Spring, 2013 CIS 511

Introduction to the Theory of Computation Jean Gallier Homework 2

January 31, 2013; Due February 14, 2013, beginning of class
"A problems" are for practice only, and should not be turned in.
Problem A1. Recall that two regular expressions R and S are equivalent, denoted as $R \cong S$, iff they denote the same regular language $\mathcal{L}[R]=\mathcal{L}[S]$. Show that the following identities hold for regular expressions:

$$
\begin{aligned}
& R^{* *} \cong R^{*} \\
&(R+S)^{*} \cong\left(R^{*}+S^{*}\right)^{*} \\
&(R+S)^{*} \cong\left(R^{*} S^{*}\right)^{*} \\
&(R+S)^{*} \cong\left(R^{*} S\right)^{*} R^{*}
\end{aligned}
$$

Problem A2. Recall that a homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ is a function such that $h(u v)=$ $h(u) h(v)$ for all $u, v \in \Sigma^{*}$. Given any language $L \subseteq \Sigma^{*}$, we define $h(L)$ as

$$
h(L)=\{h(w) \mid w \in L\} .
$$

Given any language $L^{\prime} \subseteq \Delta^{*}$, we define $h^{-1}\left(L^{\prime}\right)$ as

$$
h^{-1}\left(L^{\prime}\right)=\left\{w \in \Sigma^{*} \mid h(w) \in L^{\prime}\right\} .
$$

Prove that if $L \subseteq \Sigma^{*}$ and $L^{\prime} \subseteq \Delta^{*}$ are regular languages, then so are $h(L)$ and $h^{-1}\left(L^{\prime}\right)$.
Problem A3. Construct an NFA accepting the language $L=\{a a, a a a\}^{*}$. Apply the subset construction to get a DFA accepting L.
"B problems" must be turned in.
Problem B1 (30 pts). Let $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ be an alphabet of n symbols.
(a) Construct an NFA with $2 n+1$ (or $2 n$) states accepting the set L_{n} of strings over Σ such that, every string in L_{n} has an odd number of a_{i}, for some $a_{i} \in \Sigma$. Equivalently, if L_{n}^{i} is the set of all strings over Σ with an odd number of a_{i}, then $L_{n}=L_{n}^{1} \cup \cdots \cup L_{n}^{n}$.
(b) Prove that there is a DFA with 2^{n} states accepting the language L_{n}.
(c) Prove that every DFA accepting L_{n} has at least 2^{n} states.

Hint: If a DFA D with $k<2^{n}$ states accepts L_{n}, show that there are two strings u, v with the property that, for some $a_{i} \in \Sigma, u$ contains an odd number of a_{i} 's, v contains an even number of a_{i} 's, and D ends in the same state after processing u and v. From this, conclude that D accepts incorrect strings.

Problem B2 (30 pts). (a) Let $T=\{0,1,2\}$, let C be the set of 20 strings of length three over the alphabet T,

$$
C=\left\{u \in T^{3} \mid u \notin\{110,111,112,101,121,011,211\}\right\}
$$

let $\Sigma=\{0,1,2, c\}$ and consider the language

$$
L_{M}=\left\{w \in \Sigma^{*} \mid w=u_{1} c u_{2} c \cdots c u_{n}, n \geq 1, u_{i} \in C\right\} .
$$

Prove that L is regular.
(b) The language L_{M} has a geometric interpretation as a certain subset of \mathbb{R}^{3} (actually, \mathbb{Q}^{3}), as follows: Given any string, $w=u_{1} c u_{2} c \cdots c u_{n} \in L_{M}$, denoting the j th character in u_{i} by u_{i}^{j}, where $j \in\{1,2,3\}$, we obtain three strings

$$
\begin{aligned}
w^{1} & =u_{1}^{1} u_{2}^{1} \cdots u_{n}^{1} \\
w^{2} & =u_{1}^{2} u_{2}^{2} \cdots u_{n}^{2} \\
w^{3} & =u_{1}^{3} u_{2}^{3} \cdots u_{n}^{3} .
\end{aligned}
$$

