Contents

1 Introduction 5

2 Regular Languages, Minimization of DFA’s 7
 2.1 The Closure Definition of the Regular Languages 7
 2.2 Right-Invariant Equivalence Relations on Σ^* 10
 2.3 Finding minimal DFA’s 22
 2.4 State Equivalence and Minimal DFA’s 24
 2.5 A Fast Algorithm for Checking State Equivalence 33

3 Context-Free Grammars And Languages 45
 3.1 Context-Free Grammars 45
 3.2 Derivations and Context-Free Languages 46
 3.3 Normal Forms for Context-Free Grammars 52
 3.4 Regular Languages are Context-Free 59
 3.5 Useless Productions in Context-Free Grammars 60
 3.6 The Greibach Normal Form 62
 3.7 Least Fixed-Points 63
 3.8 Context-Free Languages as Least Fixed-Points 65
 3.9 Least Fixed-Points and the Greibach Normal Form 69
 3.10 Tree Domains and Gorn Trees 74
 3.11 Derivations Trees 77
 3.12 Ogden’s Lemma 79

4 A Survey of LR-Parsing Methods 87
 4.1 $LR(0)$-Characteristic Automata 87
 4.2 Shift/Reduce Parsers 93
 4.3 Computation of FIRST 95
 4.4 The Intuition Behind the Shift/Reduce Algorithm 96
 4.5 The Graph Method for Computing Fixed Points 97
 4.6 Computation of FOLLOW 99
 4.7 Algorithm $Traverse$ 100
 4.8 More on $LR(0)$-Characteristic Automata 100
 4.9 LALR(1)-Lookahead Sets 102
4.10 Computing FIRST, FOLLOW, etc. in the Presence of \(\epsilon \)-Rules 104
4.11 \(LR(1) \)-Characteristic Automata 110

5 RAM Programs, Turing Machines 115

6 Universal RAM Programs and the Halting Problem 117
6.1 Pairing Functions 117
6.2 Equivalence of Alphabets 119
6.3 Coding of RAM Programs 123
6.4 Kleene’s \(T \)-Predicate 129

7 Elementary Recursive Function Theory 133
7.1 Acceptable Indexings 133
7.2 Undecidable Problems 136
7.3 Recursively Enumerable Sets 141
7.4 Reducibility and Complete Sets 145
7.5 The Recursion Theorem 149
7.6 Extended Rice Theorem 153
7.7 Creative and Productive Sets 156
Chapter 1

Introduction

The theory of computation is concerned with algorithms and algorithmic systems: their design and representation, their completeness, and their complexity.

The purpose of these notes is to introduce some of the basic notions of the theory of computation, including concepts from formal languages and automata theory, and the theory of computability and some basics of recursive function theory. Other topics such as correctness of programs and computational complexity will not be treated here (there just isn’t enough time!).

The notes are divided into two parts. The first part is devoted to formal languages and automata. The second part deals with models of computation, recursive functions, and undecidability.
Chapter 2

Regular Languages and Equivalence Relations, The Myhill-Nerode Characterization, State Equivalence

2.1 The Closure Definition of the Regular Languages

Let \(\Sigma = \{a_1, \ldots, a_m\} \) be some alphabet. We would like to define a family of languages, \(R(\Sigma) \), by singling out some very basic (atomic) languages, namely the languages \(\{a_1\}, \ldots, \{a_m\} \), the empty language, and the trivial language, \(\{\epsilon\} \), and then forming more complicated languages by repeatedly forming union, concatenation and Kleene * of previously constructed languages. By doing so, we hope to get a family of languages \(R(\Sigma) \) that is closed under union, concatenation, and Kleene *. This means that for any two languages, \(L_1, L_2 \in R(\Sigma) \), we also have \(L_1 \cup L_2 \in R(\Sigma) \) and \(L_1L_2 \in R(\Sigma) \), and for any language \(L \in R(\Sigma) \), we have \(L^* \in R(\Sigma) \). Furthermore, we would like \(R(\Sigma) \) to be the smallest family with these properties. How do we achieve this rigorously?

First, let us look more closely at what we mean by a family of languages. Recall that a language (over \(\Sigma \)) is any subset, \(L \), of \(\Sigma^* \). Thus, the set of all languages is \(2^{\Sigma^*} \), the power set of \(\Sigma^* \). If \(\Sigma \) is nonempty, this is an uncountable set. Next, we define a family, \(\mathcal{L} \), of languages to be any subset of \(2^{\Sigma^*} \). This time, the set of families of languages is \(2^{2^{\Sigma^*}} \). This is a huge set. We can use the inclusion relation on \(2^{2^{\Sigma^*}} \) to define a partial order on families of languages. So, \(\mathcal{L}_1 \subseteq \mathcal{L}_2 \) iff for every language, \(L \), if \(L \in \mathcal{L}_1 \) then \(L \in \mathcal{L}_2 \).

We can now state more precisely what we are trying to do. Consider the following properties for a family of languages, \(\mathcal{L} \):

1. We have \(\{a_1\}, \ldots, \{a_m\}, \emptyset, \{\epsilon\} \in \mathcal{L} \), i.e., \(\mathcal{L} \) contains the “atomic” languages.

2. For all \(L_1, L_2 \in \mathcal{L} \), we also have \(L_1 \cup L_2 \in \mathcal{L} \).

3. For all \(L_1, L_2 \in \mathcal{L} \), we also have \(L_1L_2 \in \mathcal{L} \).

4. For all \(L \in \mathcal{L} \), we have \(L^* \in \mathcal{L} \).
(2c) For all \(L \in \mathcal{L} \), we also have \(L^* \in \mathcal{L} \).

In other words, \(\mathcal{L} \) is closed under union, concatenation and Kleene \(*\).

Now, what we want is the smallest (w.r.t. inclusion) family of languages that satisfies properties (1) and (2)(a)(b)(c). We can construct such a family using an inductive definition. This inductive definition constructs a sequence of families of languages, \((R(\Sigma)_n)_{n \geq 0}\), called the stages of the inductive definition, as follows:

\[
R(\Sigma)_0 = \{\{a_1\}, \ldots, \{a_m\}, \emptyset, \{\epsilon\}\}, \\
R(\Sigma)_{n+1} = R(\Sigma)_n \cup \{L_1 \cup L_2, L_1L_2, L^* \mid L_1, L_2, L \in R(\Sigma)_n\}.
\]

Then, we define \(R(\Sigma) \) by

\[
R(\Sigma) = \bigcup_{n \geq 0} R(\Sigma)_n.
\]

Thus, a language \(L \) belongs to \(R(\Sigma) \) iff it belongs \(L_n \), for some \(n \geq 0 \). For example, if \(\Sigma = \{a, b\} \), we have

\[
R(\Sigma)_1 = \{\{a\}, \{b\}, \emptyset, \{\epsilon\}, \\
\{a, b\}, \{a, \epsilon\}, \{b, \epsilon\}, \\
\{ab\}, \{ba\}, \{aa\}, \{bb\}, \{a\}^*, \{b\}^*\}.
\]

Observe that

\[
R(\Sigma)_0 \subseteq R(\Sigma)_1 \subseteq R(\Sigma)_2 \subseteq \cdots R(\Sigma)_n \subseteq R(\Sigma)_{n+1} \subseteq \cdots \subseteq R(\Sigma),
\]

so that if \(L \in R(\Sigma)_n \), then \(L \in R(\Sigma)_p \), for all \(p \geq n \). Also, there is some smallest \(n \) for which \(L \in R(\Sigma)_n \) (the birthdate of \(L \! \)). In fact, all these inclusions are strict. Note that each \(R(\Sigma)_n \) only contains a finite number of languages (but some of the languages in \(R(\Sigma)_n \) are infinite, because of Kleene \(*\)). Then we define the regular languages, version 2, as the family \(R(\Sigma) \).

Of course, it is far from obvious that \(R(\Sigma) \) coincides with the family of languages accepted by DFA’s (or NFA’s), what we call the regular languages, version 1. However, this is the case, and this can be demonstrated by giving two algorithms. Actually, it will be slightly more convenient to define a notation system, the regular expressions, to denote the languages in \(R(\Sigma) \). Then, we will give an algorithm that converts a regular expression, \(R \), into an NFA, \(N_R \), so that \(L_R = L(N_R) \), where \(L_R \) is the language (in \(R(\Sigma) \)) denoted by \(R \). We will also give an algorithm that converts an NFA, \(N \), into a regular expression, \(R_N \), so that \(L(R_N) = L(N) \).

But before doing all this, we should make sure that \(R(\Sigma) \) is indeed the family that we are seeking. This is the content of

Lemma 2.1. The family, \(R(\Sigma) \), is the smallest family of languages which contains the atomic languages \(\{a_1\}, \ldots, \{a_m\}, \emptyset, \{\epsilon\} \), and is closed under union, concatenation, and Kleene \(*\).
2.1. THE CLOSURE DEFINITION OF THE REGULAR LANGUAGES

Proof. There are two things to prove.

(i) We need to prove that $R(\Sigma)$ has properties (1) and (2)(a)(b)(c).

(ii) We need to prove that $R(\Sigma)$ is the smallest family having properties (1) and (2)(a)(b)(c).

