Spring, 2014 CIS 511

Introduction to the Theory of Computation Jean Gallier
 Homework 1

January 21, 2014; Due February 4, 2014, beginning of class
"A problems" are for practice only, and should not be turned in.
Problem A1. Given an alphabet Σ, prove that the relation \leq_{1} over Σ^{*} defined such that $u \leq_{1} v$ iff u is a prefix of v, is a partial ordering. Prove that the relation \leq_{2} over Σ^{*} defined such that $u \leq_{2} v$ iff u is a substring of v, is a partial ordering.
Problem A2. Given an alphabet Σ, for any language $L \subseteq \Sigma^{*}$, prove that $L^{* *}=L^{*}$ and $L^{*} L^{*}=L^{*}$.

Problem A3. Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Prove that for all $p \in Q$ and all $u, v \in \Sigma^{*}$,

$$
\delta^{*}(p, u v)=\delta^{*}\left(\delta^{*}(p, u), v\right)
$$

"B problems" must be turned in.
Problem B1 (30 pts). Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Recall that a state $p \in Q$ is accessible or reachable iff there is some string $w \in \Sigma^{*}$, such that

$$
\delta^{*}\left(q_{0}, w\right)=p
$$

i.e., there is some path from q_{0} to p in D. Consider the following method for computing the set Q_{r} of reachable states (of D): define the sequence of sets $Q_{r}^{i} \subseteq Q$, where

$$
\begin{aligned}
& Q_{r}^{0}=\left\{q_{0}\right\} \\
& Q_{r}^{i+1}=\left\{q \in Q \mid \exists p \in Q_{r}^{i}, \exists a \in \Sigma, q=\delta(p, a)\right\}
\end{aligned}
$$

(i) Prove by induction on i that Q_{r}^{i} is the set of all states reachable from q_{0} using paths of length i (where i counts the number of edges).

Give an example of a DFA such that $Q_{r}^{i+1} \neq Q_{r}^{i}$ for all $i \geq 0$.
(ii) Give an example of a DFA such that $Q_{r}^{i} \neq Q_{r}$ for all $i \geq 0$.
(iii) Change the inductive definition of Q_{r}^{i} as follows:

$$
Q_{r}^{i+1}=Q_{r}^{i} \cup\left\{q \in Q \mid \exists p \in Q_{r}^{i}, \exists a \in \Sigma, q=\delta(p, a)\right\}
$$

Prove that there is a smallest integer i_{0} such that

$$
Q_{r}^{i_{0}+1}=Q_{r}^{i_{0}}=Q_{r}
$$

Define the DFA D_{r} as follows: $D_{r}=\left(Q_{r}, \Sigma, \delta_{r}, q_{0}, F \cap Q_{r}\right)$, where $\delta_{r}: Q_{r} \times \Sigma \rightarrow Q_{r}$ is the restriction of δ to Q_{r}. Explain why D_{r} is indeed a DFA, and prove that $L\left(D_{r}\right)=L(D)$. A DFA is said to be reachable, or trim, if $D=D_{r}$.

Problem B2 (50 pts). Given any two relatively prime integers $p, q \geq 1$, with $p \neq q$, (p and q are relatively prime iff their greatest common divisor is 1), consider the language $L=\left\{a^{p}, a^{q}\right\}^{*}$. Prove that

$$
\left\{a^{p}, a^{q}\right\}^{*}=\left\{a^{n} \mid n \geq(p-1)(q-1)\right\} \cup F,
$$

where F is some finite set of strings (of length $<(p-1)(q-1)$). Prove that L is a regular language.

Extra Credit (20 pts). Given any two relatively prime integers $p, q \geq 1$, with $p \neq q$, prove that $p q-p-q=(p-1)(q-1)-1$ is the largest integer not expressible as $p h+k q$ with $h, k \geq 0$.

Problem B3 (30 pts). Given any alphabet Σ, prove the following property: for any two strings $u, v \in \Sigma^{*}, u v=v u$ iff there is some $w \in \Sigma^{*}$ such that $u=w^{m}$ and $v=w^{n}$, for some $m, n \geq 0$.

