Announcements

• HW6: Analysis & Optimizations
 – Alias analysis, constant propagation, dead code elimination, register allocation
 – Due: Wednesday, April 25th
LOOPS AND DOMINATORS
Loops in Control-flow Graphs

• Taking into account loops is important for optimizations.
 – The 90/10 rule applies, so optimizing loop bodies is important

• Should we apply loop optimizations at the AST level or at a lower representation?
 – Loop optimizations benefit from other IR-level optimizations and vice-versa, so it is good to interleave them.

• Loops may be hard to recognize at the quadruple / LLVM IR level.
 – Many kinds of loops: while, do/while, for, continue, goto…

• Problem: How do we identify loops in the control-flow graph?
Definition of a Loop

• A *loop* is a set of nodes in the control flow graph.
 – One distinguished entry point called the *header*

• Every node is reachable from the header & the header is reachable from every node.
 – A loop is a *strongly connected component*

• No edges enter the loop except to the header
• Nodes with outgoing edges are called loop exit nodes
Nested Loops

- Control-flow graphs may contain many loops
- Loops may contain other loops:

Control Tree:

The control tree depicts the nesting structure of the program.
Control-flow Analysis

• Goal: Identify the loops and nesting structure of the CFG.

• Control flow analysis is based on the idea of dominators:
 • Node A dominates node B if the only way to reach B from the start node is through node A.

• An edge in the graph is a back edge if the target node dominates the source node.

• A loop contains at least one back edge.
Dominator Trees

- **Domination is transitive:**
 - if A dominates B and B dominates C then A dominates C
- **Domination is anti-symmetric:**
 - if A dominates B and B dominates A then A = B
- **Every flow graph has a dominator tree**
 - The Hasse diagram of the dominates relation
Dominator Dataflow Analysis

• We can define $\text{Dom}[n]$ as a forward dataflow analysis.
 – Using the framework we saw earlier: $\text{Dom}[n] = \text{out}[n]$ where:
• “A node B is dominated by another node A if A dominates all of the predecessors of B.”
 – $\text{in}[n] := \bigcap_{n' \in \text{pred}[n]} \text{out}[n']$
• “Every node dominates itself.”
 – $\text{out}[n] := \text{in}[n] \cup \{n\}$

• Formally: $\mathcal{L} = \text{set of nodes ordered by } \subseteq$
 – $T = \{\text{all nodes}\}$
 – $F_n(x) = x \cup \{n\}$
 – \sqcap is \cap

• Easy to show monotonicity and that F_n distributes over meet.
 – So algorithm terminates and is MOP
Improving the Algorithm

- Dom[b] contains just those nodes along the path in the dominator tree from the root to b:
 - e.g. Dom[8] = \{1,2,4,8\}, Dom[7] = \{1,2,4,5,7\}
 - There is a lot of sharing among the nodes

- More efficient way to represent Dom sets is to store the dominator tree.
 - doms[b] = immediate dominator of b

- To compute Dom[b] walk through doms[b]
- Need to efficiently compute intersections of Dom[a] and Dom[b]
 - Traverse up tree, looking for least common ancestor:

- See: “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and Kennedy
Completing Control-flow Analysis

• Dominator analysis identifies *back edges*:
 – Edge $n \to h$ where h dominates n

• Each back edge has a *natural loop*:
 – h is the header
 – All nodes reachable from h that also reach n without going through h

• For each back edge $n \to h$, find the natural loop:
 – $\{n' \mid n$ is reachable from n' in $G - \{h\}\} \cup \{h\}$

• Two loops may share the same header: merge them

• Nesting structure of loops is determined by set inclusion
 – Can be used to build the control tree
Example Natural Loops

Natural Loops

Control Tree:

The control tree depicts the nesting structure of the program.
Uses of Control-flow Information

• Loop nesting depth plays an important role in optimization heuristics.
 – Deeply nested loops pay off the most for optimization.

