
Spring, 2013 CIS 511

Introduction to the Theory of Computation

Jean Gallier

Homework 2

January 31, 2013; Due February 14, 2013, beginning of class

“A problems” are for practice only, and should not be turned in.

Problem A1. Recall that two regular expressions R and S are equivalent, denoted as
R ∼= S, iff they denote the same regular language L[R] = L[S]. Show that the following
identities hold for regular expressions:

R∗∗ ∼= R∗

(R + S)∗ ∼= (R∗ + S∗)∗

(R + S)∗ ∼= (R∗S∗)∗

(R + S)∗ ∼= (R∗S)∗R∗

Problem A2. Recall that a homomorphism h : Σ∗ → ∆∗ is a function such that h(uv) =
h(u)h(v) for all u, v ∈ Σ∗. Given any language L ⊆ Σ∗, we define h(L) as

h(L) = {h(w) | w ∈ L}.

Given any language L′ ⊆ ∆∗, we define h−1(L′) as

h−1(L′) = {w ∈ Σ∗ | h(w) ∈ L′}.

Prove that if L ⊆ Σ∗ and L′ ⊆ ∆∗ are regular languages, then so are h(L) and h−1(L′).

Problem A3. Construct an NFA accepting the language L = {aa, aaa}∗. Apply the subset
construction to get a DFA accepting L.

“B problems” must be turned in.

Problem B1 (30 pts). Let Σ = {a1, . . . , an} be an alphabet of n symbols.

(a) Construct an NFA with 2n + 1 (or 2n) states accepting the set Ln of strings over Σ
such that, every string in Ln has an odd number of ai, for some ai ∈ Σ. Equivalently, if Li

n

is the set of all strings over Σ with an odd number of ai, then Ln = L1
n ∪ · · · ∪ Ln

n.

(b) Prove that there is a DFA with 2n states accepting the language Ln.

(c) Prove that every DFA accepting Ln has at least 2n states.
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Hint : If a DFA D with k < 2n states accepts Ln, show that there are two strings u, v with
the property that, for some ai ∈ Σ, u contains an odd number of ai’s, v contains an even
number of ai’s, and D ends in the same state after processing u and v. From this, conclude
that D accepts incorrect strings.

Problem B2 (30 pts). (a) Let T = {0, 1, 2}, let C be the set of 20 strings of length three
over the alphabet T ,

C = {u ∈ T 3 | u /∈ {110, 111, 112, 101, 121, 011, 211}},

let Σ = {0, 1, 2, c} and consider the language

LM = {w ∈ Σ∗ | w = u1cu2c · · · cun, n ≥ 1, ui ∈ C}.

Prove that L is regular.

(b) The language LM has a geometric interpretation as a certain subset of R3 (actually,
Q3), as follows: Given any string, w = u1cu2c · · · cun ∈ LM , denoting the jth character in ui
by uji , where j ∈ {1, 2, 3}, we obtain three strings

w1 = u11u
1
2 · · ·u1n

w2 = u21u
2
2 · · ·u2n

w3 = u31u
3
2 · · ·u3n.

For example, if w = 012c001c222c122 we have w1 = 0021, w2 = 1022, and w3 = 2122. Now,
a string v ∈ T+ can be interpreted as a decimal real number written in base three! Indeed,
if

v = b1b2 · · · bk, where bi ∈ {0, 1, 2} = T (1 ≤ i ≤ k),

we interpret v as n(v) = 0.b1b2 · · · bk, i.e.,

n(v) = b13
−1 + b23

−2 + · · ·+ bk3−k.

Finally, a string, w = u1cu2c · · · cun ∈ LM , is interpreted as the point, (xw, yw, zw) ∈ R3,
where

xw = n(w1), yw = n(w2), zw = n(w3).

Therefore, the language, LM , is the encoding of a set of rational points in R3, call it M . This
turns out to be the rational part of a fractal known as the Menger sponge.

Explain the best you can what are the recursive rules to create the Menger sponge,
starting from a unit cube in R3. Draw some pictures illustrating this process and showing
approximations of the Menger sponge.

Extra Credit (20 points). Write a computer program to draw the Menger sponge (based
on the ideas above).
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Problem B3 (30 pts). Let R be any regular language over some alphabet Σ. Prove that
the language

L = {u | ∃v ∈ Σ∗, uv ∈ R, |u| = |v|}
is regular

Problem B4 (120 pts). (Free generation of regular expressions) The definition of the
set R(Σ) of regular expressions over an alphabet Σ can be formalized in the following way:
First, define the new alphabet

∆ = Σ ∪ {(, ),+, ·, ∗, ε, ∅}.