(i) Since

$$R(\Sigma)_0 = \{\{a_1\}, \ldots, \{a_m\}, \emptyset, \{\epsilon\}\},$$

it is obvious that (1) holds. Next, assume that $L_1, L_2 \in R(\Sigma)$. This means that there are some integers $n_1, n_2 \geq 0$, so that $L_1 \in R(\Sigma)_{n_1}$ and $L_2 \in R(\Sigma)_{n_2}$. Now, it is possible that $n_1 \neq n_2$, but if we let $n = \max\{n_1, n_2\}$, as we observed that $R(\Sigma)_p \subseteq R(\Sigma)_q$ whenever $p \leq q$, we are guaranteed that both $L_1, L_2 \in R(\Sigma)_n$. However, by the definition of $R(\Sigma)_{n+1}$ (that’s why we defined it this way!), we have $L_1 \cup L_2 \in R(\Sigma)_{n+1} \subseteq R(\Sigma)$. The same argument proves that $L_1L_2 \in R(\Sigma)_{n+1} \subseteq R(\Sigma)$. Also, if $L \in R(\Sigma)_n$, we immediately have $L^* \in R(\Sigma)_{n+1} \subseteq R(\Sigma)$. Therefore, $R(\Sigma)$ has properties (1) and (2)(a)(b)(c).

(ii) Let \mathcal{L} be any family of languages having properties (1) and (2)(a)(b)(c). We need to prove that $R(\Sigma) \subseteq \mathcal{L}$. If we can prove that $R(\Sigma)_n \subseteq \mathcal{L}$, for all $n \geq 0$, we are done (since then, $R(\Sigma) = \bigcup_{n \geq 0} R(\Sigma)_n \subseteq \mathcal{L}$). We prove by induction on n that $R(\Sigma)_n \subseteq \mathcal{L}$, for all $n \geq 0$.

The base case $n = 0$ is trivial, since \mathcal{L} has (1), which says that $R(\Sigma)_0 \subseteq \mathcal{L}$. Assume inductively that $R(\Sigma)_n \subseteq \mathcal{L}$. We need to prove that $R(\Sigma)_{n+1} \subseteq \mathcal{L}$. Pick any $L \in R(\Sigma)_{n+1}$.

Recall that

$$R(\Sigma)_{n+1} = R(\Sigma)_n \cup \{L_1 \cup L_2, L_1L_2, L^* \mid L_1, L_2, L \in R(\Sigma)_n\}.$$

If $L \in R(\Sigma)_n$, then $L \in \mathcal{L}$, since $R(\Sigma)_n \subseteq \mathcal{L}$, by the induction hypothesis. Otherwise, there are three cases:

(a) $L = L_1 \cup L_2$, where $L_1, L_2 \in R(\Sigma)_n$. By the induction hypothesis, $R(\Sigma)_n \subseteq \mathcal{L}$, so, we get $L_1, L_2 \in \mathcal{L}$; since \mathcal{L} has 2(a), we have $L_1 \cup L_2 \in \mathcal{L}$.

(b) $L = L_1L_2$, where $L_1, L_2 \in R(\Sigma)_n$. By the induction hypothesis, $R(\Sigma)_n \subseteq \mathcal{L}$, so, we get $L_1, L_2 \in \mathcal{L}$; since \mathcal{L} has 2(b), we have $L_1L_2 \in \mathcal{L}$.

(c) $L = L_1^*$, where $L_1 \in R(\Sigma)_n$. By the induction hypothesis, $R(\Sigma)_n \subseteq \mathcal{L}$, so, we get $L_1 \in \mathcal{L}$; since \mathcal{L} has 2(c), we have $L_1^* \in \mathcal{L}$.

Thus, in all cases, we showed that $L \in \mathcal{L}$, and so, $R(\Sigma)_{n+1} \subseteq \mathcal{L}$, which proves the induction step. \hfill \square

Students should study carefully the above proof. Although simple, it is the prototype of many proofs appearing in the theory of computation.
2.2 Right-Invariant Equivalence Relations on Σ^*

The purpose of this section is to give one more characterization of the regular languages in terms of certain kinds of equivalence relations on strings. Pushing this characterization a bit further, we will be able to show how minimal DFA’s can be found.

Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. The DFA D may be redundant, for example, if there are states that are not accessible from the start state. The set Q_r of accessible or reachable states is the subset of Q defined as

$$Q_r = \{ p \in Q \mid \exists w \in \Sigma^*, \delta^*(q_0, w) = p \}.$$

If $Q \neq Q_r$, we can “clean up” D by deleting the states in $Q - Q_r$ and restricting the transition function δ to Q_r. This way, we get an equivalent DFA D_r such that $L(D) = L(D_r)$, where all the states of D_r are reachable. From now on, we assume that we are dealing with DFA’s such that $D = D_r$, called trim, or reachable.

Recall that an equivalence relation \simeq on a set A is a relation which is reflexive, symmetric, and transitive. Given any $a \in A$, the set

$$\{ b \in A \mid a \simeq b \}$$

is called the equivalence class of a, and it is denoted as $[a]_\simeq$, or even as $[a]$. Recall that for any two elements $a, b \in A$, $[a] \cap [b] = \emptyset$ iff $a \not\simeq b$, and $[a] = [b]$ iff $a \simeq b$. The set of equivalence classes associated with the equivalence relation \simeq is a partition Π of A (also denoted as A/\simeq). This means that it is a family of nonempty pairwise disjoint sets whose union is equal to A itself. The equivalence classes are also called the blocks of the partition Π. The number of blocks in the partition Π is called the index of \simeq (and Π).

We now define an equivalence relation on strings induced by a DFA. This equivalence is a kind of “observational” equivalence, in the sense that we decide that two strings u,v are equivalent iff, when feeding first u and then v to the DFA, u and v drive the DFA to the same state. From the point of view of the observer, u and v have the same effect (reaching the same state).

Definition 2.1. Given a DFA $D = (Q, \Sigma, \delta, q_0, F)$, we define the relation \simeq_D on Σ^* as follows: for any two strings $u, v \in \Sigma^*$,

$$u \simeq_D v \iff \delta^*(q_0, u) = \delta^*(q_0, v).$$
2.2. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ^*

We can figure out what the equivalence classes of \simeq_D are for the following DFA:

\[
\begin{array}{c|cc}
 & a & b \\
\hline
0 & 1 & 0 \\
1 & 2 & 1 \\
2 & 0 & 2 \\
\end{array}
\]

with 0 both start state and (unique) final state. For example

\[
abbabb \simeq_D aa \\
ababab \simeq_D \epsilon \\
bba \simeq_D a.
\]

There are three equivalences classes:

\[
[\epsilon]_\simeq, \ [a]_\simeq, \ [aa]_\simeq.
\]

Observe that $L(D) = [\epsilon]_\simeq$. Also, the equivalence classes are in one–to–one correspondence with the states of D.

The relation \simeq_D turns out to have some interesting properties. In particular, it is right-invariant, which means that for all $u, v, w \in \Sigma^*$, if $u \simeq v$, then $uw \simeq vw$.

Lemma 2.2. Given any (trim) DFA $D = (Q, \Sigma, \delta, q_0, F)$, the relation \simeq_D is an equivalence relation which is right-invariant and has finite index. Furthermore, if Q has n states, then the index of \simeq_D is n, and every equivalence class of \simeq_D is a regular language. Finally, $L(D)$ is the union of some of the equivalence classes of \simeq_D.

Proof. The fact that \simeq_D is an equivalence relation is a trivial verification. To prove that \simeq_D is right-invariant, we first prove by induction on the length of v that for all $u, v, w \in \Sigma^*$, for all $p \in Q$,

\[
\delta^*(p, uv) = \delta^*(\delta^*(p, u), v).
\]

Then, if $u \simeq_D v$, which means that $\delta^*(q_0, u) = \delta^*(q_0, v)$, we have

\[
\delta^*(q_0, uv) = \delta^*(\delta^*(q_0, u), w) = \delta^*(\delta^*(q_0, v), w) = \delta^*(q_0, vw),
\]

which means that $uw \simeq_D vw$. Thus, \simeq_D is right-invariant. We still have to prove that \simeq_D has index n. Define the function $f : \Sigma^* \to Q$ such that

\[
f(u) = \delta^*(q_0, u).
\]

Note that if $u \simeq_D v$, which means that $\delta^*(q_0, u) = \delta^*(q_0, v)$, then $f(u) = f(v)$. Thus, the function $f : \Sigma^* \to Q$ has the same value on all the strings in some equivalence class $[u]$, so it induces a function $\hat{f} : \Pi \to Q$ defined such that

\[
\hat{f}([u]) = f(u),
\]
for every equivalence class \([u] \in \Pi\), where \(\Pi = \Sigma^*/\simeq\) is the partition associated with \(\simeq_D\).

However, the function \(\hat{f} : \Pi \to Q\) is injective (one-to-one), since \(\hat{f}([u]) = \hat{f}([v])\) is equivalent to \(f(u) = f(v)\) (since by definition of \(\hat{f}\) we have \(\hat{f}([u]) = f(u)\) and \(\hat{f}([v]) = f(v)\)), which by definition of \(f\) means that \(\delta^*(q_0, u) = \delta^*(q_0, v)\), which means precisely that \(u \simeq_D v\), that is, \([u] = [v]\).

Since \(Q\) has \(n\) states, \(\Pi\) has at most \(n\) blocks. Moreover, since every state is accessible, for every \(q \in Q\), there is some \(w \in \Sigma^*\) so that \(\delta^*(q_0, w) = q\), which shows that \(\hat{f}([w]) = f(w) = q\). Consequently, \(\hat{f}\) is also surjective. But then, being injective and surjective, \(\hat{f}\) is bijective and \(\Pi\) has exactly \(n\) blocks.