For example, if $w=012 c 001 c 222 c 122$ we have $w^{1}=0021, w^{2}=1022$, and $w^{3}=2122$. Now, a string $v \in T^{+}$can be interpreted as a decimal real number written in base three! Indeed, if

$$
v=b_{1} b_{2} \cdots b_{k}, \quad \text { where } \quad b_{i} \in\{0,1,2\}=T(1 \leq i \leq k)
$$

we interpret v as $n(v)=0 . b_{1} b_{2} \cdots b_{k}$, i.e.,

$$
n(v)=b_{1} 3^{-1}+b_{2} 3^{-2}+\cdots+b_{k} 3^{-k}
$$

Finally, a string, $w=u_{1} c u_{2} c \cdots c u_{n} \in L_{M}$, is interpreted as the point, $\left(x_{w}, y_{w}, z_{w}\right) \in \mathbb{R}^{3}$, where

$$
x_{w}=n\left(w^{1}\right), y_{w}=n\left(w^{2}\right), z_{w}=n\left(w^{3}\right) .
$$

Therefore, the language, L_{M}, is the encoding of a set of rational points in \mathbb{R}^{3}, call it M. This turns out to be the rational part of a fractal known as the Menger sponge.

Explain the best you can what are the recursive rules to create the Menger sponge, starting from a unit cube in \mathbb{R}^{3}. Draw some pictures illustrating this process and showing approximations of the Menger sponge.
Extra Credit (20 points). Write a computer program to draw the Menger sponge (based on the ideas above).

Problem B3 (30 pts). Let R be any regular language over some alphabet Σ. Prove that the language

$$
L=\left\{u \quad\left|\exists v \in \Sigma^{*}, u v \in R,|u|=|v|\right\}\right.
$$

is regular
Problem B4 (120 pts). (Free generation of regular expressions) The definition of the set $\mathcal{R}(\Sigma)$ of regular expressions over an alphabet Σ can be formalized in the following way: First, define the new alphabet

$$
\Delta=\Sigma \cup\{(,),+, \cdot, *, \epsilon, \emptyset\}
$$

Let $C_{+}: \Delta^{*} \times \Delta^{*} \rightarrow \Delta^{*}, C: \Delta^{*} \times \Delta^{*} \rightarrow \Delta^{*}$, and $C_{*}: \Delta^{*} \rightarrow \Delta^{*}$ be the functions defined so that

$$
\begin{aligned}
C_{+}(u, v) & =(u+v) \\
C \cdot(u, v) & =(u \cdot v) \\
C_{*}(u) & =u *,
\end{aligned}
$$

for all $u, v \in \Delta^{*}$. Let

$$
\begin{aligned}
\mathcal{R}(\Sigma)_{0} & =\Sigma \cup\{\epsilon, \emptyset\} \\
\mathcal{R}(\Sigma)_{n+1} & =\mathcal{R}(\Sigma)_{n} \cup\left\{C_{+}(u, v), C .(u, v), C_{*}(u) \mid u, v \in \mathcal{R}(\Sigma)_{n}\right\},
\end{aligned}
$$

and finally, let

$$
\mathcal{R}(\Sigma)=\bigcup_{n \geq 0} \mathcal{R}(\Sigma)_{n}
$$

We wish to prove that the functions $C_{+}, C_{.}, C_{*}$ are injective when restricted to $\mathcal{R}(\Sigma)$, which means that if

$$
C_{+}(u, v)=C_{+}\left(u^{\prime}, v^{\prime}\right)
$$

for any $u, v, u^{\prime}, v^{\prime} \in \mathcal{R}(\Sigma)$, then $u=u^{\prime}$ and $v=v^{\prime}$, similarly for C., and if

$$
C_{*}(u)=C_{*}\left(u^{\prime}\right)
$$

for any $u, u^{\prime} \in \mathcal{R}(\Sigma)$, then $u=u^{\prime}$. We also wish to prove that the sets $C_{+}(\mathcal{R}(\Sigma), \mathcal{R}(\Sigma))$, $C .(\mathcal{R}(\Sigma), \mathcal{R}(\Sigma))$, and $C_{*}(\mathcal{R}(\Sigma))$, are pairwise disjoint.

