Spring, 2014 CIS 511

Introduction to the Theory of Computation Jean Gallier

Homework 1

January 21, 2014; Due February 4, 2014, beginning of class

"A problems" are for practice only, and should not be turned in.

Problem A1. Given an alphabet Σ , prove that the relation \leq_1 over Σ^* defined such that $u \leq_1 v$ iff u is a prefix of v, is a partial ordering. Prove that the relation \leq_2 over Σ^* defined such that $u \leq_2 v$ iff u is a substring of v, is a partial ordering.

Problem A2. Given an alphabet Σ , for any language $L \subseteq \Sigma^*$, prove that $L^{**} = L^*$ and $L^*L^* = L^*$.

Problem A3. Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Prove that for all $p \in Q$ and all $u, v \in \Sigma^*$,

$$\delta^*(p, uv) = \delta^*(\delta^*(p, u), v).$$

"B problems" must be turned in.

Problem B1 (30 pts). Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Recall that a state $p \in Q$ is *accessible* or *reachable* iff there is some string $w \in \Sigma^*$, such that

$$\delta^*(q_0, w) = p,$$

i.e., there is some path from q_0 to p in D. Consider the following method for computing the set Q_r of reachable states (of D): define the sequence of sets $Q_r^i \subseteq Q$, where

$$\begin{split} &Q^0_r = \{q_0\},\\ &Q^{i+1}_r = \{q \in Q \mid \exists p \in Q^i_r, \exists a \in \Sigma, \; q = \delta(p,a)\}. \end{split}$$

(i) Prove by induction on i that Q_r^i is the set of all states reachable from q_0 using paths of length i (where i counts the number of edges).

Give an example of a DFA such that $Q_r^{i+1} \neq Q_r^i$ for all $i \ge 0$.

(ii) Give an example of a DFA such that $Q_r^i \neq Q_r$ for all $i \ge 0$.

(iii) Change the inductive definition of Q_r^i as follows:

$$Q_r^{i+1} = Q_r^i \cup \{q \in Q \mid \exists p \in Q_r^i, \exists a \in \Sigma, q = \delta(p, a)\}.$$

Prove that there is a smallest integer i_0 such that

$$Q_r^{i_0+1} = Q_r^{i_0} = Q_r.$$

Define the DFA D_r as follows: $D_r = (Q_r, \Sigma, \delta_r, q_0, F \cap Q_r)$, where $\delta_r \colon Q_r \times \Sigma \to Q_r$ is the restriction of δ to Q_r . Explain why D_r is indeed a DFA, and prove that $L(D_r) = L(D)$. A DFA is said to be *reachable*, or trim, if $D = D_r$.

Problem B2 (50 pts). Given any two relatively prime integers $p, q \ge 1$, with $p \ne q$, $(p \text{ and } q \text{ are relatively prime iff their greatest common divisor is 1}), consider the language <math>L = \{a^p, a^q\}^*$. Prove that

$$\{a^p, a^q\}^* = \{a^n \mid n \ge (p-1)(q-1)\} \cup F,\$$

where F is some finite set of strings (of length < (p-1)(q-1)). Prove that L is a regular language.

Extra Credit (20 pts). Given any two relatively prime integers $p, q \ge 1$, with $p \ne q$, prove that pq - p - q = (p - 1)(q - 1) - 1 is the largest integer not expressible as ph + kq with $h, k \ge 0$.

Problem B3 (30 pts). Given any alphabet Σ , prove the following property: for any two strings $u, v \in \Sigma^*$, uv = vu iff there is some $w \in \Sigma^*$ such that $u = w^m$ and $v = w^n$, for some $m, n \ge 0$.

Problem B4 (60 pts). Given any two DFA's $D_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ and $D_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$, a morphism $h: D_1 \to D_2$ of DFA's is a function $h: Q_1 \to Q_2$ satisfying the following two conditions:

- (1) $h(\delta_1(p, a)) = \delta_2(h(p), a)$, for all $p \in Q_1$ and all $a \in \Sigma$;
- (2) $h(q_{0,1}) = q_{0,2}$.

An F-map $h: D_1 \to D_2$ of DFA's is a morphism satisfying the condition

(3a) $h(F_1) \subseteq F_2$.

A B-map $h: D_1 \to D_2$ of DFA's is a morphism satisfying the condition

(3b) $h^{-1}(F_2) \subseteq F_1$.

A proper homomorphism of DFA's is an F-map of DFA's which is also a B-map of DFA's, i.e. it satisfies the condition

(3c) $h^{-1}(F_2) = F_1$.

We say that a morphism (resp. *F*-map, resp. *B*-map) $h: D_1 \to D_2$ is surjective if $h(Q_1) = Q_2$.