Every equivalence class of \(\Pi\) is a set of strings of the form
\[
\{w \in \Sigma^* \mid \delta^*(q_0, w) = p\},
\]
for some \(p \in Q\), which is accepted by the DFA
\[
D_p = (Q, \Sigma, \delta, q_0, \{p\})
\]
obtained from \(D\) by changing \(F\) to \(\{p\}\). Thus, every equivalence class is a regular language. Finally, since
\[
L(D) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \in F\}
= \bigcup_{f \in F} \{w \in \Sigma^* \mid \delta^*(q_0, w) = f\}
= \bigcup_{f \in F} L(D_f),
\]
we see that \(L(D)\) is the union of the equivalence classes corresponding to the final states in \(F\). □

One should not be too optimistic and hope that every equivalence relation on strings is right-invariant. For example, if \(\Sigma = \{a\}\), the equivalence relation \(\simeq\) given by the partition
\[
\{\epsilon, a, a^4, a^9, a^{16}, \ldots, a^{n^2}, \ldots \mid n \geq 0\} \cup \{a^2, a^3, a^5, a^6, a^7, a^8, \ldots, a^m, \ldots \mid m \text{ is not a square}\}
\]
we have \(a \simeq a^4\), yet by concatenating on the right with \(a^5\), since \(aa^5 = a^6\) and \(a^4a^5 = a^9\) we get
\[
a^6 \nsubseteq a^9,
\]
that is, \(a^6\) and \(a^9\) are not equivalent. It turns out that the problem is that neither equivalence class is a regular language.

It is worth noting that a right-invariant equivalence relation is not necessarily left-invariant, which means that if \(u \simeq v\) then \(wu \simeq vw\). For example, if \(\simeq\) is given by the four equivalence classes
\[
C_1 = \{bb\}^*, \ C_2 = \{bb\}^*a, \ C_3 = b\{bb\}^*, \ C_4 = \{bb\}^*a\{a, b\}^+ \cup b\{bb\}^*a\{a, b\}^*,
\]
both \(ab, ba \in C_4 \), yet \(bab \in C_4 \) and \(bba \in C_2 \).

The remarkable fact due to Myhill and Nerode is that Lemma 2.2 has a converse. Indeed, given a right-invariant equivalence relation of finite index it is possible to reconstruct a DFA, and by a suitable choice of final state, every equivalence class is accepted by such a DFA. Let us show how this DFA is constructed using a simple example.

Consider the equivalence relation \(\simeq \) on \(\{a, b\}^* \) given by the three equivalence classes

\[
C_1 = \{\varepsilon\}, \quad C_2 = a\{a, b\}^*, \quad C_3 = b\{a, b\}^*.
\]

We leave it as an easy exercise to check that \(\simeq \) is right-invariant. For example, if \(u \simeq v \) because \(u, v \in C_2 \), then \(u = ax \) and \(v = ay \) for some \(x, y \in \{a, b\} \), so for any \(w \in \{a, b\}^* \) we have \(uw = axw \) and \(vw = ayw \), which means that we also have \(uw, vw \in C_2 \), thus \(uw \simeq vw \). For any subset \(C \subseteq \{a, b\}^* \) and any string \(w \in \{a, b\}^* \) define \(Cw \) as the set of strings

\[
Cw = \{uw \mid u \in C\}.
\]

There are two reasons why a DFA can be recovered from the right-invariant equivalence relation \(\simeq \):

1. For every equivalence class \(C_i \) and every string \(w \), there is a unique equivalence class \(C_j \) such that \(C_iw \subseteq C_j \).

 Actually, it is enough to check the above property for strings \(w \) of length 1 (i.e. symbols in the alphabet) because the property for arbitrary strings follows by induction.

2. For every \(w \in \Sigma^* \) and every class \(C_i \),

\[
C_iw \subseteq C_i \quad \text{iff} \quad w \in C_i.
\]

We can make a table recording these inclusions, and we get:

\[
\begin{array}{c|cc}
 & a & b \\
\hline
C_1 & C_2 & C_3 \\
C_2 & C_2 & C_2 \\
C_3 & C_3 & C_3 \\
\end{array}
\]

For example, from \(C_1 = \{\varepsilon\} \) we have \(C_1a = \{a\} \subseteq C_2 \) and \(C_1b = \{b\} \subseteq C_3 \), for \(C_2 = a\{a, b\}^* \), we have \(C_2a = a\{a, b\}^*a \subseteq C_2 \) and \(C_2a = a\{a, b\}^*b \subseteq C_2 \), and for \(C_3 = b\{a, b\}^* \), we have \(C_3a = b\{a, b\}^*a \subseteq C_3 \) and \(C_3b = b\{a, b\}^*b \subseteq C_3 \).

The key point is that the above table is the transition table of a DFA with start state \(C_1 = [\varepsilon] \). Furthermore, if \(C_i \) (\(i = 1, 2, 3 \)) is chosen as a single final state, the corresponding DFA \(D_i \) accepts \(C_i \). This is the converse of Myhill-Nerode!
Observe that the inclusions $C_iw \subseteq C_j$ may be strict inclusions. For example, $C_1a = \{a\}$ is a proper subset of $C_2 = a\{a, b\}^*$.

Let us do another example. Consider the equivalence relation \simeq given by the four equivalence classes

$$C_1 = \{\epsilon\}, \ C_2 = \{a\}, \ C_3 = \{b\}^+, \ C_4 = a\{a, b\}^+ \cup \{b\}^+a\{a, b\}^*.$$

We leave it as an easy exercise to check that \simeq is right-invariant.

We obtain the following table of inclusions $C_i a \subseteq C_j$ and $C_i b \subseteq C_j$:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>C_2</td>
<td>C_3</td>
</tr>
<tr>
<td>C_2</td>
<td>C_4</td>
<td>C_4</td>
</tr>
<tr>
<td>C_3</td>
<td>C_4</td>
<td>C_3</td>
</tr>
<tr>
<td>C_4</td>
<td>C_4</td>
<td>C_4</td>
</tr>
</tbody>
</table>

For example, from $C_3 = \{b\}^+$ we get $C_3a = \{b\}^+a \subseteq C_4$, and $C_3b = \{b\}^+b \subseteq C_3$.

The above table is the transition function of a DFA with four states and start state C_1. If $C_i \ (i = 1, 2, 3, 4)$ is chosen as a single final state, the corresponding DFA D_i accepts C_i. Here is the general result.

Lemma 2.3. Given any equivalence relation \simeq on Σ^*, if \simeq is right-invariant and has finite index n, then every equivalence class (block) in the partition Π associated with \simeq is a regular language.

Proof. Let C_1, \ldots, C_n be the blocks of Π, and assume that $C_1 = [\epsilon]$ is the equivalence class of the empty string.

First, we claim that for every block C_i and every $w \in \Sigma^*$, there is a unique block C_j such that $C_iw \subseteq C_j$, where $C_iw = \{uw \mid u \in C_i\}$.

For every $u \in C_i$, the string uw belongs to one and only one of the blocks of Π, say C_j. For any other string $v \in C_i$, since (by definition) $u \simeq v$, by right invariance, we get $uw \simeq vw$, but since $uw \in C_j$ and C_j is an equivalence class, we also have $vw \in C_j$. This proves the first claim.

We also claim that for every $w \in \Sigma^*$, for every block C_i,

$$C_1w \subseteq C_i \quad \text{iff} \quad w \in C_i.$$

If $C_1w \subseteq C_i$, since $C_1 = [\epsilon]$, we have $\epsilon w = w \in C_i$. Conversely, if $w \in C_i$, for any $v \in C_1 = [\epsilon]$, since $\epsilon \simeq v$, by right invariance we have $w \simeq vw$, and thus $vw \in C_i$, which shows that $C_1w \subseteq C_i$.
For every class C_k, let

$$D_k = (\{1, \ldots, n\}, \Sigma, \delta, 1, \{k\}),$$

where $\delta(i, a) = j$ iff $C_i a \subseteq C_j$. We will prove the following equivalence:

$$\delta^*(i, w) = j \quad \text{iff} \quad C_i w \subseteq C_j.$$

For this, we prove the following two implications by induction on $|w|$:

(a) If $\delta^*(i, w) = j$, then $C_i w \subseteq C_j$, and

(b) If $C_i w \subseteq C_j$, then $\delta^*(i, w) = j$.

The base case ($w = \epsilon$) is trivial for both (a) and (b). We leave the proof of the induction step for (a) as an exercise and give the proof of the induction step for (b) because it is more subtle. Let $w = ua$, with $a \in \Sigma$ and $u \in \Sigma^*$. If $C_i u a \subseteq C_j$, then by the first claim, we know that there is a unique block, C_k, such that $C_i u \subseteq C_k$. Furthermore, there is a unique block, C_h, such that $C_h a \subseteq C_h$, but $C_i u \subseteq C_i$ implies $C_i u a \subseteq C_k$ so we get $C_i u a \subseteq C_h$. However, by the uniqueness of the block, C_j, such that $C_j u a \subseteq C_j$, we must have $C_h = C_j$. By the induction hypothesis, as $C_i u \subseteq C_k$, we have

$$\delta^*(i, u) = k$$

and, by definition of δ, as $C_k a \subseteq C_j (= C_h)$, we have $\delta(k, a) = j$, so we deduce that

$$\delta^*(i, ua) = \delta(\delta^*(i, u), a) = \delta(k, a) = j,$$

as desired. Then, using the equivalence just proved and the second claim, we have

$$L(D_k) = \{w \in \Sigma^* \mid \delta^*(1, w) \in \{k\}\}$$

$$= \{w \in \Sigma^* \mid \delta^*(1, w) = k\}$$

$$= \{w \in \Sigma^* \mid C_i w \subseteq C_k\}$$

$$= \{w \in \Sigma^* \mid w \in C_k\} = C_k,$$

proving that every block, C_k, is a regular language.

\[\square \]

In general it is false that $C_i a = C_j$ for some block C_j, and we can only claim that $C_i a \subseteq C_j$.

