Fall 2021 CIS 511

Introduction to the Theory of Computation Jean Gallier Homework 1

September 1, 2021; Due September 27, 2021
"A problems" are for practice only, and should not be turned in.
Problem A1. Let Σ be an alphabet, for any languages $L_{1}, L_{2}, L_{3} \subseteq \Sigma^{*}$, prove that if $L_{1} \subseteq L_{2}$, then $L_{1} L_{3} \subseteq L_{2} L_{3}$.

Problem A2. Let Σ be an alphabet. Given any two families of languages $\left(A_{i}\right)_{i \in I}$ and $\left(B_{j}\right)_{j \in J}$, where I and J are any arbitrary index sets and $A_{i}, B_{j} \subseteq \Sigma^{*}$, prove that

$$
\left(\bigcup_{i \in I} A_{i}\right)\left(\bigcup_{j \in J} B_{j}\right)=\bigcup_{(i, j) \in I \times J} A_{i} B_{j} .
$$

"B problems" must be turned in.
Problem B1 (20 pts). Given an alphabet Σ, for any language $L \subseteq \Sigma^{*}$, prove that $L^{*} L^{*}=L^{*}$ and $L^{* *}=L^{*}$.

Hint. To prove that $L^{* *}=L^{*}$, prove that $\left(L^{*}\right)^{n}=L^{*}$ for all $n \geq 1$.
Problem B2 (70 pts). Let $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ be any alphabet. Given a string $w \in \Sigma^{*}$, its reversal w^{R} is defined inductively as follows: $\epsilon^{R}=\epsilon$, and $(u a)^{R}=a u^{R}$, where $a \in \Sigma$ and $u \in \Sigma^{*}$.

A palindrome is a string w such that $w=w^{R}$. Here are some examples of palindromes:

$$
\begin{aligned}
& \text { eye } \\
& \text { racecar } \\
& \text { never odd or even } \\
& \text { god saw I was dog } \\
& \text { campus motto bottoms up mac } \\
& \text { do geese see god }
\end{aligned}
$$

If $k=1$, every string is a palindrome. Therefore we assume that $k \geq 2$.

We would like to give a formula giving the number p_{n} of all palindromes w of length $|w|=n \geq 0$ over the alphabet $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ with k letters.
(1) Prove that a palindrome $w \in \Sigma^{*}$ is either the empty string $w=\epsilon$, or $w=a$ with $a \in \Sigma$, or $w=a u a$ where u is a palindrome of length $n-2$ where $n=|w| \geq 2$ and $a \in \Sigma$ is some letter.
(2) Prove that $p_{0}=1, p_{1}=k$, and

$$
p_{n+2}=k p_{n}, \quad \text { for all } n \geq 0
$$

Give a formula for p_{n}. Distinguish between the cases where $n=2 m$ (n is even) and $n=2 m+1$ (n is odd). You must prove the correctness of your formulae (use induction).

Do not give formulae in terms of $n / 2$ when n is even or $(n-1) / 2$ when n odd. Please give formulae for $p_{2 m}$ and $p_{2 m+1}$ in terms of m.
(3) Prove that the number P_{n} of all palindromes w of length $\leq n$ (which means that $0 \leq|w| \leq n$) over the alphabet $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ with k letters is given by

$$
\begin{aligned}
P_{2 m} & =\frac{2 k^{m+1}-k-1}{k-1} & n=2 m \\
P_{2 m+1} & =\frac{k^{m+2}+k^{m+1}-k-1}{k-1} & n=2 m+1,
\end{aligned}
$$

for any natural number $m \in \mathbb{N}$. Prove that the number Q_{n} of all non-palindromes w of length $\leq n$ over the alphabet $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ is given by

$$
\begin{aligned}
Q_{2 m} & =\frac{k^{2 m+1}-2 k^{m+1}+k}{k-1} & n=2 m \\
Q_{2 m+1} & =\frac{k^{2 m+2}-k^{m+2}-k^{m+1}+k}{k-1} & n=2 m+1,
\end{aligned}
$$

