Spring 2025 CIS 5110

Introduction to the Theory of Computation Jean Gallier

Homework 1

January 17, 2025; Due February 4, 2025

"A problems" are for practice only, and should not be turned in.

Problem A1. Let Σ be an alphabet, for any languages $L_1, L_2, L_3 \subseteq \Sigma^*$, prove that if $L_1 \subseteq L_2$, then $L_1L_3 \subseteq L_2L_3$.

Problem A2. Let Σ be an alphabet. Given any two families of languages $(A_i)_{i \in I}$ and $(B_j)_{j \in J}$, where I and J are any arbitrary index sets and $A_i, B_j \subseteq \Sigma^*$, prove that

$$\left(\bigcup_{i\in I} A_i\right) \left(\bigcup_{j\in J} B_j\right) = \bigcup_{(i,j)\in I\times J} A_i B_j.$$

"B problems" must be turned in.

Problem B1 (20 pts). Given an alphabet Σ , for any language $L \subseteq \Sigma^*$, prove that $L^*L^* = L^*$ and $L^{**} = L^*$.

Hint. To prove that $L^{**} = L^*$, prove that $(L^*)^n = L^*$ for all $n \ge 1$.

Problem B2 (70 pts). Let $\Sigma = \{a_1, \ldots, a_k\}$ be any alphabet. Given a string $w \in \Sigma^*$, its reversal w^R is defined inductively as follows: $\epsilon^R = \epsilon$, and $(ua)^R = au^R$, where $a \in \Sigma$ and $u \in \Sigma^*$.

A palindrome is a string w such that $w = w^R$. Here are some examples of palindromes:

eye racecar never odd or even god saw I was dog campus motto bottoms up mac do geese see god

If k = 1, every string is a palindrome. Therefore we assume that $k \ge 2$.

We would like to give a formula giving the number p_n of all palindromes w of length $|w| = n \ge 0$ over the alphabet $\Sigma = \{a_1, \ldots, a_k\}$ with k letters.

(1) Prove that a palindrome $w \in \Sigma^*$ is either the empty string $w = \epsilon$, or w = a with $a \in \Sigma$, or w = aua where u is a palindrome of length n - 2 where $n = |w| \ge 2$ and $a \in \Sigma$ is some letter.

(2) Prove that $p_0 = 1$, $p_1 = k$, and

$$p_{n+2} = kp_n$$
, for all $n \ge 0$.

Give a formula for p_n . Distinguish between the cases where n = 2m (*n* is even) and n = 2m + 1 (*n* is odd). You must prove the correctness of your formulae (use induction).

Do **not** give formulae in terms of n/2 when n is even or (n-1)/2 when n odd. Please give formulae for p_{2m} and p_{2m+1} in terms of m.

(3) Prove that the number P_n of all palindromes w of length $\leq n$ (which means that $0 \leq |w| \leq n$) over the alphabet $\Sigma = \{a_1, \ldots, a_k\}$ with k letters is given by

$$P_{2m} = \frac{2k^{m+1} - k - 1}{k - 1} \qquad n = 2m$$
$$P_{2m+1} = \frac{k^{m+2} + k^{m+1} - k - 1}{k - 1} \qquad n = 2m + 1,$$

for any natural number $m \in \mathbb{N}$. Prove that the number Q_n of all non-palindromes w of length $\leq n$ over the alphabet $\Sigma = \{a_1, \ldots, a_k\}$ is given by

$$Q_{2m} = \frac{k^{2m+1} - 2k^{m+1} + k}{k - 1} \qquad n = 2m$$
$$Q_{2m+1} = \frac{k^{2m+2} - k^{m+2} - k^{m+1} + k}{k - 1} \qquad n = 2m + 1,$$

for any natural number $m \in \mathbb{N}$.

Hint. Figure out the total number of strings of length $\leq n$ over an alphabet of size $k \geq 2$.

(4) If k = 2, prove that if $m \ge 2$, then $P_{2m}/Q_{2m} < 1$ and $P_{2m+1}/Q_{2m+1} < 1$, so there are more non-palindromes than palindromes. What is 536 870 909 (in relation to palindromes)? Show that

$$\frac{536870909}{2^{55}-1} \approx 2^{-26} \approx 1.4901 \times 10^{-8}.$$

What the interpretation of the above ratio as a probability?

Problem B3 (30 pts). Let Σ be any alphabet. For any string $w \in \Sigma^*$ recall that w^n is defined inductively as follows:

$$w^{0} = \epsilon$$
$$w^{n+1} = w^{n}w, \quad n \in \mathbb{N}.$$

Prove the following property: for any two strings $u, v \in \Sigma^*$, uv = vu iff there is some $w \in \Sigma^*$ such that $u = w^m$ and $v = w^n$, for some $m, n \ge 0$.