We can combine Lemma 2.2 and Lemma 2.3 to get the following characterization of a regular language due to Myhill and Nerode:

Theorem 2.4. (Myhill-Nerode) A language L (over an alphabet Σ) is a regular language iff it is the union of some of the equivalence classes of an equivalence relation \simeq on Σ^*, which is right-invariant and has finite index.
Theorem 2.4 can also be used to prove that certain languages are not regular. A general scheme (not the only one) goes as follows: If L is not regular, then it must be infinite. Now, we argue by contradiction. If L was regular, then by Myhill-Nerode, there would be some equivalence relation, \simeq, which is right-invariant and of finite index and such that L is the union of some of the classes of \simeq. Because Σ^* is infinite and \simeq has only finitely many equivalence classes, there are strings $x, y \in \Sigma^*$ with $x \neq y$ so that

$$x \simeq y.$$

If we can find a third string, $z \in \Sigma^*$, such that

$$xz \in L \quad \text{and} \quad yz \notin L,$$

then we reach a contradiction. Indeed, by right invariance, from $x \simeq y$, we get $xz \simeq yz$. But, L is the union of equivalence classes of \simeq, so if $xz \in L$, then we should also have $yz \in L$, contradicting $yz \notin L$. Therefore, L is not regular.

For example, we prove that $L = \{a^n b^n \mid n \geq 1\}$ is not regular.

Assuming for the sake of contradiction that L is regular, there is some equivalence relation \simeq which is right-invariant and of finite index and such that L is the union of some of the classes of \simeq. Since the set

$$\{a, aa, aaa, \ldots, a^i, \ldots\}$$

is infinite and \simeq has a finite number of classes, two of these strings must belong to the same class, which means that $a^i \simeq a^j$ for some $i \neq j$. But since \simeq is right invariant, by concatenating with b^j on the right, we see that $a^i b^j \simeq a^j b^j$ for some $i \neq j$. However $a^i b^j \in L$, and since L is the union of classes of \simeq, we also have $a^j b^j \in L$ for $i \neq j$, which is absurd, given the definition of L. Thus, in fact, L is not regular.

Here is another illustration of the use of the Myhill-Nerode Theorem to prove that a language is not regular. We claim that the language,

$$L' = \{a^n! \mid n \geq 1\},$$

is not regular, where $n!$ (n factorial) is given by $0! = 1$ and $(n + 1)! = (n + 1)n!$.

Assume L' is regular. Then, there is some equivalence relation \simeq which is right-invariant and of finite index and such that L' is the union of some of the classes of \simeq. Since the sequence

$$a, a^2, \ldots, a^n, \ldots$$

is infinite, two of these strings must belong to the same class, which means that $a^p \simeq a^q$ for some p, q with $1 \leq p < q$. As $q! \geq q$ for all $q \geq 0$ and $q > p$, we can concatenate on the right with a^{q-p} and we get

$$a^p a^{q-p} \simeq a^q a^{q-p},$$
2.2. RIGHT-IN Variant EQUIVALENCE RELATIONS ON Σ^*

that is,

$$a^q \simeq a^{q+p}.$$

If we can show that

$$q! + q - p < (q + 1)!$$

we will obtain a contradiction because then $a^{q+p} \notin L'$, yet $a^{q+p} \simeq a^q$ and $a^q \in L'$, contradicting Myhill-Nerode. Now, as $1 \leq p < q$, we have $q - p \leq q - 1$, so if we can prove that

$$q! + q - p \leq q! + q - 1 < (q + 1)!$$

we will be done. However, $q! + q - 1 < (q + 1)!$ is equivalent to

$$q - 1 < (q+1)! - q!,$$

and since $(q + 1)! - q! = (q + 1)q! - q! = qq!$, we simply need to prove that

$$q - 1 < q \leq qq!,$$

which holds for $q \geq 1$.

There is another version of the Myhill-Nerode Theorem involving congruences which is also quite useful. An equivalence relation, \simeq, on Σ^* is left and right-invariant iff for all $x, y, u, v \in \Sigma^*$,

if $x \simeq y$ then $uxv \simeq uyv$.

An equivalence relation, \simeq, on Σ^* is a congruence iff for all $u_1, u_2, v_1, v_2 \in \Sigma^*$,

if $u_1 \simeq v_1$ and $u_2 \simeq v_2$ then $u_1u_2 \simeq v_1v_2$.

It is easy to prove that an equivalence relation is a congruence iff it is left and right-invariant.

For example, assume that \simeq is a left and right-invariant equivalence relation, and assume that

$$u_1 \simeq v_1 \text{ and } u_2 \simeq v_2.$$

By right-invariance applied to $u_1 \simeq v_1$, we get

$$u_1u_2 \simeq v_1u_2$$

and by left-invariance applied to $u_2 \simeq v_2$ we get

$$v_1u_2 \simeq v_1v_2.$$

By transitivity, we conclude that

$$u_1u_2 \simeq v_1v_2,$$

which shows that \simeq is a congruence.
There is a version of Lemma 2.2 that applies to congruences and for this we define the relation \sim_D as follows: For any (trim) DFA, $D = (Q, \Sigma, \delta, q_0, F)$, for all $x, y \in \Sigma^*$,

$$x \sim_D y \iff (\forall q \in Q)(\delta^*(q, x) = \delta^*(q, y)).$$

Lemma 2.5. Given any (trim) DFA, $D = (Q, \Sigma, \delta, q_0, F)$, the relation \sim_D is an equivalence relation which is left and right-invariant and has finite index. Furthermore, if Q has n states, then the index of \sim_D is at most n^n and every equivalence class of \sim_D is a regular language. Finally, $L(D)$ is the union of some of the equivalence classes of \sim_D.

Proof. We leave the proof of Lemma 2.5 as an exercise. We just make the following remark: Observe that

$$\sim_D \subseteq \simeq_D,$$

since the condition $\delta^*(q, x) = \delta^*(q, y)$ holds for every $q \in Q$, so in particular for $q = q_0$. But then, every equivalence class of \simeq_D is the union of equivalence classes of \sim_D and since, by Lemma 2.2, L is the union of equivalence classes of \simeq_D, we conclude that L is also the union of equivalence classes of \sim_D. \[\square\]

Using Lemma 2.5 and Lemma 2.3, we obtain another version of the Myhill-Nerode Theorem.

Theorem 2.6. *(Myhill-Nerode, Congruence Version)* A language L (over an alphabet Σ) is a regular language iff it is the union of some of the equivalence classes of an equivalence relation \simeq on Σ^*, which is a congruence and has finite index.

Another useful tool for proving that languages are not regular is the so-called pumping lemma.

Lemma 2.7. Given any DFA $D = (Q, \Sigma, \delta, q_0, F)$, there is some $m \geq 1$ such that for every $w \in \Sigma^*$, if $w \in L(D)$ and $|w| \geq m$, then there exists a decomposition of w as $w = uv$, where

(1) $x \neq \epsilon$,

(2) $ux^i v \in L(D)$, for all $i \geq 0$, and

(3) $|ux| \leq m$.

Moreover, m can be chosen to be the number of states of the DFA D.

Proof. Let m be the number of states in Q, and let $w = w_1 \ldots w_n$. Since Q contains the start state q_0, $m \geq 1$. Since $|w| \geq m$, we have $n \geq m$. Since $w \in L(D)$, let (q_0, q_1, \ldots, q_n),
be the sequence of states in the accepting computation of \(w \) (where \(q_n \in F \)). Consider the subsequence

\[(q_0, q_1, \ldots, q_m).\]

This sequence contains \(m + 1 \) states, but there are only \(m \) states in \(Q \), and thus, we have \(q_i = q_j \), for some \(i, j \) such that \(0 \leq i < j \leq m \). Then, letting \(u = w_1 \ldots w_i \), \(x = w_{i+1} \ldots w_j \), and \(v = w_{j+1} \ldots w_n \), it is clear that the conditions of the lemma hold.

An important consequence of the pumping lemma is that if a DFA \(D \) has \(m \) states and if there is some string \(w \in L(D) \) such that \(|w| \geq m \), then \(L(D) \) is infinite.

Indeed, by the pumping lemma, \(w \in L(D) \) can be written as \(w = u x v \) with \(x \neq \epsilon \), and

\[ux^i v \in L(D) \quad \text{for all } i \geq 0.\]

Since \(x \neq \epsilon \), we have \(|x| > 0\), so for all \(i, j \geq 0 \) with \(i < j \) we have

\[|ux^i v| < |ux^i v| + (j - i)|x| = |ux^j v|,

which implies that \(ux^i v \neq ux^j v \) for all \(i < j \), and the set of strings

\[\{ux^i v \mid i \geq 0\} \subseteq L(D)\]

is an infinite subset of \(L(D) \), which is itself infinite.

As a consequence, if \(L(D) \) is finite, there are no strings \(w \in L(D) \) such that \(|w| \geq m \). In this case, since the premise of the pumping lemma is false, the pumping lemma holds vacuously; that is, if \(L(D) \) is finite, the pumping lemma yields no information.

Another corollary of the pumping lemma is that there is a test to decide whether a DFA \(D \) accepts an infinite language \(L(D) \).

Lemma 2.8. Let \(D \) be a DFA with \(m \) states, The language \(L(D) \) accepted by \(D \) is infinite iff there is some string \(w \in L(D) \) such that \(m \leq |w| < 2m \).

If \(L(D) \) is infinite, there are strings of length \(\geq m \) in \(L(D) \), but a priori there is no guarantee that there are “short” strings \(w \) in \(L(D) \), that is, strings whose length is uniformly bounded by some function of \(m \) independent of \(D \). The pumping lemma ensures that there are such strings, and the function is \(m \mapsto 2m \).