for any natural number $m \in \mathbb{N}$.
Hint. Figure out the total number of strings of length $\leq n$ over an alphabet of size $k \geq 2$.
(4) If $k=2$, prove that if $m \geq 2$, then $P_{2 m} / Q_{2 m}<1$ and $P_{2 m+1} / Q_{2 m+1}<1$, so there are more non-palindromes than palindromes. What is 536870909 (in relation to palindromes)? Show that

$$
\frac{536870909}{2^{55}-1} \approx 2^{-26} \approx 1.4901 \times 10^{-8}
$$

What the interpretation of the above ratio as a probability?
Problem B3 (30 pts). Let Σ be any alphabet. For any string $w \in \Sigma^{*}$ recall that w^{n} is defined inductively as follows:

$$
\begin{aligned}
w^{0} & =\epsilon \\
w^{n+1} & =w^{n} w, \quad n \in \mathbb{N} .
\end{aligned}
$$

Prove the following property: for any two strings $u, v \in \Sigma^{*}$, $u v=v u$ iff there is some $w \in \Sigma^{*}$ such that $u=w^{m}$ and $v=w^{n}$, for some $m, n \geq 0$.
Hint. In the "hard" direction, consider the subcases
(1) $|u|=|v|$,
(2) $|u|<|v|$ and
(3) $|u|>|v|$
and use an induction on $|u|+|v|$.
Problem B4 (30 pts). For any language $L \subseteq\{a\}^{*}$, prove that if $L=L^{*}$, then there is a finite language $S \subseteq L$ such that $L=S^{*}$.
Hint. If $L \neq\{\epsilon\}$, then L contains some nonempty string, and there is a shortest nonempty string $a^{m} \in L$. Consider the finite set S of strings in L of the form $a^{m q+r}$, where $0 \leq r \leq m-1$, and where $q \geq 1$ is minimal.

Problem B5 (60 pts). Given any two DFA's $D_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0,1}, F_{1}\right)$ and
$D_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0,2}, F_{2}\right)$, a morphism $h: D_{1} \rightarrow D_{2}$ of DFA's is a function $h: Q_{1} \rightarrow Q_{2}$ satisfying the following two conditions:
(1) $h\left(\delta_{1}(p, a)\right)=\delta_{2}(h(p), a)$, for all $p \in Q_{1}$ and all $a \in \Sigma$;
(2) $h\left(q_{0,1}\right)=q_{0,2}$.

An F-map $h: D_{1} \rightarrow D_{2}$ of DFA's is a morphism satisfying the condition
(3a) $h\left(F_{1}\right) \subseteq F_{2}$.
A B-map $h: D_{1} \rightarrow D_{2}$ of DFA's is a morphism satisfying the condition
$(3 \mathrm{~b}) h^{-1}\left(F_{2}\right) \subseteq F_{1}$.
A proper homomorphism of DFA's is an F-map of DFA's which is also a B-map of DFA's, i.e. it satisfies the condition
(3c) $h^{-1}\left(F_{2}\right)=F_{1}$.
We say that a morphism (resp. F-map, resp. B-map) $h: D_{1} \rightarrow D_{2}$ is surjective if $h\left(Q_{1}\right)=Q_{2}$.
(a) Prove that if $f: D_{1} \rightarrow D_{2}$ and $g: D_{2} \rightarrow D_{3}$ are morphisms (resp. F-maps, resp B-maps) of DFAs, then $g \circ f: D_{1} \rightarrow D_{3}$ is also a morphism (resp. F-map, resp B-map) of DFAs.

Prove that if $f: D_{1} \rightarrow D_{2}$ is an F-map that is an isomorphism then it is also a B-map, and that if $f: D_{1} \rightarrow D_{2}$ is a B-map that is an isomorphism then it is also an F-map.
(b) If $h: D_{1} \rightarrow D_{2}$ is a morphism of DFA's, prove that