Let C+ : ∆∗ ×∆∗ → ∆∗, C· : ∆∗ ×∆∗ → ∆∗, and C∗ : ∆∗ → ∆∗ be the functions defined so
that

C+(u, v) = (u+ v)

C·(u, v) = (u · v)

C∗(u) = u∗,

for all u, v ∈ ∆∗. Let

R(Σ)0 = Σ ∪ {ε, ∅}
R(Σ)n+1 = R(Σ)n ∪ {C+(u, v), C·(u, v), C∗(u) | u, v ∈ R(Σ)n},

and finally, let

R(Σ) =
⋃
n≥0

R(Σ)n.

We wish to prove that the functions C+, C·, C∗ are injective when restricted to R(Σ), which
means that if

C+(u, v) = C+(u′, v′)

for any u, v, u′, v′ ∈ R(Σ), then u = u′ and v = v′, similarly for C·, and if

C∗(u) = C∗(u
′)

for any u, u′ ∈ R(Σ), then u = u′. We also wish to prove that the sets C+(R(Σ),R(Σ)),
C·(R(Σ),R(Σ)), and C∗(R(Σ)), are pairwise disjoint.

For this, we introduce the “head deficiency function”, K, defined as follows:

K(+) = −1

K(·) = −1

K(∗) = 0

K(a) = 1 (a ∈ Σ)

K(∅) = 1

K(ε) = 1

K(“(”) = 1

K(“)”) = −1.
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This function is extended to ∆+ in the obvious way, i.e.,

K(w1 · · ·wk) = K(w1) + · · ·+K(wk),

for all wi ∈ ∆ and all k ≥ 1.

(i) Prove the following properties:

(a) For any regular expression R ∈ R(Σ), we have K(R) = 1.

(b) For any proper suffix S of a regular expression, we have K(S) ≤ 0.

(c) No proper suffix S of a regular expression is a regular expression.

(ii) Using the above, prove that the restrictions of the functions C+, C·, C∗ to R(Σ) are
injective and that the sets C+(R(Σ),R(Σ)), C·(R(Σ),R(Σ)), and C∗(R(Σ)), are pairwise
disjoint.

(iii) Prove that R(Σ)n+1 6= R(Σ)n for all n ≥ 0, and that C+(u, v) /∈ R(Σ)n, C·(u, v) /∈
R(Σ)n, and C∗(u) /∈ R(Σ)n, for all u, v ∈ R(Σ)n − R(Σ)n−1 and for all n ≥ 0 (setting
R(Σ)−1 = ∅).

(iv) Recall that the set R(Σ) of regular languages over Σ is defined inductively as follows:

R(Σ)0 = {{a1}, . . . , {am}, {ε}, ∅},

where Σ = {a1, . . . , am},

R(Σ)n+1 = R(Σ)n ∪ {L1 ∪ L2, L1 · L2, L
∗ | L1, L2, L ∈ R(Σ)n},

and
R(Σ) =

⋃
n≥0

R(Σ)n.

The interpretation of regular expressions as regular languages is given by the function,
L : R(Σ)→ R(Σ), defined recursively as follows:

L[ai] = {ai}
L[ε] = {ε}
L[∅] = ∅

L[(R1 +R2)] = L[R1] ∪ L[R2]

L[(R1 ·R2)] = L[R1] · L[R2]

L[R∗] = (L[R])∗.

Prove that the function L is indeed well-defined.
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Hint . Define a sequence of functions, Ln : R(Σ)n → R(Σ), by induction using (ii) and (iii),
and let L =

⋃
n≥0 Ln. You will have to make sense of all of this.

(v) (Regular expressions in prefix notation) Define the new alphabet

∆ = Σ ∪ {+, ·, ∗, ε, ∅}.

Let C+ : ∆∗ ×∆∗ → ∆∗, C· : ∆∗ ×∆∗ → ∆∗, and C∗ : ∆∗ → ∆∗ be the functions defined so
that

C+(u, v) = +uv

C·(u, v) = ·uv
C∗(u) = ∗u,

for all u, v ∈ ∆∗. Let

R(Σ)0 = Σ ∪ {ε, ∅}
R(Σ)n+1 = R(Σ)n ∪ {C+(u, v), C·(u, v), C∗(u) | u, v ∈ R(Σ)n},

and finally, let

R(Σ) =
⋃
n≥0

R(Σ)n.