Typically, the pumping lemma is used to prove that a language is not regular. The method is to proceed by contradiction, i.e., to assume (contrary to what we wish to prove) that a language \(L \) is indeed regular, and derive a contradiction of the pumping lemma. Thus,
it would be helpful to see what the negation of the pumping lemma is, and for this, we first state the pumping lemma as a logical formula. We will use the following abbreviations:

\begin{align*}
\text{nat} &= \{0, 1, 2, \ldots\}, \\
\text{pos} &= \{1, 2, \ldots\}, \\
A &\equiv w = uxv, \\
B &\equiv x \neq \epsilon, \\
C &\equiv |ux| \leq m, \\
P &\equiv \forall i : \text{nat} (ux^i v \in L(D)).
\end{align*}

The pumping lemma can be stated as

\[
\forall D : \text{DFA} \exists m : \text{pos} \forall w : \Sigma^* \left((w \in L(D) \land |w| \geq m) \supset (\exists u, x, v : \Sigma^* A \land B \land C \land P) \right).
\]

Recalling that

\[
\neg (A \land B \land C \land P) \equiv \neg (A \land B \land C) \lor \neg P \equiv (A \land B \land C) \supset \neg P
\]

and

\[
\neg (R \supset S) \equiv R \land \neg S,
\]

the negation of the pumping lemma can be stated as

\[
\exists D : \text{DFA} \forall m : \text{pos} \exists w : \Sigma^* \left((w \in L(D) \land |w| \geq m) \land (\forall u, x, v : \Sigma^* (A \land B \land C) \supset \neg P) \right).
\]

Since

\[
\neg P \equiv \exists i : \text{nat} (ux^i v \notin L(D)),
\]

in order to show that the pumping lemma is contradicted, one needs to show that for some DFA \(D\), for every \(m \geq 1\), there is some string \(w \in L(D)\) of length at least \(m\), such that for every possible decomposition \(w = uxv\) satisfying the constraints \(x \neq \epsilon\) and \(|ux| \leq m\), there is some \(i \geq 0\) such that \(ux^i v \notin L(D)\).

When proceeding by contradiction, we have a language \(L\) that we are (wrongly) assuming to be regular, and we can use any DFA \(D\) accepting \(L\). The creative part of the argument is to pick the right \(w \in L\) (not making any assumption on \(m \leq |w|\)).

As an illustration, let us use the pumping lemma to prove that \(L_1 = \{a^n b^n \mid n \geq 1\}\) is not regular. The usefulness of the condition \(|ux| \leq m\) lies in the fact that it reduces the number of legal decomposition \(uxv\) of \(w\). We proceed by contradiction. Thus, let us assume that \(L_1 = \{a^n b^n \mid n \geq 1\}\) is regular. If so, it is accepted by some DFA \(D\). Now, we wish to contradict the pumping lemma. For every \(m \geq 1\), let \(w = a^m b^m\). Clearly, \(w = a^m b^m \in L_1\) and \(|w| \geq m\). Then, every legal decomposition \(u, x, v\) of \(w\) is such that

\[
w = \underbrace{a \ldots a}_{u} \underbrace{a \ldots a}_{x} \underbrace{a \ldots a}_{v} \underbrace{b \ldots b}_{v}
\]
where \(x \neq \epsilon \) and \(x \) ends within the \(a \)'s, since \(|ux| \leq m \). Since \(x \neq \epsilon \), the string \(uxxv \) is of the form \(a^n b^m \) where \(n > m \), and thus \(uxxv \notin L_1 \), contradicting the pumping lemma.

Let us consider two more examples. let \(L_2 = \{ a^m b^n \mid 1 \leq m < n \} \). We claim that \(L_2 \) is not regular. Our first proof uses the pumping lemma. For any \(m \geq 1 \), pick \(w = a^m b^{m+1} \). We have \(w \in L_2 \) and \(|w| \geq m \) so we need to contradict the pumping lemma. Every legal decomposition \(u,x,v \) of \(w \) is such that

\[
 w = a\ldots a a \ldots a a \ldots ab \ldots b
\]

where \(x \neq \epsilon \) and \(x \) ends within the \(a \)'s, since \(|ux| \leq m \). Since \(x \neq \epsilon \) and \(x \) consists of \(a \)'s the string \(uxxv = uxxv \) contains at least \(m+1 \) \(a \)'s and still \(m+1 \) \(b \)'s, so \(uxxv \notin L_2 \), contradicting the pumping lemma.

Our second proof uses Myhill-Nerode. Let \(\simeq \) be a right-invariant equivalence relation of finite index such that \(L_2 \) is the union of classes of \(\simeq \). If we consider the infinite sequence

\[
 a, a^2, \ldots, a^n, \ldots
\]

since \(\simeq \) has a finite number of classes there are two strings \(a^m \) and \(a^n \) with \(m < n \) such that

\[
 a^m \simeq a^n.
\]

By right-invariance by concatenating on the right with \(b^n \) we obtain

\[
 a^m b^n \simeq a^n b^n,
\]

and since \(m < n \) we have \(a^m b^n \in L_2 \) but \(a^n b^n \notin L_2 \), a contradiction.

Let us now consider the language \(L_3 = \{ a^m b^n \mid m \neq n \} \). This time let us begin by using Myhill-Nerode to prove that \(L_3 \) is not regular. The proof is the same as before, we obtain

\[
 a^m b^n \simeq a^n b^n,
\]

and the contradiction is that \(a^m b^n \in L_3 \) and \(a^n b^n \notin L_3 \).

Let use now try to use the pumping lemma to prove that \(L_3 \) is not regular. For any \(m \geq 1 \) pick \(w = a^m b^{m+1} \in L_3 \). As in the previous case, every legal decomposition \(u,x,v \) of \(w \) is such that

\[
 w = a\ldots a a \ldots a a \ldots ab \ldots b
\]

where \(x \neq \epsilon \) and \(x \) ends within the \(a \)'s, since \(|ux| \leq m \). However this time we have a problem, namely that we know that \(x \) is a nonempty string of \(a \)'s but we don’t know how many, so we can’t guarantee that pumping up \(x \) will yield exactly the string \(a^{m+1} b^{m+1} \). We made the wrong choice for \(w \). There is a choice that will work but it is a bit tricky.
Fortunately, there is another simpler approach. Recall that the regular languages are closed under the boolean operations (union, intersection and complementation). Thus, \(L_3 \) is not regular iff its complement \(\overline{L_3} \) is not regular. Observe that \(\overline{L_3} \) contains \(\{a^n b^n : n \geq 1\} \), which we showed to be nonregular. But there is another problem, which is that \(\overline{L_3} \) contains other strings besides strings of the form \(a^n b^n \), for example strings of the form \(b^m a^n \) with \(m, n > 0 \).

Again, we can take care of this difficulty using the closure operations of the regular languages. If we can find a regular language \(R \) such that \(\overline{L_3} \cap R \) is not regular, then \(L_3 \) itself is not regular, since otherwise as \(\overline{L_3} \) and \(R \) are regular then \(\overline{L_3} \cap R \) is also regular. In our case, we can use \(R = \{a\}^+ \{b\}^+ \) to obtain

\[
\overline{L_3} \cap \{a\}^+ \{b\}^+ = \{a^n b^n : n \geq 1\}.
\]

Since \(\{a^n b^n : n \geq 1\} \) is not regular, we reached our final contradiction. Observe how we use the language \(R \) to “clean up” \(\overline{L_3} \) by intersecting it with \(R \).

To complete a direct proof using the pumping lemma, the reader should try \(w = a^m b^{(m+1)!} \).

The use of the closure operations of the regular languages is often a quick way of showing that a language \(L \) is not regular by reducing the problem of proving that \(L \) is not regular to the problem of proving that some well-known language is not regular.

We now consider an equivalence relation associated with a language \(L \).

2.3 Finding minimal DFA’s

Given any language \(L \) (not necessarily regular), we can define an equivalence relation \(\rho_L \) which is right-invariant, but not necessarily of finite index. However, when \(L \) is regular, the relation \(\rho_L \) has finite index. In fact, this index is the size of a smallest DFA accepting \(L \). This will lead us to a construction of minimal DFA’s.

Definition 2.2. Given any language \(L \) (over \(\Sigma \)), we define the right-invariant equivalence \(\rho_L \) associated with \(L \) as the relation on \(\Sigma^* \) defined as follows: for any two strings \(u, v \in \Sigma^* \),

\[
up_L v \iff \exists w \in \Sigma^*(uw \in L \iff vw \in L).
\]

It is clear that the relation \(\rho_L \) is an equivalence relation, and it is right-invariant. To show right-invariance, argue as follows: if \(up_L v \), then for any \(w \in \Sigma^* \), since \(up_L v \) means that

\[
u z \in L \iff vz \in L
\]

for all \(z \in \Sigma^* \), in particular the above equivalence holds for all \(z \) of the form \(z = wy \) for any arbitrary \(y \in \Sigma^* \), so we have

\[
uwz \in L \iff wvz \in L
\]
for all $y \in \Sigma^*$, which means that $uw\rho_Lvw$.

It is also clear that L is the union of the equivalence classes of strings in L. This is because if $u \in L$ and $u\rho_Lv$, by letting $w = \epsilon$ in the definition of ρ_L, we get

$$u \in L \iff v \in L,$$

and since $u \in L$, we also have $v \in L$. This implies that if $u \in L$ then $[u]_{\rho_L} \subseteq L$ and so,

$$L = \bigcup_{u \in L} [u]_{\rho_L}.$$

When L is also regular, we have the following remarkable result:

Lemma 2.9. Given any regular language L, for any (accessible) DFA $D = (Q, \Sigma, \delta, q_0, F)$ such that $L = L(D)$, ρ_L is a right-invariant equivalence relation, and we have $\simeq_D \subseteq \rho_L$. Furthermore, if ρ_L has m classes and Q has n states, then $m \leq n$.