(a) Prove that if $f: D_1 \to D_2$ and $g: D_2 \to D_3$ are morphisms (resp. *F*-maps, resp *B*-maps) of DFAs, then $g \circ f: D_1 \to D_3$ is also a morphism (resp. *F*-map, resp *B*-map) of DFAs.

Prove that if $f: D_1 \to D_2$ is an *F*-map that is an isomorphism then it is also a *B*-map, and that if $f: D_1 \to D_2$ is a *B*-map that is an isomorphism then it is also an *F*-map.

(b) If $h: D_1 \to D_2$ is a morphism of DFA's, prove that

$$h(\delta_1^*(p, w)) = \delta_2^*(h(p), w)$$

for all $p \in Q_1$ and all $w \in \Sigma^*$.

As a consequence, prove the following facts:

If $h: D_1 \to D_2$ is an *F*-map of DFA's, then $L(D_1) \subseteq L(D_2)$. If $h: D_1 \to D_2$ is a *B*-map of DFA's, then $L(D_2) \subseteq L(D_1)$. Finally, if $h: D_1 \to D_2$ is a proper homomorphism of DFA's, then $L(D_1) = L(D_2)$.

(c) Let D_1 and D_2 be DFA's and assume that there is a morphism $h: D_1 \to D_2$. Prove that h induces a unique surjective morphism $h_r: (D_1)_r \to (D_2)_r$ (where $(D_1)_r$ and $(D_2)_r$ are the trim DFA's defined in problem B1). This means that if $h: D_1 \to D_2$ and $h': D_1 \to D_2$ are DFA morphisms, then h(p) = h'(p) for all $p \in (Q_1)_r$, and the restriction of h to $(D_1)_r$ is surjective onto $(D_2)_r$. Moreover, if $L(D_1) = L(D_2)$, prove that h induces a unique surjective proper homomorphism $h_r: (D_1)_r \to (D_2)_r$.

(d) Relax the condition that a DFA morphism $h: D_1 \to D_2$ maps $q_{0,1}$ to $q_{0,2}$ (so, it is possible that $h(q_{0,1}) \neq q_{0,2}$), and call such a function a *weak morphism*. We have an obvious notion of *weak F-map*, *weak B-map* and *weak proper homomorphism* (by imposing condition (3a) or condition (3b), or (3c)). For any language, $L \subseteq \Sigma^*$ and any fixed string, $u \in \Sigma^*$, let $D_u(L)$, also denoted L/u (called the *(left) derivative of L by u*), be the language

$$D_u(L) = \{ v \in \Sigma^* \mid uv \in L \}.$$

Prove the following facts, **assuming that** D_2 is trim: If $h: D_1 \to D_2$ is a weak *F*-map of DFA's, then $L(D_1) \subseteq D_u(L(D_2))$, for some suitable $u \in \Sigma^*$. If $h: D_1 \to D_2$ is a weak *B*-map of DFA's, then $D_u(L(D_2)) \subseteq L(D_1)$, for the same *u* as above. Finally, if $h: D_1 \to D_2$ is a weak proper homomorphism of DFA's, then $L(D_1) = D_u(L(D_2))$, for the same *u* as above.

Suppose there is a weak morphism $h: D_1 \to D_2$. What can you say about the restriction of h to $(D_1)_r$? What can you say about surjectivity ? (you may need to consider $(D_2)_r$ with respect to a **different** start state). What happens (and what can you say) if D_2 is **not** trim?

Problem B5 (50 pts). (Ultimate periodicity) A subset U of the set $\mathbb{N} = \{0, 1, 2, 3, ...\}$ of natural numbers is ultimately periodic if there exist $m, p \in \mathbb{N}$, with $p \ge 1$, so that $n \in U$ iff $n + p \in U$, for all $n \ge m$.

(i) Prove that $U \subseteq \mathbb{N}$ is ultimately periodic iff either U is finite or there is a finite subset $F \subseteq \mathbb{N}$ and there are $k \leq p$ numbers m_1, \ldots, m_k , with $m_1 < m_2 < \cdots < m_k < m_1 + p$, and with m_1 the smallest element of U so that for some $p \geq 1$, $n \in U$ iff $n + p \in U$, for all $n \geq m_1$, so that

$$U = F \cup \bigcup_{i=1}^{k} \{ m_i + jp \mid j \in \mathbb{N} \}.$$

Give an example of an ultimately periodic set U such that m and p are not necessarily unique, i.e., U is ultimately periodic with respect to m_1, p_1 and m_2, p_2 , with $m_1 \neq m_2$ and $p_1 \neq p_2$.

Remark: A subset of \mathbb{N} of the form $\{m + ip \mid i \in \mathbb{N}\}$ (allowing p = 0) is called a *linear* set, and a finite union of linear sets is called a *semilinear set*. Thus, (i) says that a set is ultimately periodic iff it is semilinear.