Hint. In the "hard" direction, consider the subcases

- (1) |u| = |v|,
- (2) |u| < |v| and
- (3) |u| > |v|

and use an induction on |u| + |v|.

Problem B4 (30 pts). For any language $L \subseteq \{a\}^*$, prove that if $L = L^*$, then there is a finite language $S \subseteq L$ such that $L = S^*$.

Hint. If $L \neq \{\epsilon\}$, then L contains some nonempty string, and there is a shortest nonempty string $a^m \in L$. Consider the finite set S of strings in L of the form a^{mq+r} , where $0 \leq r \leq m-1$, and where $q \geq 1$ is minimal.

Problem B5 (60 pts). Given any two DFA's $D_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ and $D_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$, a morphism $h: D_1 \to D_2$ of DFA's is a function $h: Q_1 \to Q_2$ satisfying the following two conditions:

- (1) $h(\delta_1(p, a)) = \delta_2(h(p), a)$, for all $p \in Q_1$ and all $a \in \Sigma$;
- (2) $h(q_{0,1}) = q_{0,2}$.

An F-map $h: D_1 \to D_2$ of DFA's is a morphism satisfying the condition

(3a) $h(F_1) \subseteq F_2$.

A *B*-map $h: D_1 \to D_2$ of *DFA*'s is a morphism satisfying the condition

(3b) $h^{-1}(F_2) \subseteq F_1$.

A proper homomorphism of DFA's is an F-map of DFA's which is also a B-map of DFA's, i.e. it satisfies the condition

(3c) $h^{-1}(F_2) = F_1$.

We say that a morphism (resp. F-map, resp. B-map) $h: D_1 \to D_2$ is surjective if $h(Q_1) = Q_2$.

(a) Prove that if $f: D_1 \to D_2$ and $g: D_2 \to D_3$ are morphisms (resp. *F*-maps, resp *B*-maps) of DFAs, then $g \circ f: D_1 \to D_3$ is also a morphism (resp. *F*-map, resp *B*-map) of DFAs.

Prove that if $f: D_1 \to D_2$ is an *F*-map that is an isomorphism then it is also a *B*-map, and that if $f: D_1 \to D_2$ is a *B*-map that is an isomorphism then it is also an *F*-map.

(b) If $h: D_1 \to D_2$ is a morphism of DFA's, prove that

$$h(\delta_1^*(p,w)) = \delta_2^*(h(p),w)$$

for all $p \in Q_1$ and all $w \in \Sigma^*$.

As a consequence, prove the following facts:

If $h: D_1 \to D_2$ is an *F*-map of DFA's, then $L(D_1) \subseteq L(D_2)$. If $h: D_1 \to D_2$ is a *B*-map of DFA's, then $L(D_2) \subseteq L(D_1)$. Finally, if $h: D_1 \to D_2$ is a proper homomorphism of DFA's, then $L(D_1) = L(D_2)$.

(c) Let D_1 and D_2 be DFA's and assume that there is a morphism $h: D_1 \to D_2$. Prove that h induces a unique surjective morphism $h_r: (D_1)_r \to (D_2)_r$ (where $(D_1)_r$ and $(D_2)_r$ are the trim DFA's defined in Definition 3.5 of the notes). This means that if $h: D_1 \to D_2$ and $h': D_1 \to D_2$ are DFA morphisms, then h(p) = h'(p) for all $p \in (Q_1)_r$, and the restriction of h to $(D_1)_r$ is surjective onto $(D_2)_r$. Moreover, if $L(D_1) = L(D_2)$, prove that h induces a unique surjective proper homomorphism $h_r: (D_1)_r \to (D_2)_r$.

(d) Relax the condition that a DFA morphism $h: D_1 \to D_2$ maps $q_{0,1}$ to $q_{0,2}$ (so, it is possible that $h(q_{0,1}) \neq q_{0,2}$), and call such a function a *weak morphism*. We have an obvious notion of *weak F-map*, *weak B-map* and *weak proper homomorphism* (by imposing condition (3a) or condition (3b), or (3c)). For any language, $L \subseteq \Sigma^*$ and any fixed string, $u \in \Sigma^*$, let $D_u(L)$, also denoted L/u (called the *(left) derivative of L by u*), be the language

$$D_u(L) = \{ v \in \Sigma^* \mid uv \in L \}.$$

Prove the following facts, **assuming that** D_2 is trim: If $h: D_1 \to D_2$ is a weak *F*-map of DFA's, then $L(D_1) \subseteq D_u(L(D_2))$, for some suitable $u \in \Sigma^*$. If $h: D_1 \to D_2$ is a weak *B*-map of DFA's, then $D_u(L(D_2)) \subseteq L(D_1)$, for the same *u* as above. Finally, if $h: D_1 \to D_2$ is a weak proper homomorphism of DFA's, then $L(D_1) = D_u(L(D_2))$, for the same *u* as above.