Problem B4 (60 pts). Given any two DFA's $D_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0,1}, F_{1}\right)$ and
$D_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0,2}, F_{2}\right)$, a morphism $h: D_{1} \rightarrow D_{2}$ of DFA's is a function $h: Q_{1} \rightarrow Q_{2}$ satisfying the following two conditions:
(1) $h\left(\delta_{1}(p, a)\right)=\delta_{2}(h(p), a)$, for all $p \in Q_{1}$ and all $a \in \Sigma$;
(2) $h\left(q_{0,1}\right)=q_{0,2}$.

An F-map $h: D_{1} \rightarrow D_{2}$ of DFA's is a morphism satisfying the condition
(3a) $h\left(F_{1}\right) \subseteq F_{2}$.
A B-map $h: D_{1} \rightarrow D_{2}$ of DFA's is a morphism satisfying the condition
$(3 \mathrm{~b}) h^{-1}\left(F_{2}\right) \subseteq F_{1}$.
A proper homomorphism of DFA's is an F-map of DFA's which is also a B-map of DFA's, i.e. it satisfies the condition
(3c) $h^{-1}\left(F_{2}\right)=F_{1}$.

We say that a morphism (resp. F-map, resp. B-map) $h: D_{1} \rightarrow D_{2}$ is surjective if $h\left(Q_{1}\right)=Q_{2}$.
(a) Prove that if $f: D_{1} \rightarrow D_{2}$ and $g: D_{2} \rightarrow D_{3}$ are morphisms (resp. F-maps, resp B-maps) of DFAs, then $g \circ f: D_{1} \rightarrow D_{3}$ is also a morphism (resp. F-map, resp B-map) of DFAs.

Prove that if $f: D_{1} \rightarrow D_{2}$ is an F-map that is an isomorphism then it is also a B-map, and that if $f: D_{1} \rightarrow D_{2}$ is a B-map that is an isomorphism then it is also an F-map.
(b) If $h: D_{1} \rightarrow D_{2}$ is a morphism of DFA's, prove that

$$
h\left(\delta_{1}^{*}(p, w)\right)=\delta_{2}^{*}(h(p), w),
$$

for all $p \in Q_{1}$ and all $w \in \Sigma^{*}$.
As a consequence, prove the following facts:
If $h: D_{1} \rightarrow D_{2}$ is an F-map of DFA's, then $L\left(D_{1}\right) \subseteq L\left(D_{2}\right)$. If $h: D_{1} \rightarrow D_{2}$ is a B-map of DFA's, then $L\left(D_{2}\right) \subseteq L\left(D_{1}\right)$. Finally, if $h: D_{1} \rightarrow D_{2}$ is a proper homomorphism of DFA's, then $L\left(D_{1}\right)=L\left(D_{2}\right)$.
(c) Let D_{1} and D_{2} be DFA's and assume that there is a morphism $h: D_{1} \rightarrow D_{2}$. Prove that h induces a unique surjective morphism $h_{r}:\left(D_{1}\right)_{r} \rightarrow\left(D_{2}\right)_{r}$ (where $\left(D_{1}\right)_{r}$ and $\left(D_{2}\right)_{r}$ are the trim DFA's defined in problem B1). This means that if $h: D_{1} \rightarrow D_{2}$ and $h^{\prime}: D_{1} \rightarrow D_{2}$ are DFA morphisms, then $h(p)=h^{\prime}(p)$ for all $p \in\left(Q_{1}\right)_{r}$, and the restriction of h to $\left(D_{1}\right)_{r}$ is surjective onto $\left(D_{2}\right)_{r}$. Moreover, if $L\left(D_{1}\right)=L\left(D_{2}\right)$, prove that h induces a unique surjective proper homomorphism $h_{r}:\left(D_{1}\right)_{r} \rightarrow\left(D_{2}\right)_{r}$.
(d) Relax the condition that a DFA morphism $h: D_{1} \rightarrow D_{2}$ maps $q_{0,1}$ to $q_{0,2}$ (so, it is possible that $\left.h\left(q_{0,1}\right) \neq q_{0,2}\right)$, and call such a function a weak morphism. We have an obvious notion of weak F-map, weak B-map and weak proper homomorphism (by imposing condition (3a) or condition (3b), or (3c)). For any language, $L \subseteq \Sigma^{*}$ and any fixed string, $u \in \Sigma^{*}$, let $D_{u}(L)$, also denoted L / u (called the (left) derivative of L by u), be the language