For this, we introduce the "head deficiency function", K, defined as follows:

$$
\begin{aligned}
K(+) & =-1 \\
K(\cdot) & =-1 \\
K(*) & =0 \\
K(a) & =1 \quad(a \in \Sigma) \\
K(\emptyset) & =1 \\
K(\epsilon) & =1 \\
K("(") & =1 \\
K(") ") & =-1 .
\end{aligned}
$$

This function is extended to Δ^{+}in the obvious way, i.e.,

$$
K\left(w_{1} \cdots w_{k}\right)=K\left(w_{1}\right)+\cdots+K\left(w_{k}\right)
$$

for all $w_{i} \in \Delta$ and all $k \geq 1$.
(i) Prove the following properties:
(a) For any regular expression $R \in \mathcal{R}(\Sigma)$, we have $K(R)=1$.
(b) For any proper suffix S of a regular expression, we have $K(S) \leq 0$.
(c) No proper suffix S of a regular expression is a regular expression.
(ii) Using the above, prove that the restrictions of the functions $C_{+}, C_{\text {. }}, C_{*}$ to $\mathcal{R}(\Sigma)$ are injective and that the sets $C_{+}(\mathcal{R}(\Sigma), \mathcal{R}(\Sigma)), C \cdot(\mathcal{R}(\Sigma), \mathcal{R}(\Sigma))$, and $C_{*}(\mathcal{R}(\Sigma))$, are pairwise disjoint.
(iii) Prove that $\mathcal{R}(\Sigma)_{n+1} \neq \mathcal{R}(\Sigma)_{n}$ for all $n \geq 0$, and that $C_{+}(u, v) \notin \mathcal{R}(\Sigma)_{n}, C .(u, v) \notin$ $\mathcal{R}(\Sigma)_{n}$, and $C_{*}(u) \notin \mathcal{R}(\Sigma)_{n}$, for all $u, v \in \mathcal{R}(\Sigma)_{n}-\mathcal{R}(\Sigma)_{n-1}$ and for all $n \geq 0$ (setting $\left.\mathcal{R}(\Sigma)_{-1}=\emptyset\right)$.
(iv) Recall that the set $R(\Sigma)$ of regular languages over Σ is defined inductively as follows:

$$
R(\Sigma)_{0}=\left\{\left\{a_{1}\right\}, \ldots,\left\{a_{m}\right\},\{\epsilon\}, \emptyset\right\}
$$

where $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$,

$$
R(\Sigma)_{n+1}=R(\Sigma)_{n} \cup\left\{L_{1} \cup L_{2}, L_{1} \cdot L_{2}, L^{*} \mid L_{1}, L_{2}, L \in R(\Sigma)_{n}\right\},
$$

and

$$
R(\Sigma)=\bigcup_{n \geq 0} R(\Sigma)_{n}
$$

The interpretation of regular expressions as regular languages is given by the function, $\mathcal{L}: \mathcal{R}(\Sigma) \rightarrow R(\Sigma)$, defined recursively as follows:

$$
\begin{aligned}
\mathcal{L}\left[a_{i}\right] & =\left\{a_{i}\right\} \\
\mathcal{L}[\epsilon] & =\{\epsilon\} \\
\mathcal{L}[\emptyset] & =\emptyset \\
\mathcal{L}\left[\left(R_{1}+R_{2}\right)\right] & =\mathcal{L}\left[R_{1}\right] \cup \mathcal{L}\left[R_{2}\right] \\
\mathcal{L}\left[\left(R_{1} \cdot R_{2}\right)\right] & =\mathcal{L}\left[R_{1}\right] \cdot \mathcal{L}\left[R_{2}\right] \\
\mathcal{L}\left[R^{*}\right] & =(\mathcal{L}[R])^{*} .
\end{aligned}
$$

Prove that the function \mathcal{L} is indeed well-defined.

Hint. Define a sequence of functions, $\mathcal{L}_{n}: \mathcal{R}(\Sigma)_{n} \rightarrow R(\Sigma)$, by induction using (ii) and (iii), and let $\mathcal{L}=\bigcup_{n \geq 0} \mathcal{L}_{n}$. You will have to make sense of all of this.
(v) (Regular expressions in prefix notation) Define the new alphabet

$$
\Delta=\Sigma \cup\{+, \cdot, *, \epsilon, \emptyset\} .
$$

Let $C_{+}: \Delta^{*} \times \Delta^{*} \rightarrow \Delta^{*}, C: \Delta^{*} \times \Delta^{*} \rightarrow \Delta^{*}$, and $C_{*}: \Delta^{*} \rightarrow \Delta^{*}$ be the functions defined so that

$$
\begin{aligned}
C_{+}(u, v) & =+u v \\
C \cdot(u, v) & =\cdot u v \\
C_{*}(u) & =* u,
\end{aligned}
$$

for all $u, v \in \Delta^{*}$. Let

$$
\begin{aligned}
\mathcal{R}(\Sigma)_{0} & =\Sigma \cup\{\epsilon, \emptyset\} \\
\mathcal{R}(\Sigma)_{n+1} & =\mathcal{R}(\Sigma)_{n} \cup\left\{C_{+}(u, v), C .(u, v), C_{*}(u) \mid u, v \in \mathcal{R}(\Sigma)_{n}\right\}
\end{aligned}
$$