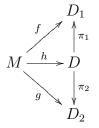
Suppose there is a weak morphism $h: D_1 \to D_2$. What can you say about the restriction of h to $(D_1)_r$? What can you say about surjectivity ? (you may need to consider $(D_2)_r$ with respect to a **different** start state). What happens (and what can you say) if D_2 is **not** trim?

Problem B6 (70 pts). In this problem, all DFA's under consideration use the same alphabet Σ .

(a) Given any two DFA's D_1 and D_2 , prove that there is a DFA D and two DFA F-maps $\pi_1: D \to D_1$ and $\pi_2: D \to D_2$ such that the following universal mapping property of products holds: For any DFA M and any two DFA F-maps $f: M \to D_1$ and $g: M \to D_2$, there is a unique DFA F-map $h: M \to D$ such that

$$f = \pi_1 \circ h$$
 and $g = \pi_2 \circ h$,

as shown in the diagram below:



Moreover, prove that π_1 and π_2 are surjective. Prove that D is unique up to a DFA F-map isomorphism. This means that if D' is another DFA and if there are two DFA F-maps $\pi'_1: D' \to D_1$ and $\pi'_2: D' \to D_2$ such that the universal mapping property of products holds, then there are two unique DFA F-maps $\varphi: D \to D'$ and $\varphi': D' \to D$ so that $\varphi' \circ \varphi = \mathrm{id}_D$, $\pi_1 = \pi'_1 \circ \varphi, \ \pi_2 = \pi'_2 \circ \varphi, \ \varphi \circ \varphi' = \mathrm{id}_{D'}, \ \pi'_1 = \pi_1 \circ \varphi'$ and $\pi'_2 = \pi_2 \circ \varphi'$. What is the language accepted by D?

Remark: We call D the product of D_1 and D_2 and we denote it by $D_1 \prod D_2$.

(b) Given any three DFA's D_1 , D_2 , and D_3 and any two DFA *F*-maps $f: D_1 \to D_3$ and $g: D_2 \to D_3$, prove that there is a DFA *D* and two DFA *F*-maps $\pi_1: D \to D_1$ and $\pi_2: D \to D_2$ such that

$$f \circ \pi_1 = g \circ \pi_2,$$

as in the diagram below

and the following universal mapping property of fibred products holds: for any DFA M and any two DFA F-maps $f': M \to D_1$ and $g': M \to D_2$ such that

$$f \circ f' = g \circ g',$$

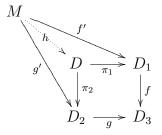
as in the diagram below

$$\begin{array}{c|c} M \xrightarrow{f'} & D_1 \\ g' & & \downarrow^f \\ D_2 \xrightarrow{g} & D_3 \end{array}$$

there is a unique DFA F-map $h: M \to D$ such that

$$f' = \pi_1 \circ h$$
 and $g' = \pi_2 \circ h$,

as in the diagram below



Prove that D is unique up to a DFA F-map isomorphism. This means that if D' is another DFA and if there are two DFA F-maps $\pi'_1: D' \to D_1$ and $\pi'_2: D' \to D_2$ such that

$$f \circ \pi'_1 = g \circ \pi'_2$$

and the universal mapping property of fibred products holds, then there are two unique DFA *F*-maps $\varphi: D \to D'$ and $\varphi': D' \to D$ so that $\varphi' \circ \varphi = \operatorname{id}_D \pi_1 = \pi'_1 \circ \varphi, \ \pi_2 = \pi'_2 \circ \varphi, \ \varphi \circ \varphi' = \operatorname{id}_{D'}, \ \pi'_1 = \pi_1 \circ \varphi' \text{ and } \ \pi'_2 = \pi_2 \circ \varphi'.$

Remark: We denote D by $D_1 \prod_{D_3} D_2$ and call it a *fibred product of* D_1 *and* D_2 *over* D_3 , or a *pullback of* D_1 *and* D_2 *over* D_3 .

If T is any one-state DFA accepting Σ^* (this single state is accepting), observe that there is a unique DFA F-map from every DFA D to T. Use this to show that if $D_1 \prod D_2$ is the product DFA arising in (a), then

$$D_1 \prod D_2 = D_1 \prod_T D_2.$$

Extra Credit (40 points). Redo questions (a) and (b) for *B*-maps instead of *F*-maps.

Remark: If we dualize (b), i.e., turn the arrows around, we get the notion of *fibred coproduct* or *pushout*. It can be shown that fibred coproducts exist, both for F-maps and B-maps, but this is tricky.

TOTAL: 280 points + 40 extra credit.