Define the “tail deficiency function”, K, as before:

K(+) = −1

K(·) = −1

K(∗) = 0

K(a) = 1 (a ∈ Σ)

K(∅) = 1

K(ε) = 1,

and extend it to ∆+ in the obvious way. Redo questions (i)–(iv) for regular expressions in
prefix notation.

(vi) This time, consider the alphabet

∆ = Σ ∪ {+, ·, ∗, ε, ∅}

and the functions C+ : ∆∗×∆∗ → ∆∗, C· : ∆∗×∆∗ → ∆∗, and C∗ : ∆∗ → ∆∗ defined so that

C+(u, v) = u+ v

C·(u, v) = u · v
C∗(u) = u∗,
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for all u, v ∈ ∆∗.

Show that properties (b) and (c) of (i) fail, that (ii) also fails, and that L cannot be
defined properly.

(vii) Extra credit (20 pts). Consider the alphabet

∆ = Σ ∪ {),+, ·, ∗, ε, ∅}

and the functions C+ : ∆∗×∆∗ → ∆∗, C· : ∆∗×∆∗ → ∆∗, and C∗ : ∆∗ → ∆∗ defined so that

C+(u, v) = u+ v)

C·(u, v) = u · v)

C∗(u) = u∗,

for all u, v ∈ ∆∗.

Redo questions (i)–(iv) for these strange regular expressions!

Problem B5 (140 pts). The purpose of this problem is to investigate the notion of
mapping between NFA’s. It is assumed that all DFA’s and NFA’s considered in this problem
are defined over some fixed alphabet Σ. For simplicity, we also assume that we are considering
NFA’s without ε-transitions.

Given two NFA’s N1 = (Q1,Σ, δ1, q01, F1) and N2 = (Q2,Σ, δ2, q02, F2), we say that a
relation ϕ ⊆ Q1 ×Q2 is a simulation of N1 by N2, denoted by ϕ : N1 → N2, if the following
properties hold:

(1) (q01, q02) ∈ ϕ.

(2) Whenever (p, q) ∈ ϕ, for every r ∈ δ1(p, a), there is some s ∈ δ2(q, a) so that (r, s) ∈ ϕ,
for all a ∈ Σ.

(3) Whenever (p, q) ∈ ϕ, if p ∈ F1 then q ∈ F2.

(i) If N1 and N2 are actually DFA’s, show that an F - map ϕ : N1 → N2 of DFA’s is a
simulation of N1 by N2 (viewing the function ϕ as a relation, in the obvious way).

(ii) Let ϕ : N1 → N2 be a simulation of N1 by N2. Prove that for every w ∈ Σ∗, for every
q1 ∈ δ∗1(q01, w), there is some q2 ∈ δ∗2(q02, w), so that

(q1, q2) ∈ ϕ.

Conclude that L(N1) ⊆ L(N2).

(iii) If N1 is an NFA and D2 is a DFA, prove that if L(N1) ⊆ L(D2), then there is some
simulation ϕ : N1 → D2 of N1 by D2.

Hint . Consider the relation ϕ = {(q1, q2) | q1 ∈ δ∗1(q01, w), q2 = δ∗2(q02, w), w ∈ Σ∗}.
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Remark: If D1 and D2 are DFA’s and L(D1) ⊆ L(D2), then there may not exist any DFA
map from D1 to D2, but the above shows that there is always a simulation of D1 by D2.

(iv) Give a counter-example showing that (iii) is generally false for NFA’s, i.e., if N1 and
N2 are both NFA’s and L(N1) ⊆ L(N2), there may not be any simulation ϕ : N1 → N2.

In order to salvage (iii), we modify conditions (2) and (3) of the definition of a simulation
ϕ : N1 → N2. Let N1, N2 be NFA’s, and let n1 be the number of states of N1 and n2 the
number of states of N2. Then, we say that ϕ : N1 → N2 is a generalized simulation, for short,
a g-simulation, if

(1) (q01, q02) ∈ ϕ.

(2b) Whenever (p, q) ∈ ϕ, for all a ∈ Σ, if δ1(p, a) 6= ∅ and δ2(q, a) 6= ∅, then for every
r ∈ δ1(p, a), there is some s ∈ δ2(q, a) so that (r, s) ∈ ϕ.

(3b) For all w ∈ Σ∗ with |w| < n12
n2 , for every q1 ∈ δ∗1(q01, w) ∩ F1, there is some q2 ∈

δ∗2(q02, w) ∩ F2 so that (q1, q2) ∈ ϕ.

Prove that L(N1) ⊆ L(N2) iff there is some g-simulation ϕ : N1 → N2.