$$
h\left(\delta_{1}^{*}(p, w)\right)=\delta_{2}^{*}(h(p), w)
$$

for all $p \in Q_{1}$ and all $w \in \Sigma^{*}$.
As a consequence, prove the following facts:
If $h: D_{1} \rightarrow D_{2}$ is an F-map of DFA's, then $L\left(D_{1}\right) \subseteq L\left(D_{2}\right)$. If $h: D_{1} \rightarrow D_{2}$ is a B-map of DFA's, then $L\left(D_{2}\right) \subseteq L\left(D_{1}\right)$. Finally, if $h: D_{1} \rightarrow D_{2}$ is a proper homomorphism of DFA's, then $L\left(D_{1}\right)=L\left(D_{2}\right)$.
(c) Let D_{1} and D_{2} be DFA's and assume that there is a morphism $h: D_{1} \rightarrow D_{2}$. Prove that h induces a unique surjective morphism $h_{r}:\left(D_{1}\right)_{r} \rightarrow\left(D_{2}\right)_{r}$ (where $\left(D_{1}\right)_{r}$ and $\left(D_{2}\right)_{r}$ are the trim DFA's defined in Definition 3.5 of the notes). This means that if $h: D_{1} \rightarrow D_{2}$ and $h^{\prime}: D_{1} \rightarrow D_{2}$ are DFA morphisms, then $h(p)=h^{\prime}(p)$ for all $p \in\left(Q_{1}\right)_{r}$, and the restriction of h to $\left(D_{1}\right)_{r}$ is surjective onto $\left(D_{2}\right)_{r}$. Moreover, if $L\left(D_{1}\right)=L\left(D_{2}\right)$, prove that h induces a unique surjective proper homomorphism $h_{r}:\left(D_{1}\right)_{r} \rightarrow\left(D_{2}\right)_{r}$.
(d) Relax the condition that a DFA morphism $h: D_{1} \rightarrow D_{2}$ maps $q_{0,1}$ to $q_{0,2}$ (so, it is possible that $\left.h\left(q_{0,1}\right) \neq q_{0,2}\right)$, and call such a function a weak morphism. We have an obvious notion of weak F-map, weak B-map and weak proper homomorphism (by imposing condition (3a) or condition (3b), or (3c)). For any language, $L \subseteq \Sigma^{*}$ and any fixed string, $u \in \Sigma^{*}$, let $D_{u}(L)$, also denoted L / u (called the (left) derivative of L by u), be the language

$$
D_{u}(L)=\left\{v \in \Sigma^{*} \mid u v \in L\right\} .
$$

Prove the following facts, assuming that D_{2} is trim: If $h: D_{1} \rightarrow D_{2}$ is a weak F-map of DFA's, then $L\left(D_{1}\right) \subseteq D_{u}\left(L\left(D_{2}\right)\right)$, for some suitable $u \in \Sigma^{*}$. If $h: D_{1} \rightarrow D_{2}$ is a weak B-map of DFA's, then $D_{u}\left(L\left(D_{2}\right)\right) \subseteq L\left(D_{1}\right)$, for the same u as above. Finally, if $h: D_{1} \rightarrow D_{2}$ is a weak proper homomorphism of DFA's, then $L\left(D_{1}\right)=D_{u}\left(L\left(D_{2}\right)\right)$, for the same u as above.

Suppose there is a weak morphism $h: D_{1} \rightarrow D_{2}$. What can you say about the restriction of h to $\left(D_{1}\right)_{r}$? What can you say about surjectivity ? (you may need to consider $\left(D_{2}\right)_{r}$ with respect to a different start state). What happens (and what can you say) if D_{2} is not trim?

Problem B6 (70 pts). In this problem, all DFA's under consideration use the same alphabet Σ.
(a) Given any two DFA's D_{1} and D_{2}, prove that there is a DFA D and two DFA F-maps $\pi_{1}: D \rightarrow D_{1}$ and $\pi_{2}: D \rightarrow D_{2}$ such that the following universal mapping property of products holds: For any DFA M and any two DFA F-maps $f: M \rightarrow D_{1}$ and $g: M \rightarrow D_{2}$, there is a unique DFA F-map $h: M \rightarrow D$ such that

$$
f=\pi_{1} \circ h \quad \text { and } \quad g=\pi_{2} \circ h
$$

as shown in the diagram below:

Moreover, prove that π_{1} and π_{2} are surjective. Prove that D is unique up to a DFA F-map isomorphism. This means that if D^{\prime} is another DFA and if there are two DFA F-maps $\pi_{1}^{\prime}: D^{\prime} \rightarrow D_{1}$ and $\pi_{2}^{\prime}: D^{\prime} \rightarrow D_{2}$ such that the universal mapping property of products holds, then there are two unique DFA F-maps $\varphi: D \rightarrow D^{\prime}$ and $\varphi^{\prime}: D^{\prime} \rightarrow D$ so that $\varphi^{\prime} \circ \varphi=\mathrm{id}_{D}$, $\pi_{1}=\pi_{1}^{\prime} \circ \varphi, \pi_{2}=\pi_{2}^{\prime} \circ \varphi, \varphi \circ \varphi^{\prime}=\operatorname{id}_{D^{\prime}}, \pi_{1}^{\prime}=\pi_{1} \circ \varphi^{\prime}$ and $\pi_{2}^{\prime}=\pi_{2} \circ \varphi^{\prime}$. What is the language accepted by D ?

Remark: We call D the product of D_{1} and D_{2} and we denote it by $D_{1} \prod D_{2}$.
(b) Given any three DFA's D_{1}, D_{2}, and D_{3} and any two DFA F-maps $f: D_{1} \rightarrow D_{3}$ and $g: D_{2} \rightarrow D_{3}$, prove that there is a DFA D and two DFA F-maps $\pi_{1}: D \rightarrow D_{1}$ and $\pi_{2}: D \rightarrow D_{2}$ such that

$$
f \circ \pi_{1}=g \circ \pi_{2},
$$

as in the diagram below

and the following universal mapping property of fibred products holds: for any DFA M and any two DFA F-maps $f^{\prime}: M \rightarrow D_{1}$ and $g^{\prime}: M \rightarrow D_{2}$ such that

$$
f \circ f^{\prime}=g \circ g^{\prime},
$$

as in the diagram below

there is a unique DFA F-map $h: M \rightarrow D$ such that

$$
f^{\prime}=\pi_{1} \circ h \quad \text { and } \quad g^{\prime}=\pi_{2} \circ h,
$$

as in the diagram below

Prove that D is unique up to a DFA F-map isomorphism. This means that if D^{\prime} is another DFA and if there are two DFA F-maps $\pi_{1}^{\prime}: D^{\prime} \rightarrow D_{1}$ and $\pi_{2}^{\prime}: D^{\prime} \rightarrow D_{2}$ such that

$$
f \circ \pi_{1}^{\prime}=g \circ \pi_{2}^{\prime}
$$

and the universal mapping property of fibred products holds, then there are two unique DFA F-maps $\varphi: D \rightarrow D^{\prime}$ and $\varphi^{\prime}: D^{\prime} \rightarrow D$ so that $\varphi^{\prime} \circ \varphi=\mathrm{id}_{D} \pi_{1}=\pi_{1}^{\prime} \circ \varphi, \pi_{2}=\pi_{2}^{\prime} \circ \varphi$, $\varphi \circ \varphi^{\prime}=\operatorname{id}_{D^{\prime}}, \pi_{1}^{\prime}=\pi_{1} \circ \varphi^{\prime}$ and $\pi_{2}^{\prime}=\pi_{2} \circ \varphi^{\prime}$.

Remark: We denote D by $D_{1} \prod_{D_{3}} D_{2}$ and call it a fibred product of D_{1} and D_{2} over D_{3}, or a pullback of D_{1} and D_{2} over D_{3}.

If T is any one-state DFA accepting Σ^{*} (this single state is accepting), observe that there is a unique DFA F-map from every DFA D to T. Use this to show that if $D_{1} \prod D_{2}$ is the product DFA arising in (a), then

$$
D_{1} \prod D_{2}=D_{1} \prod_{T} D_{2}
$$

Extra Credit (40 points). Redo questions (a) and (b) for B-maps instead of F-maps.
Remark: If we dualize (b), i.e., turn the arrows around, we get the notion of fibred coproduct or pushout. It can be shown that fibred coproducts exist, both for F-maps and B-maps, but this is tricky.

TOTAL: 280 points +40 extra credit.