$$
D_{u}(L)=\left\{v \in \Sigma^{*} \mid u v \in L\right\} .
$$

Prove the following facts, assuming that D_{2} is trim: If $h: D_{1} \rightarrow D_{2}$ is a weak F-map of DFA's, then $L\left(D_{1}\right) \subseteq D_{u}\left(L\left(D_{2}\right)\right)$, for some suitable $u \in \Sigma^{*}$. If $h: D_{1} \rightarrow D_{2}$ is a weak B-map of DFA's, then $D_{u}\left(L\left(D_{2}\right)\right) \subseteq L\left(D_{1}\right)$, for the same u as above. Finally, if $h: D_{1} \rightarrow D_{2}$ is a weak proper homomorphism of DFA's, then $L\left(D_{1}\right)=D_{u}\left(L\left(D_{2}\right)\right)$, for the same u as above.

Suppose there is a weak morphism $h: D_{1} \rightarrow D_{2}$. What can you say about the restriction of h to $\left(D_{1}\right)_{r}$? What can you say about surjectivity ? (you may need to consider $\left(D_{2}\right)_{r}$ with respect to a different start state). What happens (and what can you say) if D_{2} is not trim?

Problem B5 (50 pts). (Ultimate periodicity) A subset U of the set $\mathbb{N}=\{0,1,2,3, \ldots\}$ of natural numbers is ultimately periodic if there exist $m, p \in \mathbb{N}$, with $p \geq 1$, so that $n \in U$ iff $n+p \in U$, for all $n \geq m$.
(i) Prove that $U \subseteq \mathbb{N}$ is ultimately periodic iff either U is finite or there is a finite subset $F \subseteq \mathbb{N}$ and there are $k \leq p$ numbers m_{1}, \ldots, m_{k}, with $m_{1}<m_{2}<\cdots<m_{k}<m_{1}+p$, and with m_{1} the smallest element of U so that for some $p \geq 1, n \in U$ iff $n+p \in U$, for all $n \geq m_{1}$, so that

$$
U=F \cup \bigcup_{i=1}^{k}\left\{m_{i}+j p \mid j \in \mathbb{N}\right\}
$$

Give an example of an ultimately periodic set U such that m and p are not necessarily unique, i.e., U is ultimately periodic with respect to m_{1}, p_{1} and m_{2}, p_{2}, with $m_{1} \neq m_{2}$ and $p_{1} \neq p_{2}$.

Remark: A subset of \mathbb{N} of the form $\{m+i p \mid i \in \mathbb{N}\}$ (allowing $p=0$) is called a linear set, and a finite union of linear sets is called a semilinear set. Thus, (i) says that a set is ultimately periodic iff it is semilinear.
(ii) Let $L \subseteq\{a\}^{*}$ be a language over the one-letter alphabet $\{a\}$. Prove that L is a regular language iff the set $\left\{m \in \mathbb{N} \mid a^{m} \in L\right\}$ is ultimately periodic. Prove that the family of semilinear sets is closed under union, intersection and complementation (i.e., it is a boolean algebra).
(iii) Let $L \subseteq \Sigma^{*}$ be a regular language over any alphabet Σ (not necessarily consisting of a single letter). Prove that the set

$$
|L|=\{|w| \mid w \in L\}
$$

is ultimately periodic.
Problem B6 (70 pts). (a) Given any two DFA's D_{1} and D_{2}, prove that there is a DFA D and two DFA F-maps $\pi_{1}: D \rightarrow D_{1}$ and $\pi_{2}: D \rightarrow D_{2}$ such that the following universal mapping property of products holds: For any DFA M and any two DFA F-maps $f: M \rightarrow D_{1}$ and $g: M \rightarrow D_{2}$, there is a unique DFA F-map $h: M \rightarrow D$ such that

$$
f=\pi_{1} \circ h \quad \text { and } \quad g=\pi_{2} \circ h,
$$

as shown in the diagram below:

Moreover, prove that π_{1} and π_{2} are surjective. Prove that D is unique up to a DFA F-map isomorphism. This means that if D^{\prime} is another DFA and if there are two DFA F-maps $\pi_{1}^{\prime}: D^{\prime} \rightarrow D_{1}$ and $\pi_{2}^{\prime}: D^{\prime} \rightarrow D_{2}$ such that the universal mapping property of products holds,
then there are two unique DFA F-maps $\varphi: D \rightarrow D^{\prime}$ and $\varphi^{\prime}: D^{\prime} \rightarrow D$ so that $\varphi^{\prime} \circ \varphi=\operatorname{id}_{D}$, $\pi_{1}=\pi_{1}^{\prime} \circ \varphi, \pi_{2}=\pi_{2}^{\prime} \circ \varphi, \varphi \circ \varphi^{\prime}=\operatorname{id}_{D^{\prime}}, \pi_{1}^{\prime}=\pi_{1} \circ \varphi^{\prime}$ and $\pi_{2}^{\prime}=\pi_{2} \circ \varphi^{\prime}$. What is the language accepted by D ?

Remark: We call D the product of D_{1} and D_{2} and we denote it by $D_{1} \prod D_{2}$.
(b) Given any three DFA's D_{1}, D_{2}, and D_{3} and any two DFA F-maps $f: D_{1} \rightarrow D_{3}$ and $g: D_{2} \rightarrow D_{3}$, prove that there is a DFA D and two DFA F-maps $\pi_{1}: D \rightarrow D_{1}$ and $\pi_{2}: D \rightarrow D_{2}$ such that

$$
f \circ \pi_{1}=g \circ \pi_{2},
$$

as in the diagram below

and the following universal mapping property of fibred products holds: for any DFA M and any two DFA F-maps $f^{\prime}: M \rightarrow D_{1}$ and $g^{\prime}: M \rightarrow D_{2}$ such that

$$
f \circ f^{\prime}=g \circ g^{\prime},
$$

as in the diagram below

there is a unique DFA F-map $h: M \rightarrow D$ such that

$$
f^{\prime}=\pi_{1} \circ h \quad \text { and } \quad g^{\prime}=\pi_{2} \circ h,
$$

as in the diagram below

Prove that D is unique up to a DFA F-map isomorphism. This means that if D^{\prime} is another DFA and if there are two DFA F-maps $\pi_{1}^{\prime}: D^{\prime} \rightarrow D_{1}$ and $\pi_{2}^{\prime}: D^{\prime} \rightarrow D_{2}$ such that

$$
f \circ \pi_{1}^{\prime}=g \circ \pi_{2}^{\prime}
$$

and the universal mapping property of fibred products holds, then there are two unique DFA F-maps $\varphi: D \rightarrow D^{\prime}$ and $\varphi^{\prime}: D^{\prime} \rightarrow D$ so that $\varphi^{\prime} \circ \varphi=\operatorname{id}_{D} \pi_{1}=\pi_{1}^{\prime} \circ \varphi, \pi_{2}=\pi_{2}^{\prime} \circ \varphi$, $\varphi \circ \varphi^{\prime}=\operatorname{id}_{D^{\prime}}, \pi_{1}^{\prime}=\pi_{1} \circ \varphi^{\prime}$ and $\pi_{2}^{\prime}=\pi_{2} \circ \varphi^{\prime}$.

Remark: We denote D by $D_{1} \prod_{D_{3}} D_{2}$ and call it a fibred product of D_{1} and D_{2} over D_{3}, or a pullback of D_{1} and D_{2} over D_{3}.

If T is any one-state DFA accepting Σ^{*} (this single state is accepting), observe that there is a unique DFA F-map from every DFA D to T. Use this to show that if $D_{1} \prod D_{2}$ is the product DFA arising in (a), then

$$
D_{1} \prod D_{2}=D_{1} \prod_{T} D_{2}
$$

Extra Credit (40 points). Redo questions (a) and (b) for B-maps instead of F-maps.
Remark: If we dualize (b), i.e., turn the arrows around, we get the notion of fibred coproduct or pushout. It can be shown that fibred coproducts exist, both for F-maps and B-maps, but this is tricky.

TOTAL: $290+60$ points.