• Need to know loop headers / back edges for doing
 – loop invariant code motion
 – loop unrolling

• Dominance information also plays a role in converting to SSA form
 – Used internally by LLVM to do register allocation.
Phi nodes
Alloc “promotion”
Register allocation

REVISITING SSA
Single Static Assignment (SSA)

• LLVM IR names (via %uids) all intermediate values computed by the program.
• It makes the order of evaluation explicit.
• Each %uid is assigned to only once
 – Contrast with the mutable quadruple form
 – Note that dataflow analyses had these kill[n] sets because of updates to variables...
• Naïve implementation of backend: map %uids to stack slots
• Better implementation: map %uids to registers (as much as possible)

• Question: How do we convert a source program to make maximal use of %uids, rather than alloca-created storage?
 – two problems: control flow & location in memory

• Then: How do we convert SSA code to x86, mapping %uids to registers?
 – Register allocation.
Alloc vs. %UID

- Current compilation strategy:

```c
int x = 3;
int y = 0;
x = x + 1;
y = x + 2;
```

```assembly
%x = alloca i64
%y = alloca i64
store i64* %x, 3
store i64* %y, 0
%x1 = load %i64* %x
%tmp1 = add i64 %x1, 1
store i64* %x, %tmp1
%x2 = load %i64* %x
%tmp2 = add i64 %x2, 2
store i64* %y, %tmp2
```

- Directly map source variables into %uid?

```c
int x = 3;
int y = 0;
x = x + 1;
y = x + 2;
```

```assembly
%x1 = add i64 3, 0
%y1 = add i64 0, 0
%x2 = add i64 %x1, 1
%y2 = add i64 %x2, 2
```

- Does this always work?

Zdancewic CIS 341: Compilers
What about If-then-else?

- How do we translate this into SSA?

```c
int y = ...
int x = ...
int z = ...
if (p) {
    x = y + 1;
} else {
    x = y * 2;
}
z = x + 3;
```

- What do we put for ???

```plaintext
entry:
    %y1 = ...
    %x1 = ...
    %z1 = ...
    %p = icmp ...
    br i1 %p, label %then, label %else
then:
    %x2 = add i64 %y1, 1
    br label %merge
else:
    %x3 = mult i64 %y1, 2
merge:
    %z2 = %add i64 ???, 3
```
Phi Functions

• Solution: φ functions
 – Fictitious operator, used only for analysis
 • implemented by Mov at x86 level
 – Chooses among different versions of a variable based on the path by which control enters the phi node.
 \[%uid = phi <ty> v_1, <label_1>, ..., v_n, <label_n>\]

```c
int y = ...
int x = ...
int z = ...
if (p) {
    x = y + 1;
} else {
    x = y * 2;
}
z = x + 3;
```

```c
entry:
    %y1 = ...
    %x1 = ...
    %z1 = ...
    %p = icmp ...
    br il %p, label %then, label %else
then:
    %x2 = add i64 %y1, 1
    br label %merge
else:
    %x3 = mult i64 %y1, 2
merge:
    %x4 = phi i64 %x2, %then, %x3, %else
    %z2 = %add i64 %x4, 3
```
Phi Nodes and Loops

- Importantly, the %uids on the right-hand side of a phi node can be defined “later” in the control-flow graph.
 - Means that %uids can hold values “around a loop”
 - Scope of %uids is defined by dominance

```c
entry:
   %y1 = ...
   %x1 = ...
   br label %body

body:
   %x2 = phi i64 %x1, %entry, %x3, %body
   %x3 = add i64 %x2, %y1
   %p = icmp slt i64, %x3, 10
   br i1 %p, label %body, label %after

after:
   ...
```
Not all source variables can be allocated to registers

- If the address of the variable is taken (as permitted in C, for example)
- If the address of the variable “escapes” (by being passed to a function)

An alloca instruction is called promotable if neither of the two conditions above holds

- Happily, most local variables declared in source programs are promotable
 - That means they can be register allocated

```assembly
entry:
  %x = alloca i64  // %x cannot be promoted
  %y = call malloc(i64 8)
  %ptr = bitcast i8* %y to i64**
  store i65** %ptr, %x  // store the pointer into the heap

entry:
  %x = alloca i64  // %x cannot be promoted
  %y = call foo(i64* %x)  // foo may store the pointer into the heap
```
Converting to SSA: Overview

• Start with the ordinary control flow graph that uses allocas
 – Identify “promotable” allocas
• Compute dominator tree information
• Calculate def/use information for each such allocated variable
• Insert \(\phi \) functions for each variable at necessary “join points”

• Replace loads/stores to alloc’ed variables with freshly-generated %uids

• Eliminate the now unneeded load/store/alloca instructions.
Where to Place ϕ functions?

