Spring, 2013 CIS 511

Introduction to the Theory of Computation Jean Gallier

Final Exam

April 29, 2013

Note that this is a **closed-book exam Read** all the questions **before** starting solving any of them!

Problem 1 (10 pts). Given an alphabet Σ , sketch an algorithm to decide whether

$$R^*S^* = \Sigma^*,$$

for any two regular expressions R and S over Σ .

Problem 2 (20 pts). Let Σ be an alphabet. Recall that a binary relation, \sim , on Σ^* , is *left invariant* iff $u \sim v$ implies that $wu \sim wv$ for all $w \in \Sigma^*$ and *right invariant* iff $u \sim v$ implies that $uw \sim vw$ for all $w \in \Sigma^*$. An equivalence relation on Σ^* that is both left and right-invariant is called a *congruence*. Recall that a congruence satisfies the property: If $u \sim u'$ and $v \sim v'$, then $uv \sim u'v'$ (You **do not** have to prove this).

Given any regular language, L, over Σ^* let

 $L^{1/4} = \{ w \in \Sigma^* \mid wcwdwcw \in L \},\$

where $c, d \in \Sigma$ are some given letters. Prove that $L^{1/4}$ is also regular.

Problem 3 (25 pts).

Consider the language (over $\Sigma = \{a, b\}$)

$$L_1 = \{ w \in \{a, b\}^* \mid \#(a) = \#(b) \}$$

consisting of all strings having an equal number of a's and b's and the language

$$L'_1 = \{ w \in \{a, b\}^* \mid \#(b) > \#(a) \}$$

consisting of all strings having strictly more b's than a's.

(1) Prove that every nonempty string $w \in L_1$ is of the form

(1) w = aub, where $u \in L_1$ ($u = \epsilon$ is allowed);

- (2) w = bua, where $u \in L_1$ ($u = \epsilon$ is allowed);
- (3) w = uv, where $u, v \in L_1$, with $u, v \neq \epsilon$.

and that every nonempty string $w \in L_1'$ is of the form

- (1) w = bu, where $u \in L_1 \cup L'_1$ ($u = \epsilon$ is allowed);
- (2) w = uv, where $u \in L_1$ and $v \in L'_1$, with $u \neq \epsilon$.
 - (2) Using the above, give a context-free grammar for L'_1 .

Problem 4 (25 pts). Prove that the following languages are not context-free:

$$L_1 = \{ u_1 \# v_1 \# u_2 \# v_2 \mid |u_1| = |u_2|, |v_1| = |v_2|, u_1, u_2, v_1, v_2 \in \{a, b, c, d\}^+ \}, L_2 = \{ a^{n^2} \mid n \ge 1 \}.$$

Hint. To prove L_1 non context-free, you may want to consider the intersection of L_1 with a well chosen regular language.

Problem 5 (15 pts). Let $\{\varphi_i\}$ be an acceptable indexing of the partial recursive functions (over \mathbb{N}).

(1) Prove that the following sets are not recursive:

$$A = \{i \in \mathbb{N} \mid \varphi_i(0) = \varphi_a(0) \text{ and } \varphi_i(0), \varphi_a(0) \text{ are both defined} \}$$

$$B = \{i \in \mathbb{N} \mid \varphi_i(0) = \varphi_a(0) \text{ and } \varphi_i(1) = \varphi_a(1)\},$$

$$C = \{\langle i, j \rangle \in \mathbb{N} \mid \varphi_i(0) = \varphi_j(0) \text{ and } \varphi_i(1) = \varphi_j(1)\},$$

for some given partial recursive function, φ_a .

(2) Prove that A is recursively enumerable.

Problem 6 (25 pts). (i) Given any context-free language, $L \subseteq \{a, b\}^*$, is the following problem decidable:

 $L \subseteq a^*b^*a^*b^*?$

(ii) If $R \subseteq \{a\}^*$ is a regular language and $L \subseteq \Sigma^*$ is any context-free language, with $a \in \Sigma$, is it decidable whether

 $R \subseteq L?$

What if R is any regular language (not necessarily over the alphabet $\{a\}$)?