Proof. By definition, $u \simeq_D v$ iff $\delta^*(q_0, u) = \delta^*(q_0, v)$. Since $w \in L(D)$ iff $\delta^*(q_0, w) \in F$, the fact that $u\rho_Lv$ can be expressed as

$$\forall w \in \Sigma^* (uw \in L \iff vw \in L)$$

iff

$$\forall w \in \Sigma^* (\delta^*(q_0, uw) \in F \iff \delta^*(q_0, vw) \in F)$$

iff

$$\forall w \in \Sigma^* (\delta^*(\delta^*(q_0, u), w) \in F \iff \delta^*(\delta^*(q_0, v), w) \in F),$$

and if $\delta^*(q_0, u) = \delta^*(q_0, v)$, this shows that $u\rho_Lv$. Since the number of classes of \simeq_D is n and $\simeq_D \subseteq \rho_L$, the equivalence relation ρ_L has fewer classes than \simeq_D, and $m \leq n$. \qed

Lemma 2.9 shows that when L is regular, the index m of ρ_L is finite, and it is a lower bound on the size of all DFA’s accepting L. It remains to show that a DFA with m states accepting L exists. However, going back to the proof of Lemma 2.3 starting with the right-invariant equivalence relation ρ_L of finite index m, if L is the union of the classes C_{i_1}, \ldots, C_{i_k}, the DFA

$$D_{\rho_L} = (\{1, \ldots, m\}, \Sigma, \delta, 1, \{i_1, \ldots, i_k\}),$$

where $\delta(i, a) = j$ iff $C_i a \subseteq C_j$, is such that $L = L(D_{\rho_L})$. Thus, D_{ρ_L} is a minimal DFA accepting L.

In the next section, we give an algorithm which allows us to find D_{ρ_L}, given any DFA D accepting L. This algorithms finds which states of D are equivalent.
2.4 State Equivalence and Minimal DFA’s

The proof of Lemma 2.9 suggests the following definition of an equivalence between states:

Definition 2.3. Given any DFA $D = (Q, \Sigma, \delta, q_0, F)$, the relation \equiv on Q, called *state equivalence*, is defined as follows: for all $p, q \in Q$,

$$p \equiv q \iff \forall w \in \Sigma^* (\delta^*(p, w) \in F \iff \delta^*(q, w) \in F).$$

When $p \equiv q$, we say that p and q are indistinguishable.

It is trivial to verify that \equiv is an equivalence relation, and that it satisfies the following property:

$$\text{if } p \equiv q \text{ then } \delta(p, a) \equiv \delta(q, a),$$

for all $a \in \Sigma$.

The reader should check that states A and C in the DFA below are equivalent and that no other distinct states are equivalent.

![Figure 2.1: A non-minimal DFA for $\{a, b\}^*\{abb\}$](image)

It is illuminating to express state equivalence as the equality of two languages. Given the DFA $D = (Q, \Sigma, \delta, q_0, F)$, let $D_p = (Q, \Sigma, \delta, p, F)$ be the DFA obtained from D by redefining the start state to be p. Then, it is clear that

$$p \equiv q \iff L(D_p) = L(D_q).$$

This simple observation implies that there is an algorithm to test state equivalence. Indeed, we simply have to test whether the DFA’s D_p and D_q accept the same language and this can be done using the cross-product construction. Indeed, $L(D_p) = L(D_q)$ iff $L(D_p) - L(D_q) = \emptyset$ and $L(D_q) - L(D_p) = \emptyset$. Now, if $(D_p \times D_q)_{1-2}$ denotes the cross-product DFA with starting state (p, q) and with final states $F \times (Q - F)$ and $(D_p \times D_q)_{2-1}$ denotes
the cross-product DFA also with starting state \((p, q)\) and with final states \((Q - F) \times F\), we know that
\[
L((D_p \times D_q)_{1-2}) = L(D_p) - L(D_q) \quad \text{and} \quad L((D_p \times D_q)_{2-1}) = L(D_q) - L(D_p),
\]
so all we need to do if to test whether \((D_p \times D_q)_{1-2}\) and \((D_p \times D_q)_{2-1}\) accept the empty language. However, we know that this is the case iff the set of states reachable from \((p, q)\) in \((D_p \times D_q)_{1-2}\) contains no state in \(F \times (Q - F)\) and the set of states reachable from \((p, q)\) in \((D_p \times D_q)_{2-1}\) contains no state in \((Q - F) \times F\).

Actually, the graphs of \((D_p \times D_q)_{1-2}\) and \((D_p \times D_q)_{2-1}\) are identical, so we only need to check that no state in \((F \times (Q - F)) \cup ((Q - F) \times F)\) is reachable from \((p, q)\) in that graph. This algorithm to test state equivalence is not the most efficient but it is quite reasonable (it runs in polynomial time).

If \(L = L(D)\), Lemma 2.10 below shows the relationship between \(\rho_L\) and \(\equiv\) and, more generally, between the DFA, \(D_{\rho_L}\), and the DFA, \(D/\equiv\), obtained as the quotient of the DFA \(D\) modulo the equivalence relation \(\equiv\) on \(Q\).

The minimal DFA \(D/\equiv\) is obtained by merging the states in each block \(C_i\) of the partition \(\Pi\) associated with \(\equiv\), forming states corresponding to the blocks \(C_i\), and drawing a transition on input \(a\) from a block \(C_i\) to a block \(C_j\) of \(\Pi\) iff there is a transition \(q = \delta(p, a)\) from any state \(p \in C_i\) to any state \(q \in C_j\) on input \(a\).

The start state is the block containing \(q_0\), and the final states are the blocks consisting of final states.

For example, consider the DFA \(D_1\) accepting \(L = \{ab, ba\}\) shown in Figure 2.2.

![Figure 2.2: A nonminimal DFA \(D_1\) for \(L = \{ab, ba\}\)\(^*\)](image)

This is not a minimal DFA. In fact,

\[
0 \equiv 2 \quad \text{and} \quad 3 \equiv 5.
\]
Here is the minimal DFA for L:

![Minimal DFA](image)

Figure 2.3: A minimal DFA D_2 for $L = \{ab, ba\}^*$

The minimal DFA D_2 is obtained by merging the states in the equivalence class $\{0, 2\}$ into a single state, similarly merging the states in the equivalence class $\{3, 5\}$ into a single state, and drawing the transitions between equivalence classes. We obtain the DFA shown in Figure 2.3.

Formally, the quotient DFA D/\equiv is defined such that

$$D/\equiv = (Q/\equiv, \Sigma, \delta/\equiv, [q_0]_\equiv, F/\equiv),$$

where

$$\delta/\equiv ([p]_\equiv, a) = [\delta(p, a)]_\equiv.$$

Lemma 2.10. For any (accessible) DFA $D = (Q, \Sigma, \delta, q_0, F)$ accepting the regular language $L = L(D)$, the function $\varphi: \Sigma^* \to Q$ defined such that

$$\varphi(u) = \delta^*(q_0, u)$$

induces a bijection $\widehat{\varphi}: \Sigma^*/\rho_L \to Q/\equiv$, defined such that

$$\widehat{\varphi}([u]_{\rho_L}) = [\delta^*(q_0, u)]_{\equiv}.$$

Furthermore, we have

$$[u]_{\rho_L} \subseteq [v]_{\rho_L} \iff \delta(\varphi(u), a) \equiv \varphi(v).$$

Consequently, $\widehat{\varphi}$ induces an isomorphism of DFA’s, $\widehat{\varphi}: D_{\rho_L} \to D/\equiv$.

Proof. Since $\varphi(u) = \delta^*(q_0, u)$ and $\varphi(v) = \delta^*(q_0, v)$, the fact that $\varphi(u) \equiv \varphi(v)$ can be expressed as

$$\forall w \in \Sigma^*(\delta^*(q_0, u), w) \in F \iff \delta^*(\delta^*(q_0, v), w) \in F)$$

iff

$$\forall w \in \Sigma^*(\delta^*(q_0, uw) \in F \iff \delta^*(q_0, vw) \in F).$$
which is exactly $u\rho Lv$. Therefore,

$$u\rho Lv \iff \varphi(u) \equiv \varphi(v).$$

From the above, we see that the function $\varphi : \Sigma^* \to Q$ maps each equivalence class $[u]$ modulo ρ_L to the equivalence class $[\varphi(u)]$ modulo \equiv and so, the function $\hat{\varphi} : \Sigma^*/\rho_L \to Q/\equiv$ given by

$$\hat{\varphi}([u]_{\rho_L}) = [\delta^*(q_0, u)]_{\equiv}$$

is well-defined. Moreover, $\hat{\varphi}$ is injective, since $\hat{\varphi}([u]) = \hat{\varphi}([v]) \iff \varphi(u) = \varphi(v)$ (from above) and $u\rho Lv \iff [u] = [v]$. Since every state in Q is accessible, for every $q \in Q$, there is some $u \in \Sigma^*$ so that $\varphi(u) = \delta^*(q_0, u) = q$, so $\hat{\varphi}([u]) = [q]_{\equiv}$ and $\hat{\varphi}$ is surjective. Therefore, we have a bijection $\hat{\varphi} : \Sigma^*/\rho_L \to Q/\equiv$.