Remark: Condition (3b) is very strong, since by itself, it implies that L(N1) ⊆ L(N2).
Thus, this “quick fix” is not very satisfactory. A more natural condition (if any), remains to
be found!

(v) We say that ϕ : N1 → N2 is a g-bisimulation between N1 and N2 if ϕ is a g-simulation
between N1 and N2 and ϕ−1 is a g-simulation between N2 and N1 (recall that ϕ−1 = {(q, p) ∈
Q2 ×Q1 | (p, q) ∈ ϕ}).

Prove that L(N1) = L(N2) iff there is some g-bisimulation between N1 and N2.

(vi) We say that an NFA N is trim if for every state q, there is some w ∈ Σ∗ so that
q ∈ δ∗(q0, w). Let N be a trim NFA and D a DFA. Give a counter-example to fact that if a
simulation ϕ : N → D exists, then it is unique.

To fix the above problem we define reduced simulations . We say that a simulation
ϕ : N1 → N2 is reduced , for short, a r-simulation, if for all (q1, q2) ∈ ϕ, there is some
w ∈ Σ∗ with |w| < n1n2, so that q1 ∈ δ∗1(q01, w) and q2 ∈ δ∗2(q02, w) (n1 and n2 are the
number of states of N1 and N2).

Prove that if N is an NFA (not necessarily trim), D is a DFA, and L(N) ⊆ L(D), then
there is a unique r-simulation σ : N → D.

(vii) Let ϕ : N1 → N2 and ψ : N2 → N3 be two simulations. Prove that ϕ ◦ ψ : N1 → N3

is also a simulation.

� Here, ◦ denotes composition of relations . This means that in ϕ ◦ ψ, the relation ϕ is
applied before the relation ψ. This is the opposite of the conventional notation for the

composition ψ ◦ ϕ of functions , where the function ϕ is applied before the function ψ.
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Prove that this is not true if ϕ, ψ are r-simulations.

Say that a simulation ϕ : N1 → N2 is an isomorphism between N1 and N2 if there is a
simulation ψ : N2 → N1 such that ϕ ◦ ψ = idN1 and ψ ◦ ϕ = idN2 . What can you conclude
if there is an isomorphism ϕ : N1 → N2? Does this imply that N1 and N2 have the same
number of states?

In the rest of this problem, we will be dealing with r-simulations .

Extra Credit (40 points).

(viii) Given an NFA N (without ε-transitions), let D(N) be the trim DFA obtained by
applying to N the subset construction given in class (slides, page 57). Observe that the
states of D(N) are the subsets of the form δ∗(q0, w), for all w ∈ Σ∗. Prove that there is a
r-simulation ηN : N → D(N). For every DFA D, for every r-simulation ϕ : N → D, prove
that there is a unique r-simulation ϕ] : D(N)→ D such that ϕ = ηN ◦ ϕ].

Remarks:

1. Unfortunately, if ϕ : N1 → N2 is an r-simulation,

ϕ ◦ ηN2

is not necessarily an r-simulation!

2. Simulations and bisimulations play an important role in models of concurrency and
some data base models.

Open Problem. Find a reasonable notion of r-simulation between NFA’s and DFA’s, so
that the composition of r-simulations is an r-simulation, and the beginning of (viii) holds.
Then, every r-simulation ϕ : N1 → N2 yields an r-simulation D(ϕ) : D(N1)→ D(N2) defined
by

D(ϕ) = (ϕ ◦ ηN2)
].

If this can be done, let DFA be the set of trim DFA’s (over Σ) and let the maps between
DFA’s be r-simulations. Similarly, let NFA be the set of (trim) NFA’s (over Σ) and let
the maps between NFA’s be r-simulations. Then, there are maps D : NFA → DFA and
N : DFA → NFA, where N (D) is the DFA D viewed as an NFA, and D(N) is the DFA
associated with the NFA N . A r-simulation ϕ : D1 → D2 of DFA’s is mapped to the same
r-simulation N (ϕ) : N (D1)→ N (D2) viewed as a r-simulation of NFA’s, and a r-simulation
ϕ : N1 → N2 of NFA’s is mapped to the r-simulation D(ϕ) : D(N1) → D(N2). Then, DFA
and NFA would be categories and D and N would be adjoint functors. Indeed, there would
be natural bijections

θN,D : HomDFA(D(N), D)→ HomNFA(N,N (D)),

for all D ∈ DFA and all N ∈ NFA.

TOTAL: 350 + 80 points.
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