- Need to calculate the “Dominance Frontier”

- Node A **strictly dominates** node B if A dominates B and $A \neq B$.
 - Note: A does not strictly dominate B if A does not dominate B or $A = B$.

- The **dominance frontier** of a node B is the set of all CFG nodes y such that B dominates a predecessor of y but does not strictly dominate y
 - Intuitively: starting at B, there is a path to y, but there is another route to y that does not go through B

- Write $DF[n]$ for the dominance frontier of node n.
Dominance Frontiers

- Example of a dominance frontier calculation results
- \(\text{DF}[1] = \{1\}, \ \text{DF}[2] = \{1,2\}, \ \text{DF}[3] = \{2\}, \ \text{DF}[4] = \{1\}, \ \text{DF}[5] = \{8,0\}, \ \text{DF}[6] = \{8\}, \ \text{DF}[7] = \{7,0\}, \ \text{DF}[8] = \{0\}, \ \text{DF}[9] = \{7,0\}, \ \text{DF}[0] = \{\}\)
Algorithm For Computing DF[n]

- Assume that doms[n] stores the dominator tree (so that doms[n] is the immediate dominator of n in the tree)

- Adds each B to the DF sets to which it belongs

for all nodes B
 if #(pred[B]) \geq 2 // (just an optimization)
 for each p \in pred[B] {
 runner := p // start at the predecessor of B
 while (runner \neq doms[B]) // walk up the tree adding B
 DF[runner] := DF[runner] \cup \{B\}
 runner := doms[runner]
 }
Insert ϕ at Join Points

- Lift the $DF[n]$ to a set of nodes N in the obvious way:
 \[DF[N] = \bigcup_{n \in N} DF[n] \]
- Suppose that at variable x is defined at a set of nodes N.

 \[
 DF_0[N] = DF[N] \\
 DF_{i+1}[N] = DF[DF_i[N] \cup N]
 \]

 Let $J[N]$ be the least fixed point of the sequence:
 \[DF_0[N] \subseteq DF_1[N] \subseteq DF_2[N] \subseteq DF_3[N] \subseteq \ldots \]
 That is, $J[N] = DF_k[N]$ for some k such that $DF_k[N] = DF_{k+1}[N]$
 \[J[N] \] is called the “join points” for the set N

- We insert ϕ functions for the variable x at each node in $J[N]$.
 - $x = \phi(x, x, \ldots, x)$; (one “$x$” argument for each predecessor of the node)
 - In practice, $J[N]$ is never directly computed, instead you use a worklist algorithm that keeps adding nodes for $DF_k[N]$ until there are no changes, just as in the dataflow solver.

- Intuition:
 - If N is the set of places where x is modified, then $DF[N]$ is the places where phi nodes need to be added, but those also “count” as modifications of x, so we need to insert the phi nodes to capture those modifications too…
Example Join-point Calculation

- Suppose the variable x is modified at nodes 3 and 6
 - Where would we need to add phi nodes?

- \(DF_0[\{3,6\}] = DF[\{3,6\}] = DF[3] \cup DF[6] = \{2,8\} \)
- \(DF_1[\{3,6\}]
 = DF[DF_0[\{3,6\}] \cup \{3,6\}]
 = DF[\{2,3,6,8\}]
 = \{1,2\} \cup \{2\} \cup \{8\} \cup \{0\} = \{1,2,8,0\} \)
- \(DF_2[\{3,6\}]
 = ...
 = \{1,2,8,0\} \)

- So \(J[\{3,6\}] = \{1,2,8,0\} \) and we need to add phi nodes at those four spots.
Phi Placement Alternative

• Less efficient, but easier to understand:

• Place phi nodes "maximally" (i.e. at every node with > 2 predecessors)

• If all values flowing into phi node are the same, then eliminate it:
 \%
 \text{x} = \text{phi} \ t \ \%
 \text{y}, \ %\text{pred1} \ t \ %\text{y} \ %\text{pred2} \ ... \ t \ %\text{y} \ %\text{predK}
 \text{// code that uses \%x}
 \Rightarrow
 \text{// code with \%x replaced by \%y}

• Interleave with other optimizations
 – copy propagation
 – constant propagation
 – etc.
Example SSA Optimizations