and finally, let

$$
\mathcal{R}(\Sigma)=\bigcup_{n \geq 0} \mathcal{R}(\Sigma)_{n} .
$$

Define the "tail deficiency function", K, as before:

$$
\begin{aligned}
K(+) & =-1 \\
K(\cdot) & =-1 \\
K(*) & =0 \\
K(a) & =1 \quad(a \in \Sigma) \\
K(\emptyset) & =1 \\
K(\epsilon) & =1
\end{aligned}
$$

and extend it to Δ^{+}in the obvious way. Redo questions (i)-(iv) for regular expressions in prefix notation.
(vi) This time, consider the alphabet

$$
\Delta=\Sigma \cup\{+, \cdot, *, \epsilon, \emptyset\}
$$

and the functions $C_{+}: \Delta^{*} \times \Delta^{*} \rightarrow \Delta^{*}, C: \Delta^{*} \times \Delta^{*} \rightarrow \Delta^{*}$, and $C_{*}: \Delta^{*} \rightarrow \Delta^{*}$ defined so that

$$
\begin{aligned}
C_{+}(u, v) & =u+v \\
C \cdot(u, v) & =u \cdot v \\
C_{*}(u) & =u *,
\end{aligned}
$$

for all $u, v \in \Delta^{*}$.
Show that properties (b) and (c) of (i) fail, that (ii) also fails, and that \mathcal{L} cannot be defined properly.
(vii) Extra credit (20 pts). Consider the alphabet

$$
\Delta=\Sigma \cup\{),+, \cdot, *, \epsilon, \emptyset\}
$$

and the functions $C_{+}: \Delta^{*} \times \Delta^{*} \rightarrow \Delta^{*}, C: \Delta^{*} \times \Delta^{*} \rightarrow \Delta^{*}$, and $C_{*}: \Delta^{*} \rightarrow \Delta^{*}$ defined so that

$$
\begin{aligned}
C_{+}(u, v) & =u+v) \\
C .(u, v) & =u \cdot v) \\
C_{*}(u) & =u *,
\end{aligned}
$$

for all $u, v \in \Delta^{*}$.
Redo questions (i)-(iv) for these strange regular expressions!
Problem B5 (140 pts). The purpose of this problem is to investigate the notion of mapping between NFA's. It is assumed that all DFA's and NFA's considered in this problem are defined over some fixed alphabet Σ. For simplicity, we also assume that we are considering NFA's without ϵ-transitions.

Given two NFA's $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right)$ and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)$, we say that a relation $\varphi \subseteq Q_{1} \times Q_{2}$ is a simulation of N_{1} by N_{2}, denoted by $\varphi: N_{1} \rightarrow N_{2}$, if the following properties hold:
(1) $\left(q_{01}, q_{02}\right) \in \varphi$.
(2) Whenever $(p, q) \in \varphi$, for every $r \in \delta_{1}(p, a)$, there is some $s \in \delta_{2}(q, a)$ so that $(r, s) \in \varphi$, for all $a \in \Sigma$.
(3) Whenever $(p, q) \in \varphi$, if $p \in F_{1}$ then $q \in F_{2}$.
(i) If N_{1} and N_{2} are actually DFA's, show that an F - map $\varphi: N_{1} \rightarrow N_{2}$ of DFA's is a simulation of N_{1} by N_{2} (viewing the function φ as a relation, in the obvious way).
(ii) Let $\varphi: N_{1} \rightarrow N_{2}$ be a simulation of N_{1} by N_{2}. Prove that for every $w \in \Sigma^{*}$, for every $q_{1} \in \delta_{1}^{*}\left(q_{01}, w\right)$, there is some $q_{2} \in \delta_{2}^{*}\left(q_{02}, w\right)$, so that

$$
\left(q_{1}, q_{2}\right) \in \varphi .
$$

Conclude that $L\left(N_{1}\right) \subseteq L\left(N_{2}\right)$.
(iii) If N_{1} is an NFA and D_{2} is a DFA, prove that if $L\left(N_{1}\right) \subseteq L\left(D_{2}\right)$, then there is some simulation $\varphi: N_{1} \rightarrow D_{2}$ of N_{1} by D_{2}.