(ii) Let $L \subseteq \{a\}^*$ be a language over the one-letter alphabet $\{a\}$. Prove that L is a regular language iff the set $\{m \in \mathbb{N} \mid a^m \in L\}$ is ultimately periodic. Prove that the family of semilinear sets is closed under union, intersection and complementation (i.e., it is a boolean algebra).

(iii) Let $L \subseteq \Sigma^*$ be a regular language over any alphabet Σ (not necessarily consisting of a single letter). Prove that the set

$$|L| = \{|w| \mid w \in L\}$$

is ultimately periodic.

Problem B6 (70 pts). (a) Given any two DFA's D_1 and D_2 , prove that there is a DFA D and two DFA F-maps $\pi_1: D \to D_1$ and $\pi_2: D \to D_2$ such that the following universal mapping property of products holds: For any DFA M and any two DFA F-maps $f: M \to D_1$ and $g: M \to D_2$, there is a unique DFA F-map $h: M \to D$ such that

$$f = \pi_1 \circ h$$
 and $g = \pi_2 \circ h$,

as shown in the diagram below:

Moreover, prove that π_1 and π_2 are surjective. Prove that D is unique up to a DFA F-map isomorphism. This means that if D' is another DFA and if there are two DFA F-maps $\pi'_1: D' \to D_1$ and $\pi'_2: D' \to D_2$ such that the universal mapping property of products holds,

then there are two unique DFA *F*-maps $\varphi: D \to D'$ and $\varphi': D' \to D$ so that $\varphi' \circ \varphi = \mathrm{id}_D$, $\pi_1 = \pi'_1 \circ \varphi, \ \pi_2 = \pi'_2 \circ \varphi, \ \varphi \circ \varphi' = \mathrm{id}_{D'}, \ \pi'_1 = \pi_1 \circ \varphi' \text{ and } \pi'_2 = \pi_2 \circ \varphi'$. What is the language accepted by D?

Remark: We call D the product of D_1 and D_2 and we denote it by $D_1 \prod D_2$.

(b) Given any three DFA's D_1 , D_2 , and D_3 and any two DFA *F*-maps $f: D_1 \to D_3$ and $g: D_2 \to D_3$, prove that there is a DFA *D* and two DFA *F*-maps $\pi_1: D \to D_1$ and $\pi_2: D \to D_2$ such that

$$f \circ \pi_1 = g \circ \pi_2,$$

as in the diagram below

$$\begin{array}{c|c} D \xrightarrow{\pi_1} & D_1 \\ \pi_2 & & & \downarrow^f \\ D_2 \xrightarrow{g} & D_3 \end{array}$$

and the following universal mapping property of fibred products holds: for any DFA M and any two DFA F-maps $f': M \to D_1$ and $g': M \to D_2$ such that

$$f \circ f' = g \circ g',$$

as in the diagram below

$$\begin{array}{ccc} M & \stackrel{f'}{\longrightarrow} & D_1 \\ g' & & & \downarrow f \\ D_2 & \stackrel{g}{\longrightarrow} & D_3 \end{array}$$

there is a unique DFA F-map $h: M \to D$ such that

$$f' = \pi_1 \circ h$$
 and $g' = \pi_2 \circ h$,

as in the diagram below

Prove that D is unique up to a DFA F-map isomorphism. This means that if D' is another DFA and if there are two DFA F-maps $\pi'_1: D' \to D_1$ and $\pi'_2: D' \to D_2$ such that

$$f \circ \pi'_1 = g \circ \pi'_2$$

and the universal mapping property of fibred products holds, then there are two unique DFA *F*-maps $\varphi: D \to D'$ and $\varphi': D' \to D$ so that $\varphi' \circ \varphi = \operatorname{id}_D \pi_1 = \pi'_1 \circ \varphi, \ \pi_2 = \pi'_2 \circ \varphi, \ \varphi \circ \varphi' = \operatorname{id}_{D'}, \ \pi'_1 = \pi_1 \circ \varphi' \text{ and } \ \pi'_2 = \pi_2 \circ \varphi'.$

Remark: We denote D by $D_1 \prod_{D_3} D_2$ and call it a *fibred product of* D_1 *and* D_2 *over* D_3 , or a *pullback of* D_1 *and* D_2 *over* D_3 .

If T is any one-state DFA accepting Σ^* (this single state is accepting), observe that there is a unique DFA F-map from every DFA D to T. Use this to show that if $D_1 \prod D_2$ is the product DFA arising in (a), then

$$D_1 \prod D_2 = D_1 \prod_T D_2.$$

Extra Credit (40 points). Redo questions (a) and (b) for *B*-maps instead of *F*-maps.

Remark: If we dualize (b), i.e., turn the arrows around, we get the notion of *fibred coproduct* or *pushout*. It can be shown that fibred coproducts exist, both for F-maps and B-maps, but this is tricky.

TOTAL: 290 + 60 points.