Since $\varphi(u) = \delta^*(q_0, u)$, we have

$$\delta(\varphi(u), a) = \delta(\delta^*(q_0, u), a) = \delta^*(q_0, ua) = \varphi(ua),$$

and thus, $\delta(\varphi(u), a) \equiv \varphi(v)$ can be expressed as $\varphi(ua) \equiv \varphi(v)$. By the previous part, this is equivalent to uap_Lv, and we claim that this is equivalent to

$$[u]_{\rho_L} a \subseteq [v]_{\rho_L}.$$

First, if $[u]_{\rho_L} a \subseteq [v]_{\rho_L}$, then $ua \in [v]_{\rho_L}$, that is, uap_Lv. Conversely, if uap_Lv, then for every $u' \in [u]_{\rho_L}$, we have $u'p_Lu$, so by right-invariance we get $u'ap_Lua$, and since uap_Lv, we get $u'ap_Lv$, that is, $u'a \in [v]_{\rho_L}$. Since $u' \in [u]_{\rho_L}$ is arbitrary, we conclude that $[u]_{\rho_L} a \subseteq [v]_{\rho_L}$. Therefore, we proved that

$$\delta(\varphi(u), a) \equiv \varphi(v) \iff [u]_{\rho_L} a \subseteq [v]_{\rho_L}.$$

Lemma 2.10 shows that the DFA D_{ρ_L} is isomorphic to the DFA D/\equiv obtained as the quotient of the DFA D modulo the equivalence relation \equiv on Q. Since D_{ρ_L} is a minimal DFA accepting L, so is D/\equiv.

There are other characterizations of the regular languages. Among those, the characterization in terms of right derivatives is of particular interest because it yields an alternative construction of minimal DFA’s.

Definition 2.4. Given any language, $L \subseteq \Sigma^*$, for any string, $u \in \Sigma^*$, the right derivative of L by u, denoted L/u, is the language

$$L/u = \{w \in \Sigma^* \mid uw \in L\}.$$

Theorem 2.11. If $L \subseteq \Sigma^*$ is any language, then L is regular iff it has finitely many right derivatives. Furthermore, if L is regular, then all its right derivatives are regular and their number is equal to the number of states of the minimal DFA’s for L.

Proof. It is easy to check that
\[L/u = L/v \iff u\rho_L v. \]
The above shows that \(\rho_L \) has a finite number of classes, say \(m \), iff there is a finite number of right derivatives, say \(n \), and if so, \(m = n \). If \(L \) is regular, then we know that the number of equivalence classes of \(\rho_L \) is the number of states of the minimal DFA’s for \(L \), so the number of right derivatives of \(L \) is equal to the size of the minimal DFA’s for \(L \).

Conversely, if the number of derivatives is finite, say \(m \), then \(\rho_L \) has \(m \) classes and by Myhill-Nerode, \(L \) is regular. It remains to show that if \(L \) is regular then every right derivative is regular.

Let \(D = (Q, \Sigma, \delta, q_0, F) \) be a DFA accepting \(L \). If \(p = \delta^*(q_0, u) \), then let
\[D_p = (Q, \Sigma, \delta, p, F), \]
that is, \(D \) with \(p \) as start state. It is clear that
\[L/u = L(D_p), \]
so \(L/u \) is regular for every \(u \in \Sigma^* \). Also observe that if \(|Q| = n \), then there are at most \(n \) DFA’s \(D_p \), so there is at most \(n \) right derivatives, which is another proof of the fact that a regular language has a finite number of right derivatives. \(\square \)

If \(L \) is regular then the construction of a minimal DFA for \(L \) can be recast in terms of right derivatives. Let \(L/u_1, L/u_2, \ldots, L/u_m \) be the set of all the right derivatives of \(L \). Of course, we may assume that \(u_1 = \epsilon \). We form a DFA whose states are the right derivatives, \(L/u_i \). For every state, \(L/u_i \), for every \(a \in \Sigma \), there is a transition on input \(a \) from \(L/u_i \) to \(L/u_j = L/(u_ia) \). The start state is \(L = L/u_1 \) and the final states are the right derivatives, \(L/u_i \), for which \(\epsilon \in L/u_i \).

We leave it as an exercise to check that the above DFA accepts \(L \). One way to do this is to recall that \(L/u = L/v \iff u\rho_L v \) and to observe that the above construction mimics the construction of \(D_{\rho_L} \) as in the Myhill-Nerode lemma (Lemma 2.3). This DFA is minimal since the number of right derivatives is equal to the size of the minimal DFA’s for \(L \).

We now return to state equivalence. Note that if \(F = \emptyset \), then \(\equiv \) has a single block \((Q)\), and if \(F = Q \), then \(\equiv \) has a single block \((F)\). In the first case, the minimal DFA is the one state DFA rejecting all strings. In the second case, the minimal DFA is the one state DFA accepting all strings. When \(F \neq \emptyset \) and \(F \neq Q \), there are at least two states in \(Q \), and \(\equiv \) also has at least two blocks, as we shall see shortly. It remains to compute \(\equiv \) explicitly.

This is done using a sequence of approximations. In view of the previous discussion, we are assuming that \(F \neq \emptyset \) and \(F \neq Q \), which means that \(n \geq 2 \), where \(n \) is the number of states in \(Q \).
2.4. STATE EQUIVALENCE AND MINIMAL DFA’S

Definition 2.5. Given any DFA $D = (Q, \Sigma, \delta, q_0, F)$, for every $i \geq 0$, the relation \equiv_i on Q, called i-state equivalence, is defined as follows: for all $p, q \in Q$,

$$p \equiv_i q \iff \forall w \in \Sigma^*, |w| \leq i \ (\delta^*(p, w) \in F \iff \delta^*(q, w) \in F).$$

When $p \equiv_i q$, we say that p and q are i-indistinguishable.

Since state equivalence \equiv is defined such that

$$p \equiv q \iff \forall w \in \Sigma^* (\delta^*(p, w) \in F \iff \delta^*(q, w) \in F),$$

we note that testing the condition

$$\delta^*(p, w) \in F \iff \delta^*(q, w) \in F$$

for all strings in Σ^* is equivalent to testing the above condition for all strings of length at most i for all $i \geq 0$, i.e.

$$p \equiv q \iff \forall i \geq 0 \forall w \in \Sigma^*, |w| \leq i \ (\delta^*(p, w) \in F \iff \delta^*(q, w) \in F).$$

Since \equiv_i is defined such that

$$p \equiv_i q \iff \forall w \in \Sigma^*, |w| \leq i \ (\delta^*(p, w) \in F \iff \delta^*(q, w) \in F),$$

we conclude that

$$p \equiv q \iff \forall i \geq 0 (p \equiv_i q).$$

This identity can also be expressed as

$$\equiv = \bigcap_{i \geq 0} \equiv_i.$$

If we assume that $F \neq \emptyset$ and $F \neq Q$, observe that \equiv_0 has exactly two equivalence classes F and $Q - F$, since ϵ is the only string of length 0, and since the condition

$$\delta^*(p, \epsilon) \in F \iff \delta^*(q, \epsilon) \in F$$

is equivalent to the condition

$$p \in F \iff q \in F.$$

It is also obvious from the definition of \equiv_i that

$$\equiv \subseteq \cdots \subseteq \equiv_{i+1} \subseteq \equiv_i \subseteq \cdots \subseteq \equiv_1 \subseteq \equiv_0.$$

If this sequence was strictly decreasing for all $i \geq 0$, the partition associated with \equiv_{i+1} would contain at least one more block than the partition associated with \equiv_i and since we start with a partition with two blocks, the partition associated with \equiv_i would have at least $i + 2$ blocks.
But then, for \(i = n - 1 \), the partition associated with \(\equiv_{n-1} \) would have at least \(n + 1 \) blocks, which is absurd since \(Q \) has only \(n \) states. Therefore, there is a smallest integer, \(i_0 \leq n - 2 \), such that

\[
\equiv_{i_0+1} = \equiv_{i_0}.
\]

Thus, it remains to compute \(\equiv_{i+1} \) from \(\equiv_i \), which can be done using the following lemma:

The lemma also shows that

\[
\equiv = \equiv_{i_0}.
\]

Lemma 2.12. For any (accessible) DFA \(D = (Q, \Sigma, \delta, q_0, F) \), for all \(p, q \in Q \), \(p \equiv_i q \) iff \(p \equiv_i q \) and \(\delta(p, a) \equiv_i \delta(q, a) \), for every \(a \in \Sigma \). Furthermore, if \(F \neq \emptyset \) and \(F \neq Q \), there is a smallest integer \(i_0 \leq n - 2 \), such that

\[
\equiv_{i_0+1} = \equiv_{i_0} = \equiv.
\]

Proof. By the definition of the relation \(\equiv_i \),

\[
p \equiv_{i+1} q \iff \forall w \in \Sigma^*, |w| \leq i + 1 (\delta^*(p, w) \in F \iff \delta^*(q, w) \in F).
\]

The trick is to observe that the condition

\[\delta^*(p, w) \in F \iff \delta^*(q, w) \in F\]

holds for all strings of length at most \(i + 1 \) iff it holds for all strings of length at most \(i \) and for all strings of length between 1 and \(i + 1 \). This is expressed as

\[
p \equiv_{i+1} q \iff \forall w \in \Sigma^*, |w| \leq i (\delta^*(p, w) \in F \iff \delta^*(q, w) \in F)
\]

and

\[
\forall w \in \Sigma^*, 1 \leq |w| \leq i + 1 (\delta^*(p, w) \in F \iff \delta^*(q, w) \in F).
\]

Obviously, the first condition in the conjunction is \(p \equiv_i q \), and since every string \(w \) such that \(1 \leq |w| \leq i + 1 \) can be written as \(au \) where \(a \in \Sigma \) and \(0 \leq |u| \leq i \), the second condition in the conjunction can be written as

\[
\forall a \in \Sigma \forall u \in \Sigma^*, |u| \leq i (\delta^*(p, au) \in F \iff \delta^*(q, au) \in F).
\]

However, \(\delta^*(p, au) = \delta^*(\delta(p, a), u) \) and \(\delta^*(q, au) = \delta^*(\delta(q, a), u) \), so that the above condition is really

\[
\forall a \in \Sigma (\delta(p, a) \equiv_i \delta(q, a)).
\]

Thus, we showed that

\[
p \equiv_{i+1} q \iff p \equiv_i q \quad \text{and} \quad \forall a \in \Sigma (\delta(p, a) \equiv_i \delta(q, a)).
\]

Thus, if \(\equiv_{i+1} = \equiv_i \) for some \(i \geq 0 \), using induction, we also have \(\equiv_{i+j} = \equiv_i \) for all \(j \geq 1 \). Since

\[
\equiv = \bigcap_{i \geq 0} \equiv_i, \quad \equiv_{i+1} \subseteq \equiv_i,
\]

and since we know that there is a smallest index say \(i_0 \), such that \(\equiv_j = \equiv_{i_0} \), for all \(j \geq i_0 + 1 \), we have \(\equiv = \equiv_{i_0} \). \(\square \)
Using Lemma 2.12, we can compute \equiv inductively, starting from $\equiv_0 = (F, Q - F)$, and computing \equiv_{i+1} from \equiv_i, until the sequence of partitions associated with the \equiv_i stabilizes.