Hint. Consider the relation $\varphi=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in \delta_{1}^{*}\left(q_{01}, w\right), q_{2}=\delta_{2}^{*}\left(q_{02}, w\right), w \in \Sigma^{*}\right\}$.

Remark: If D_{1} and D_{2} are DFA's and $L\left(D_{1}\right) \subseteq L\left(D_{2}\right)$, then there may not exist any DFA map from D_{1} to D_{2}, but the above shows that there is always a simulation of D_{1} by D_{2}.
(iv) Give a counter-example showing that (iii) is generally false for NFA's, i.e., if N_{1} and N_{2} are both NFA's and $L\left(N_{1}\right) \subseteq L\left(N_{2}\right)$, there may not be any simulation $\varphi: N_{1} \rightarrow N_{2}$.

In order to salvage (iii), we modify conditions (2) and (3) of the definition of a simulation $\varphi: N_{1} \rightarrow N_{2}$. Let N_{1}, N_{2} be NFA's, and let n_{1} be the number of states of N_{1} and n_{2} the number of states of N_{2}. Then, we say that $\varphi: N_{1} \rightarrow N_{2}$ is a generalized simulation, for short, a g-simulation, if
(1) $\left(q_{01}, q_{02}\right) \in \varphi$.
(2b) Whenever $(p, q) \in \varphi$, for all $a \in \Sigma$, if $\delta_{1}(p, a) \neq \emptyset$ and $\delta_{2}(q, a) \neq \emptyset$, then for every $r \in \delta_{1}(p, a)$, there is some $s \in \delta_{2}(q, a)$ so that $(r, s) \in \varphi$.
(3b) For all $w \in \Sigma^{*}$ with $|w|<n_{1} 2^{n_{2}}$, for every $q_{1} \in \delta_{1}^{*}\left(q_{01}, w\right) \cap F_{1}$, there is some $q_{2} \in$ $\delta_{2}^{*}\left(q_{02}, w\right) \cap F_{2}$ so that $\left(q_{1}, q_{2}\right) \in \varphi$.

Prove that $L\left(N_{1}\right) \subseteq L\left(N_{2}\right)$ iff there is some g-simulation $\varphi: N_{1} \rightarrow N_{2}$.
Remark: Condition (3b) is very strong, since by itself, it implies that $L\left(N_{1}\right) \subseteq L\left(N_{2}\right)$. Thus, this "quick fix" is not very satisfactory. A more natural condition (if any), remains to be found!
(v) We say that $\varphi: N_{1} \rightarrow N_{2}$ is a g-bisimulation between N_{1} and N_{2} if φ is a g-simulation between N_{1} and N_{2} and φ^{-1} is a g-simulation between N_{2} and N_{1} (recall that $\varphi^{-1}=\{(q, p) \in$ $\left.\left.Q_{2} \times Q_{1} \mid(p, q) \in \varphi\right\}\right)$.

Prove that $L\left(N_{1}\right)=L\left(N_{2}\right)$ iff there is some g-bisimulation between N_{1} and N_{2}.
(vi) We say that an NFA N is trim if for every state q, there is some $w \in \Sigma^{*}$ so that $q \in \delta^{*}\left(q_{0}, w\right)$. Let N be a trim NFA and D a DFA. Give a counter-example to fact that if a simulation $\varphi: N \rightarrow D$ exists, then it is unique.

To fix the above problem we define reduced simulations. We say that a simulation $\varphi: N_{1} \rightarrow N_{2}$ is reduced, for short, a r-simulation, if for all $\left(q_{1}, q_{2}\right) \in \varphi$, there is some $w \in \Sigma^{*}$ with $|w|<n_{1} n_{2}$, so that $q_{1} \in \delta_{1}^{*}\left(q_{01}, w\right)$ and $q_{2} \in \delta_{2}^{*}\left(q_{02}, w\right)\left(n_{1}\right.$ and n_{2} are the number of states of N_{1} and N_{2}).

Prove that if N is an NFA (not necessarily trim), D is a DFA, and $L(N) \subseteq L(D)$, then there is a unique r-simulation $\sigma: N \rightarrow D$.
(vii) Let $\varphi: N_{1} \rightarrow N_{2}$ and $\psi: N_{2} \rightarrow N_{3}$ be two simulations. Prove that $\varphi \circ \psi: N_{1} \rightarrow N_{3}$ is also a simulation.

Here, \circ denotes composition of relations. This means that in $\varphi \circ \psi$, the relation φ is applied before the relation ψ. This is the opposite of the conventional notation for the composition $\psi \circ \varphi$ of functions, where the function φ is applied before the function ψ.

