noetherian iff there are no infinite decreasing chains w.r.t. \succ.

We now turn to the fundamental concept of a well quasi-order (wqo).
Given a preorder \preceq over a set A, an infinite sequence $\left(a_{i}\right)_{i \geq 1}$ of elements in A is termed good iff there exist positive integers i, j such that $i<j$ and $a_{i} \preceq a_{j}$, and otherwise, it is termed a bad sequence. A preorder \preceq is a well quasi-order, abbreviated as wqo, iff every infinite sequence of elements of A is good.

Prove that the standard total ordering \leq on \mathbb{N} is a wqo. If \preceq is a wqo on a set A, a finite sequence is not necessarily good (why?).
(a) Prove the following characterizations of $w q o$'s. Given a preorder \preceq on a set A, the following conditions are equivalent:
(1) Every infinite sequence is good (w.r.t. \preceq).
(2) There are no infinite decreasing chains and no infinite antichains (w.r.t. \preceq).

Given a preorder \preceq on a set A, say that a member s_{i} of an infinite sequence s is terminal iff there is no $j>i$ such that $s_{i} \preceq s_{j}$.
(b) Prove that the following statements are equivalent:
(1) \preceq is a $w q o$ on A.
(2) Every infinite sequence $s=\left(s_{i}\right)_{i \geq 1}$ over A contains some infinite subsequence $s^{\prime}=$ $\left(s_{f(i)}\right)_{i \geq 1}$ such that $s_{f(i)} \preceq s_{f(i+1)}$ for all $i>0$.

Hint. First, prove that if \preceq is a wqo, then the number of terminal elements in any infinite sequence s is finite.

Given two preorders $\left\langle\preceq_{1}, A_{1}\right\rangle$ and $\left\langle\preceq_{2}, A_{2}\right\rangle$, the cartesian product $A_{1} \times A_{2}$ is equipped with the preorder \preceq defined such that $\left(a_{1}, a_{2}\right) \preceq\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ iff $a_{1} \preceq_{1} a_{1}^{\prime}$ and $a_{2} \preceq_{2} a_{2}^{\prime}$.
(c) Prove that if \preceq_{1} and \preceq_{2} are $w q o$, then \preceq is a wqo on $A_{1} \times A_{2}$.

Remark: This is due to Nash-Williams.
(d) Prove the following result.

Let n be any integer such that $n>1$. Given any infinite sequence $\left(s_{i}\right)_{i \geq 1}$ of n-tuples of natural numbers, there exist positive integers i, j such that $i<j$ and $s_{i} \preceq_{n} s_{j}$, where \preceq_{n} is the partial order on n-tuples of natural numbers induced by the natural ordering \leq on \mathbb{N}

Remark: This is due to Dickson, 1913!
Let \sqsubseteq be a preorder on a set A. We define the preorder $\ll($ string embedding $)$ on A^{*} as follows:
$\epsilon \ll u$ for each $u \in A^{*}$, and, for any two strings $u=u_{1} u_{2} \ldots u_{m}$ and $v=v_{1} u_{2} \ldots v_{n}$, $1 \leq m \leq n$,

$$
u_{1} u_{2} \ldots u_{m} \ll v_{1} v_{2} \ldots v_{n}
$$

iff there exist integers j_{1}, \ldots, j_{m} such that $1 \leq j_{1}<j_{2}<\ldots<j_{m-1}<j_{m} \leq n$ and

$$
u_{1} \sqsubseteq v_{j_{1}}, \ldots, u_{m} \sqsubseteq v_{j_{m}} .
$$

(e) Prove that \ll is a preorder. Prove that \ll is a partial order if \sqsubseteq is a partial order. Prove that \ll is the least preorder on A^{*} satisfying the following two properties:
(1) (deletion property) $u v \ll u a v$, for all $u, v \in A^{*}$ and $a \in A$;
(2) (monotonicity) $u a v \ll u b v$ whenever $a \sqsubseteq b$, for all $u, v \in A^{*}$ and $a, b \in A$.

Remark: The following theorem due to Higman can be proved, but the proof is quite tricky.
Theorem If \sqsubseteq is a $w q o$ on A, then \ll is a $w q o$ on A^{*}.
TOTAL: $270+20$ points.