- How to place phi nodes without breaking SSA?
 - Note: the “real” implementation combines many of these steps into one pass.
 - Places phis directly at the dominance frontier
- This example also illustrates other common optimizations:
 - Load after store/alloca
 - Dead store/alloca elimination

```c
l_1: %p = alloca i64
     store 0, %p
     %b = %y > 0
     br %b, %l_2, %l_3

l_2:
     store 1, %p
     br %l_3

l_3:
     %x = load %p
     ret %x
```
Example SSA Optimizations

- How to place phi nodes without breaking SSA?
- Insert
 - Loads at the end of each block

```
l_1: %p = alloca i64
    store 0, %p
    %b = %y > 0
    %x_1 = load %p
    br %b, %l_2, %l_3

l_2:
    store 1, %p
    %x_2 = load %p
    br %l_3

l_3:
    %x = load %p
    ret %x
```
Example SSA Optimizations

• How to place phi nodes without breaking SSA?

• Insert
 – Loads at the end of each block
 – Insert ϕ-nodes at each block

```assembly
l_1: %p = alloca i64
    store 0, %p
    %b = %y > 0
    %x_1 = load %p
    br %b, %l_2, %l_3

l_2: %x_3 = $\phi$[%x_1, %l_1]
    store 1, %p
    %x_2 = load %p
    br %l_3

l_3: %x_4 = $\phi$[%x_1, %l_1, %x_2:%l_2]
    %x = load %p
    ret %x
```
Example SSA Optimizations

• How to place phi nodes without breaking SSA?

• Insert
 – Loads at the end of each block
 – Insert \(\phi \)-nodes at each block
 – Insert stores after \(\phi \)-nodes

\[
\begin{align*}
l_1: & \quad \%p = \text{alloca} \ i64 \\
& \quad \text{store} \ 0, \ %p \\
& \quad \%b = \%y > 0 \\
& \quad \%x_1 = \text{load} \ %p \\
& \quad \text{br} \ %b, \ %l_2, \ %l_3 \\
l_2: & \quad \%x_3 = \phi[\%x_1, %l_1] \\
& \quad \text{store} \ %x_3, \ %p \\
& \quad \text{store} \ 1, \ %p \\
& \quad \%x_2 = \text{load} \ %p \\
& \quad \text{br} \ %l_3 \\
l_3: & \quad \%x_4 = \phi[\%x_1; %l_1, \%x_2; %l_2] \\
& \quad \text{store} \ %x_4, \ %p \\
& \quad \%x = \text{load} \ %p \\
& \quad \text{ret} \ %x
\end{align*}
\]
Example SSA Optimizations

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

```asm
l_1: %p = alloca i64
    store 0, %p
    %b = %y > 0
    %x_1 = load %p
    br %b, %l_2, %l_3

l_2: %x_3 = phi[%(x_1), %l_1]
    store %x_3, %p
    store 1, %p
    %x_2 = load %p
    br %l_3

l_3: %x_4 = phi[%(x_1), %l_1, %x_2, %l_2]
    store %x_4, %p
    %x = load %p
    ret %x
```
Example SSA Optimizations

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

```c
l_1: %p = alloca i64
     store 0, %p
     %b = %y > 0
     %x_1 = load %p
     br %b, %l_2, %l_3

l_2: %x_3 = phi [%x_1, %l_1]
     store %x_3, %p
     store 1, %p
     %x_2 = load %p
     br %l_3

l_3: %x_4 = phi [%x_1, %l_1, %x_2:%l_2]
     store %x_4, %p
     %x = load %p
     ret %x
```
Example SSA Optimizations

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

```c
l_1: %p = alloca i64
    store 0, %p
    %b = %b > 0
    %x_1 = load %p
    br %b, %l_2, %l_3

l_2: %x_3 = φ[0, %l_1]
    store %x_3, %p
    store 1, %p
    %x_2 = load %p
    br %l_3

l_3: %x_4 = φ[0; %l_1, %x_2; %l_2]
    store %x_4, %p
    %x = load %p
    ret %x
```
Example SSA Optimizations

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

```
// SSA code after optimizations
l1: %p = alloc i64
    store 0, %p
    %b = %y > 0
    br %b, %l2, %l3

l2: %x3 = φ[0, %l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3

l3: %x4 = φ[0; %l1, %x2, %l2]
    store %x4, %p
    %x = load %p
    ret %x
```
Example SSA Optimizations

