Spring, 2013 CIS 511

Introduction to the Theory of Computation Jean Gallier
 Final Exam

April 29, 2013

Note that this is a closed-book exam

Read all the questions before starting solving any of them!

Problem 1 (10 pts). Given an alphabet Σ, sketch an algorithm to decide whether

$$
R^{*} S^{*}=\Sigma^{*}
$$

for any two regular expressions R and S over Σ.
Problem $2(20 \mathrm{pts})$. Let Σ be an alphabet. Recall that a binary relation, \sim, on Σ^{*}, is left invariant iff $u \sim v$ implies that $w u \sim w v$ for all $w \in \Sigma^{*}$ and right invariant iff $u \sim v$ implies that $u w \sim v w$ for all $w \in \Sigma^{*}$. An equivalence relation on Σ^{*} that is both left and right-invariant is called a congruence. Recall that a congruence satisfies the property: If $u \sim u^{\prime}$ and $v \sim v^{\prime}$, then $u v \sim u^{\prime} v^{\prime}$ (You do not have to prove this).

Given any regular language, L, over Σ^{*} let

$$
L^{1 / 4}=\left\{w \in \Sigma^{*} \mid w c w d w c w \in L\right\}
$$

where $c, d \in \Sigma$ are some given letters. Prove that $L^{1 / 4}$ is also regular.
Problem 3 (25 pts).
Consider the language (over $\Sigma=\{a, b\}$)

$$
L_{1}=\left\{w \in\{a, b\}^{*} \mid \#(a)=\#(b)\right\}
$$

consisting of all strings having an equal number of a 's and b 's and the language

$$
L_{1}^{\prime}=\left\{w \in\{a, b\}^{*} \mid \#(b)>\#(a)\right\}
$$

consisting of all strings having strictly more b 's than a 's.
(1) Prove that every nonempty string $w \in L_{1}$ is of the form
(1) $w=a u b$, where $u \in L_{1}(u=\epsilon$ is allowed $)$;
(2) $w=b u a$, where $u \in L_{1}(u=\epsilon$ is allowed);
(3) $w=u v$, where $u, v \in L_{1}$, with $u, v \neq \epsilon$.
and that every nonempty string $w \in L_{1}^{\prime}$ is of the form
(1) $w=b u$, where $u \in L_{1} \cup L_{1}^{\prime}(u=\epsilon$ is allowed);
(2) $w=u v$, where $u \in L_{1}$ and $v \in L_{1}^{\prime}$, with $u \neq \epsilon$.
(2) Using the above, give a context-free grammar for L_{1}^{\prime}.

Problem 4 (25 pts). Prove that the following languages are not context-free:

$$
\begin{aligned}
L_{1} & =\left\{u_{1} \# v_{1} \# u_{2} \# v_{2}| | u_{1}\left|=\left|u_{2}\right|,\left|v_{1}\right|=\left|v_{2}\right|, u_{1}, u_{2}, v_{1}, v_{2} \in\{a, b, c, d\}^{+}\right\}\right. \\
L_{2} & =\left\{a^{n^{2}} \mid n \geq 1\right\}
\end{aligned}
$$

Hint. To prove L_{1} non context-free, you may want to consider the intersection of L_{1} with a well chosen regular language.

Problem 5 ($\mathbf{1 5} \mathbf{~ p t s) . ~ L e t ~}\left\{\varphi_{i}\right\}$ be an acceptable indexing of the partial recursive functions (over \mathbb{N}).
(1) Prove that the following sets are not recursive:

$$
\begin{aligned}
& A=\left\{i \in \mathbb{N} \mid \varphi_{i}(0)=\varphi_{a}(0) \quad \text { and } \quad \varphi_{i}(0), \varphi_{a}(0) \text { are both defined }\right\} \\
& B=\left\{i \in \mathbb{N} \mid \varphi_{i}(0)=\varphi_{a}(0) \quad \text { and } \quad \varphi_{i}(1)=\varphi_{a}(1)\right\}, \\
& C=\left\{\langle i, j\rangle \in \mathbb{N} \mid \varphi_{i}(0)=\varphi_{j}(0) \quad \text { and } \quad \varphi_{i}(1)=\varphi_{j}(1)\right\},
\end{aligned}
$$

for some given partial recursive function, φ_{a}.
(2) Prove that A is recursively enumerable.

Problem 6 (25 pts). (i) Given any context-free language, $L \subseteq\{a, b\}^{*}$, is the following problem decidable:
$L \subseteq a^{*} b^{*} a^{*} b^{*} ?$
(ii) If $R \subseteq\{a\}^{*}$ is a regular language and $L \subseteq \Sigma^{*}$ is any context-free language, with $a \in \Sigma$, is it decidable whether

$$
R \subseteq L ?
$$

What if R is any regular language (not necessarily over the alphabet $\{a\}$)?

