Lecture 10
CIS 341: COMPILERS
Announcements

• **Homework 3:** Compiling LLVMlite

• **Goal:**
 – Familiarize yourself with (a subset of) the LLVM IR
 – Implement a translation down to (inefficient) X86lite

• **Due:** Monday, Feb. 26th

MIDTERM EXAM

– **Thursday, March 1st in class**

– Coverage: interpreters / program transformers / x86 / calling conventions / IRs / LLVM / Lexing / Parsing

– See examples on the web pages

\textbf{it is nearly too late to}

\textit{START EARLY!!}
Creating an abstract representation of program syntax.
Today: Parsing

Source Code
(Character stream)
if (b == 0) { a = 1; }

Token stream:
if (b == 0) { a = 0 ; }

Abstract Syntax Tree:
If
 Eq
 Assn
 None
 b
 0
 a
 1

Intermediate code:
l1:
 %cnd = icmp eq i64 %b, 0
 br i1 %cnd, label %l2, label %l3
l2:
 store i64* %a, 1
 br label %l3
l3:

Assembly Code
l1:
 cmpq %eax, $0
 jeq l2
 jmp l3
l2:
 ...

Lexical Analysis

Parsing

Analysis & Transformation

Backend
{
 if (b == 0) a = b;
 while (a != 1) {
 print_int(a);
 a = a - 1;
 }
}

Source input

Abstract Syntax tree
Syntactic Analysis (Parsing): Overview

• **Input:** stream of tokens (generated by lexer)
• **Output:** abstract syntax tree

• **Strategy:**
 – Parse the token stream to traverse the “concrete” syntax
 – During traversal, build a tree representing the “abstract” syntax

• **Why abstract?** Consider these three different concrete inputs:

 \[
 a + b \\
 (a + ((b))) \\
 ((a) + (b))
 \]

 ![Same abstract syntax tree](image)

• **Note:** parsing doesn’t check many things:
 – Variable scoping, type agreement, initialization, …
Specifying Language Syntax

• First question: how to describe language syntax precisely and conveniently?

• Last time: we described tokens using regular expressions
 – Easy to implement, efficient DFA representation
 – Why not use regular expressions on tokens to specify programming language syntax?

• Limits of regular expressions:
 – DFA’s have only finite # of states
 – So… DFA’s can’t “count”
 – For example, consider the language of all strings that contain balanced parentheses – easier than most programming languages, but not regular.

• So: we need more expressive power than DFA’s
CONTEXT FREE GRAMMARS
Context-free Grammars

• Here is a specification of the language of balanced parens:

\[
S \rightarrow (S)S \\
S \rightarrow \epsilon
\]

• The definition is recursive – S mentions itself.

• Idea: “derive” a string in the language by starting with S and rewriting according to the rules:
 – Example: \[S \rightarrow (S)S \rightarrow ((S)S)S \rightarrow (((S)S)S) \rightarrow (((S)S)S) \rightarrow (((S)S)S) \epsilon \rightarrow (((S)S)S) \epsilon = (())\]

• You can replace the “nonterminal” S by its definition anywhere

• A context-free grammar accepts a string iff there is a derivation from the start symbol

Note: Once again we have to take care to distinguish meta-language elements (e.g. “S” and “\[\rightarrow\]”) from object-language elements (e.g. “(”).

* And, since we’re writing this description in English, we are careful distinguish the meta-meta-language (e.g. words) from the meta-language and object-language (e.g. symbols) by using quotes.
• A Context-free Grammar (CFG) consists of
 – A set of *terminals* (e.g., a lexical token or ε)
 – A set of *nonterminals* (e.g., S and other syntactic variables)
 – A designated nonterminal called the *start symbol*
 – A set of productions: $LHS \rightarrow RHS$
 • LHS is a nonterminal
 • RHS is a *string* of terminals and nonterminals

• Example: The balanced parentheses language:

 $S \rightarrow (S)S$
 $S \rightarrow \varepsilon$

• How many terminals? How many nonterminals? Productions?
Another Example: Sum Grammar

- A grammar that accepts parenthesized sums of numbers:

\[
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S)
\]

e.g.: \((1 + 2 + (3 + 4)) + 5\)