For loads after stores (LAS):
- Substitute all uses of the load by the value being stored
- Remove the load

```c
l_1: %p = alloca i64
  store 0, %p
  %b = %y > 0
  br %b, %l_2, %l_3

l_2: %x_3 = φ[0,%l_1]
  store %x_3, %p
  store 1, %p
  %x_2 = load %p
  br %l_3

l_3: %x_4 = φ[0;%l_1, 1;%l_2]
  store %x_4, %p
  %x = load %p
  ret %x
```
Example SSA Optimizations

For loads after stores (LAS):
- Substitute all uses of the load by the value being stored
- Remove the load

```
l_1: %p = alloca i64
    store 0, %p
    %b = %y > 0
    br %b, %l_2, %l_3

l_2: %x_3 = phi[0, %l_1]
    store %x_3, %p
    store 1, %p
    br %l_3

l_3: %x_4 = phi[0; %l_1, 1:%l_2]
    store %x_4, %p
    %x = load %p
    ret %x
```
Example SSA Optimizations

For loads after stores (LAS):
- Substitute all uses of the load by the value being stored
- Remove the load

l₁: %p = alloca i64
 store 0, %p
 %b = %y > 0
 br %b, %l₂, %l₃

l₂: %x₃ = φ[0, %l₁]
 store %x₃, %p
 store 1, %p
 br %l₃

l₃: %x₄ = φ[0: %l₁, 1: %l₂]
 store %x₄, %p
 %x = load %p
 ret %x₄

Find alloca
max φs
LAS/LAA
DSE
DAE
elim φs
Example SSA Optimizations

- Dead Store Elimination (DSE)
 - Eliminate all stores with no subsequent loads.

- Dead Alloca Elimination (DAE)
 - Eliminate all allocas with no subsequent loads/stores.
Example SSA Optimizations

- **Dead Store Elimination (DSE)**
 - Eliminate all stores with no subsequent loads.

- **Dead Alloca Elimination (DAE)**
 - Eliminate all allocas with no subsequent loads/stores.

```c
l₁:  %p = alloca i64
   store 0, %p
   %b = %y > 0
   br %b, %l₂, %l₃

l₂:  %x₃ = φ[0,%l₁]
   store %x₃, %p
   store 1, %p
   br %l₃

l₃:  %x₄ = φ[0;%l₁, 1;%l₂]
   store %x₄, %p
   ret %x₄
```

Find alloca

Find alloca

max φs

max φs

LAS/LAA

LAS/LAA

DSE

DSE

DAE

DAE

elim φs

elim φs
Example SSA Optimizations

\[l_1: \]
\[\%b = \%y > 0 \]
\[\text{br } \%b, \%l_2, \%l_3 \]

\[l_2: \%x_3 = \phi[0,\%l_1] \]
\[\text{br } \%l_3 \]

\[l_3: \%x_4 = \phi[0;\%l_1, 1:\%l_2] \]
\[\text{ret } \%x_4 \]

- Eliminate \(\phi \) nodes:
 - Singletons
 - With identical values from each predecessor
 - See Aycock & Horspool, 2002
Example SSA Optimizations

l_1:
\[
%b = %y > 0 \\
br %b, %l_2, %l_3
\]

l_2:
\[
%x_3 = \phi[0, %l_1]
\]

br %l_3

l_3:
\[
%x_4 = \phi[0; %l_1, 1:%l_2]
\]

ret %x_4

- Eliminate ϕ nodes:
 - Singletons
 - With identical values from each predecessor
Example SSA Optimizations

\[l_1: \]
\[%b = %y > 0 \]
\[\text{br } %b, %l_2, %l_3 \]

\[l_2: \]
\[\text{br } %l_3 \]

\[l_3: %x_4 = \phi[0; %l_1, 1:%l_2] \]
\[\text{ret } %x_4 \]

- Done!

- Find alloca
- max \(\phi \)s
- LAS/LAA
- DSE
- DAE
- elim \(\phi \)
LLVM Phi Placement

- This transformation is also sometimes called register promotion
 - older versions of LLVM called this “mem2reg” memory to register promotion

- In practice, LLVM combines this transformation with *scalar replacement of aggregates* (SROA)
 - i.e. transforming loads/stores of structured data into loads/stores on register-sized data

- These algorithms are (one reason) why LLVM IR allows annotation of predecessor information in the .ll files
 - Simplifies computing the DF