Prove that this is not true if φ, ψ are r-simulations.
Say that a simulation $\varphi: N_{1} \rightarrow N_{2}$ is an isomorphism between N_{1} and N_{2} if there is a simulation $\psi: N_{2} \rightarrow N_{1}$ such that $\varphi \circ \psi=\operatorname{id}_{N_{1}}$ and $\psi \circ \varphi=\mathrm{id}_{N_{2}}$. What can you conclude if there is an isomorphism $\varphi: N_{1} \rightarrow N_{2}$? Does this imply that N_{1} and N_{2} have the same number of states?

In the rest of this problem, we will be dealing with r-simulations.

Extra Credit (40 points).

(viii) Given an NFA N (without ϵ-transitions), let $\mathcal{D}(N)$ be the trim DFA obtained by applying to N the subset construction given in class (slides, page 57). Observe that the states of $\mathcal{D}(N)$ are the subsets of the form $\delta^{*}\left(q_{0}, w\right)$, for all $w \in \Sigma^{*}$. Prove that there is a r-simulation $\eta_{N}: N \rightarrow \mathcal{D}(N)$. For every DFA D, for every r-simulation $\varphi: N \rightarrow D$, prove that there is a unique r-simulation $\varphi^{\sharp}: \mathcal{D}(N) \rightarrow D$ such that $\varphi=\eta_{N} \circ \varphi^{\sharp}$.

Remarks:

1. Unfortunately, if $\varphi: N_{1} \rightarrow N_{2}$ is an r-simulation,

$$
\varphi \circ \eta_{N_{2}}
$$

is not necessarily an r-simulation!
2. Simulations and bisimulations play an important role in models of concurrency and some data base models.

Open Problem. Find a reasonable notion of r-simulation between NFA's and DFA's, so that the composition of r-simulations is an r-simulation, and the beginning of (viii) holds. Then, every r-simulation $\varphi: N_{1} \rightarrow N_{2}$ yields an r-simulation $\mathcal{D}(\varphi): \mathcal{D}\left(N_{1}\right) \rightarrow \mathcal{D}\left(N_{2}\right)$ defined by

$$
\mathcal{D}(\varphi)=\left(\varphi \circ \eta_{N_{2}}\right)^{\sharp} .
$$

If this can be done, let $\mathcal{D} \mathcal{F} \mathcal{A}$ be the set of trim DFA's (over Σ) and let the maps between DFA's be r-simulations. Similarly, let $\mathcal{N F} \mathcal{F}$ be the set of (trim) NFA's (over Σ) and let the maps between NFA's be r-simulations. Then, there are maps $\mathcal{D}: \mathcal{N} \mathcal{F} \mathcal{A} \rightarrow \mathcal{D F} \mathcal{A}$ and $\mathcal{N}: \mathcal{D F} \mathcal{A} \rightarrow \mathcal{N} \mathcal{F} \mathcal{A}$, where $\mathcal{N}(D)$ is the DFA D viewed as an NFA, and $\mathcal{D}(N)$ is the DFA associated with the NFA N. A r-simulation $\varphi: D_{1} \rightarrow D_{2}$ of DFA's is mapped to the same r-simulation $\mathcal{N}(\varphi): \mathcal{N}\left(D_{1}\right) \rightarrow \mathcal{N}\left(D_{2}\right)$ viewed as a r-simulation of NFA's, and a r-simulation $\varphi: N_{1} \rightarrow N_{2}$ of NFA's is mapped to the r-simulation $\mathcal{D}(\varphi): \mathcal{D}\left(N_{1}\right) \rightarrow \mathcal{D}\left(N_{2}\right)$. Then, $\mathcal{D} \mathcal{F} \mathcal{A}$ and $\mathcal{N} \mathcal{F} \mathcal{A}$ would be categories and \mathcal{D} and \mathcal{N} would be adjoint functors. Indeed, there would be natural bijections

$$
\theta_{N, D}: \operatorname{Hom}_{\mathcal{D F \mathcal { A }}}(\mathcal{D}(N), D) \rightarrow \operatorname{Hom}_{\mathcal{N F \mathcal { A }}}(N, \mathcal{N}(D)),
$$

for all $D \in \mathcal{D} \mathcal{F} \mathcal{A}$ and all $N \in \mathcal{N} \mathcal{F} \mathcal{A}$.
TOTAL: $350+80$ points.