- Note the vertical bar ‘|’ is shorthand for multiple productions:

- 4 productions
- 2 nonterminals: S, E
- 4 terminals: (,), +, number
- Start symbol: S
Derivations in CFGs

- Example: derive \((1 + 2 + (3 + 4)) + 5\)

\[
\begin{align*}
S & \rightarrow E + S \\
& \rightarrow (S) + S \\
& \rightarrow (E + S) + S \\
& \rightarrow (1 + S) + S \\
& \rightarrow (1 + E + S) + S \\
& \rightarrow (1 + 2 + S) + S \\
& \rightarrow (1 + 2 + E) + S \\
& \rightarrow (1 + 2 + (S)) + S \\
& \rightarrow (1 + 2 + (E + S)) + S \\
& \rightarrow (1 + 2 + (3 + S)) + S \\
& \rightarrow (1 + 2 + (3 + E)) + S \\
& \rightarrow (1 + 2 + (3 + 4)) + S \\
& \rightarrow (1 + 2 + (3 + 4)) + E \\
& \rightarrow (1 + 2 + (3 + 4)) + 5
\end{align*}
\]

For arbitrary strings \(\alpha, \beta, \gamma\) and production rule \(A \rightarrow \beta\)

a single step of the derivation is:

\[
\alpha A \gamma \rightarrow \alpha \beta \gamma
\]

(\textit{substitute} \(\beta\) for an occurrence of \(A\))

In general, there are many possible derivations for a given string

Note: Underline indicates symbol being expanded.
From Derivations to Parse Trees

• Tree representation of the derivation

• Leaves of the tree are terminals
 – In-order traversal yields the input sequence of tokens

• Internal nodes: nonterminals

• No information about the order of the derivation steps

• \((1 + 2 + (3 + 4)) + 5\)
From Parse Trees to Abstract Syntax

• **Parse tree:**
 “concrete syntax”

• **Abstract syntax tree** (AST):

 - Hides, or *abstracts*, unneeded information.
Derivation Orders

• Productions of the grammar can be applied in any order.
• There are two standard orders:
 – *Leftmost derivation*: Find the left-most nonterminal and apply a production to it.
 – *Rightmost derivation*: Find the right-most nonterminal and apply a production there.

• Note that both strategies (and any other) yield the same parse tree!
 – Parse tree doesn’t contain the information about what order the productions were applied.
Example: Left- and rightmost derivations

- Leftmost derivation:
 - $S \rightarrow E + S$
 - $\rightarrow (S) + S$
 - $\rightarrow (E + S) + S$
 - $\rightarrow (1 + S) + S$
 - $\rightarrow (1 + E + S) + S$
 - $\rightarrow (1 + 2 + S) + S$
 - $\rightarrow (1 + 2 + E) + S$
 - $\rightarrow (1 + 2 + (S)) + S$
 - $\rightarrow (1 + 2 + (E + S)) + S$
 - $\rightarrow (1 + 2 + (3 + S)) + S$
 - $\rightarrow (1 + 2 + (3 + E)) + S$
 - $\rightarrow (1 + 2 + (3 + 4)) + S$
 - $\rightarrow (1 + 2 + (3 + 4)) + E$
 - $\rightarrow (1 + 2 + (3 + 4)) + 5$

- Rightmost derivation:
 - $S \rightarrow E + S$
 - $\rightarrow E + E$
 - $\rightarrow E + 5$
 - $\rightarrow (S) + 5$
 - $\rightarrow (E + S) + 5$
 - $\rightarrow (E + E + S) + 5$
 - $\rightarrow (E + E + E) + 5$
 - $\rightarrow (E + E + (S)) + 5$
 - $\rightarrow (E + E + (E + S)) + 5$
 - $\rightarrow (E + E + (E + E)) + 5$
 - $\rightarrow (E + E + (E + 4)) + 5$
 - $\rightarrow (E + E + (3 + 4)) + 5$
 - $\rightarrow (E + 2 + (3 + 4)) + 5$
 - $\rightarrow (1 + 2 + (3 + 4)) + 5$
Loops and Termination

• Some care is needed when defining CFGs
• Consider:

 $S \rightarrow E$

 $E \rightarrow S$

 – This grammar has nonterminal definitions that are “nonproductive”. (i.e. they don’t mention any terminal symbols)
 – There is no finite derivation starting from S, so the language is empty.

• Consider:

 $S \rightarrow (S)$

 – This grammar is productive, but again there is no finite derivation starting from S, so the language is empty

• Easily generalize these examples to a “chain” of many nonterminals, which can be harder to find in a large grammar

• Upshot: be aware of “vacuously empty” CFG grammars.
 – Every nonterminal should eventually rewrite to an alternative that contains only terminal symbols.
Associativity, ambiguity, and precedence.
Consider the input: \(1 + 2 + 3\)

Leftmost derivation:
\[
S \rightarrow E + S \\
\quad \rightarrow 1 + S \\
\quad \rightarrow 1 + E + S \\
\quad \rightarrow 1 + 2 + S \\
\quad \rightarrow 1 + 2 + E \\
\quad \rightarrow 1 + 2 + 3
\]

Rightmost derivation:
\[
S \rightarrow E + S \\
\quad \rightarrow E + E + S \\
\quad \rightarrow E + E + E \\
\quad \rightarrow E + E \\
\quad \rightarrow E + 2 + 3 \\
\quad \rightarrow 1 + 2 + 3
\]

Parse Tree
Associativity

- This grammar makes ‘+’ *right associative*…
- The abstract syntax tree is the same for both $1 + 2 + 3$ and $1 + (2 + 3)$
- Note that the grammar is *right recursive*…

$$
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S)
$$

- How would you make ‘+’ left associative?
- What are the trees for “$1 + 2 + 3$”?
Ambiguity

- Consider this grammar:

\[S \rightarrow S + S \mid (S) \mid \text{number} \]

- Claim: it accepts the same set of strings as the previous one.
- What's the difference?
- Consider these two leftmost derivations:
 - \[S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S + S \rightarrow 1 + 2 + S \rightarrow 1 + 2 + 3 \]
 - \[S \rightarrow S + S \rightarrow S + S + S \rightarrow 1 + S + S \rightarrow 1 + 2 + S \rightarrow 1 + 2 + 3 \]

- One derivation gives left associativity, the other gives right associativity to ‘+’
 - Which is which?
Why do we care about ambiguity?

• The `+` operation is associative, so it doesn’t matter which tree we pick. Mathematically, \(x + (y + z) = (x + y) + z \)
 – But, some operations aren’t associative. Examples?
 – Some operations are only left (or right) associative. Examples?

• Moreover, if there are multiple operations, ambiguity in the grammar leads to ambiguity in their precedence

• Consider:

 \[
 S \rightarrow S + S \mid S * S \mid (S) \mid \text{number}
 \]

• Input: \(1 + 2 * 3 \)
 – One parse = \((1 + 2) * 3 = 9\)
 – The other = \(1 + (2 * 3) = 7\)
Eliminating Ambiguity

- We can often eliminate ambiguity by adding nonterminals and allowing recursion only on the left (or right).
- Higher-precedence operators go *farther* from the start symbol.
- Example:

 \[
 S \rightarrow S + S \mid S \times S \mid (S) \mid \text{number}
 \]

- To disambiguate:
 - Decide (following math) to make ‘*’ higher precedence than ‘+’
 - Make ‘+’ left associative
 - Make ‘*’ right associative

- Note:
 - \(S_2\) corresponds to ‘atomic’ expressions

\[
\begin{align*}
S_0 & \rightarrow S_0 + S_1 \mid S_1 \\
S_1 & \rightarrow S_2 \times S_1 \mid S_2 \\
S_2 & \rightarrow \text{number} \mid (S_0)
\end{align*}
\]
Context-Free Grammars: Summary

- Context-free grammars allow concise specifications of programming languages.
 - An unambiguous CFG specifies how to parse: convert a token stream to a (parse tree)
 - Ambiguity can (often) be removed by encoding precedence and associativity in the grammar.

- Even with an unambiguous CFG, there may be more than one derivation
 - Though all derivations correspond to the same abstract syntax tree.

- Still to come: finding a derivation
 - But first: menhir
DEMO: BOOLEAN LOGIC

parser.mly, lexer.mll, range.ml, ast.ml, main.ml