Note that if $F = Q$ or $F = \emptyset$, then $\equiv = \equiv_0$, and the inductive characterization of Lemma 2.12 holds trivially.

There are a number of algorithms for computing \equiv, or to determine whether $p \equiv q$ for some given $p, q \in Q$.

A simple method to compute \equiv is described in Hopcroft and Ullman. It consists in forming a triangular array corresponding to all unordered pairs (p, q), with $p \neq q$ (the rows and the columns of this triangular array are indexed by the states in Q, where the entries are below the descending diagonal). Initially, the entry (p, q) is marked iff p and q are not 0-equivalent, which means that p and q are not both in F or not both in $Q - F$. Then, we process every unmarked entry on every row as follows: for any unmarked pair (p, q), we consider pairs $(\delta(p, a), \delta(q, a))$, for all $a \in \Sigma$. If any pair $(\delta(p, a), \delta(q, a))$ is already marked, this means that $\delta(p, a)$ and $\delta(q, a)$ are inequivalent, and thus p and q are inequivalent, and we mark the pair (p, q). We continue in this fashion, until at the end of a round during which all the rows are processed, nothing has changed. When the algorithm stops, all marked pairs are inequivalent, and all unmarked pairs correspond to equivalent states.

Let us illustrate the above method. Consider the following DFA accepting $\{a, b\}^* \{abb\}$:

$$
\begin{array}{ccc}
A & B & C \\
B & B & D \\
C & B & C \\
D & B & E \\
E & B & C \\
\end{array}
$$

The start state is A, and the set of final states is $F = \{E\}$. (This is the DFA displayed in Figure 2.1.)

The initial (half) array is as follows, using \times to indicate that the corresponding pair (say, (E, A)) consists of inequivalent states, and \square to indicate that nothing is known yet.

$$
\begin{array}{c}
B \\
C \\
D \\
E \\
A \\
\end{array}
\begin{array}{c}
\square \\
\square \\
\square \\
\times \\
\times \times \times \\
A B C D
\end{array}
$$

After the first round, we have
After the second round, we have

\[
\begin{array}{cccc}
B & \square & \times & \times \\
C & \square & \square & \times \\
D & \times & \times & \times \\
E & \times & \times & \times & \times \\
A & B & C & D
\end{array}
\]

Finally, nothing changes during the third round, and thus, only A and C are equivalent, and we get the four equivalence classes

\[\{(A, C), \{B\}, \{D\}, \{E\}\}.\]

We obtain the minimal DFA showed in Figure 2.4.

![Figure 2.4: A minimal DFA accepting \(\{a, b\}^*\{abb\}\)](image)

There are ways of improving the efficiency of this algorithm, see Hopcroft and Ullman for such improvements. Fast algorithms for testing whether \(p \equiv q\) for some given \(p, q \in Q\) also exist. One of these algorithms is based on “forward closures,” following an idea of Knuth. Such an algorithm is related to a fast unification algorithm.
2.5 A Fast Algorithm for Checking State Equivalence

Using a “Forward-Closure”

Given two states \(p, q \in Q \), if \(p \equiv q \), then we know that \(\delta(p, a) \equiv \delta(q, a) \), for all \(a \in \Sigma \). This suggests a method for testing whether two distinct states \(p, q \) are equivalent. Starting with the relation \(R = \{(p, q)\} \), construct the smallest equivalence relation \(R^\dagger \) containing \(R \) with the property that whenever \((r, s) \in R^\dagger \), then \((\delta(r, a), \delta(s, a)) \in R^\dagger \), for all \(a \in \Sigma \). If we ever encounter a pair \((r, s)\) such that \(r \in F \) and \(s \in F \), or \(r \in \overline{F} \) and \(s \in F \), then \(r \) and \(s \) are inequivalent, and so are \(p \) and \(q \). Otherwise, it can be shown that \(p \) and \(q \) are indeed equivalent. Thus, testing for the equivalence of two states reduces to finding an efficient method for computing the “forward closure” of a relation defined on the set of states of a DFA.

Such a method was worked out by John Hopcroft and Richard Karp and published in a 1971 Cornell technical report. This method is based on an idea of Donald Knuth for solving Exercise 11, in Section 2.3.5 of The Art of Computer Programming, Vol. 1, second edition, 1973. A sketch of the solution for this exercise is given on page 594. As far as I know, Hopcroft and Karp’s method was never published in a journal, but a simple recursive algorithm does appear on page 144 of Aho, Hopcroft and Ullman’s The Design and Analysis of Computer Algorithms, first edition, 1974. Essentially the same idea was used by Paterson and Wegman to design a fast unification algorithm (in 1978). We make a few definitions.

A relation \(S \subseteq Q \times Q \) is a forward closure iff it is an equivalence relation and whenever \((r, s) \in S \), then \((\delta(r, a), \delta(s, a)) \in S \), for all \(a \in \Sigma \). The forward closure of a relation \(R \subseteq Q \times Q \) is the smallest equivalence relation \(R^\dagger \) containing \(R \) which is forward closed.

We say that a forward closure \(S \) is good iff whenever \((r, s) \in S \), then \(\text{good}(r, s) \), where \(\text{good}(r, s) \) holds iff either both \(r, s \in F \), or both \(r, s \notin F \). Obviously, \(\text{bad}(r, s) \) iff \(\neg \text{good}(r, s) \).

Given any relation \(R \subseteq Q \times Q \), recall that the smallest equivalence relation \(R_\infty \) containing \(R \) is the relation \((R \cup R^{-1})^* \) (where \(R^{-1} = \{(q, p) \mid (p, q) \in R\} \), and \((R \cup R^{-1})^* \) is the reflexive and transitive closure of \((R \cup R^{-1}) \)). The forward closure of \(R \) can be computed inductively by defining the sequence of relations \(R_i \subseteq Q \times Q \) as follows:

\[
R_0 = R_\infty \\
R_{i+1} = (R_i \cup \{(\delta(r, a), \delta(s, a)) \mid (r, s) \in R_i, a \in \Sigma\})_\infty.
\]

It is not hard to prove that \(R_{i_0+1} = R_{i_0} \) for some least \(i_0 \), and that \(R^\dagger = R_{i_0} \) is the smallest forward closure containing \(R \). The following two facts can also been established.

(a) if \(R^\dagger \) is good, then

\[
R^\dagger \subseteq \equiv.
\]

(2.1)
(b) if \(p \equiv q \), then
\[
R^\dagger \subseteq \equiv,
\]
that is, equation (2.1) holds. This implies that \(R^\dagger \) is good.

As a consequence, we obtain the correctness of our procedure: \(p \equiv q \) iff the forward closure \(R^\dagger \) of the relation \(R = \{(p, q)\} \) is good.

In practice, we maintain a partition \(\Pi \) representing the equivalence relation that we are closing under forward closure. We add each new pair \((\delta(r, a), \delta(s, a))\) one at a time, and immediately form the smallest equivalence relation containing the new relation. If \(\delta(r, a) \) and \(\delta(s, a) \) already belong to the same block of \(\Pi \), we consider another pair, else we merge the blocks corresponding to \(\delta(r, a) \) and \(\delta(s, a) \), and then consider another pair.

The algorithm is recursive, but it can easily be implemented using a stack. To manipulate partitions efficiently, we represent them as lists of trees (forests). Each equivalence class \(C \) in the partition \(\Pi \) is represented by a tree structure consisting of nodes and parent pointers, with the pointers from the sons of a node to the node itself. The root has a null pointer. Each node also maintains a counter keeping track of the number of nodes in the subtree rooted at that node.

Note that pointers can be avoided. We can represent a forest of \(n \) nodes as a list of \(n \) pairs of the form \((\text{father}, \text{count})\). If \((\text{father}, \text{count})\) is the \(i \)th pair in the list, then \text{father} = 0 iff node \(i \) is a root node, otherwise, \text{father} is the index of the node in the list which is the parent of node \(i \). The number \text{count} is the total number of nodes in the tree rooted at the \(i \)th node.

For example, the following list of nine nodes
\[
((0, 3), (0, 2), (1, 1), (0, 2), (0, 2), (1, 1), (2, 1), (4, 1), (5, 1))
\]
represents a forest consisting of the following four trees:

![Figure 2.5: A forest of four trees](image)

Two functions \textit{union} and \textit{find} are defined as follows. Given a state \(p \), \textit{find}(\(p \), \(\Pi \)) finds the root of the tree containing \(p \) as a node (not necessarily a leaf). Given two root nodes \(p, q \), \textit{union}(\(p \), \(q \), \(\Pi \)) forms a new partition by merging the two trees with roots \(p \) and \(q \) as follows: if the counter of \(p \) is smaller than that of \(q \), then let the root of \(p \) point to \(q \), else let the root of \(q \) point to \(p \).
For example, given the two trees shown on the left in Figure 2.6, \(\text{find}(6, \Pi) \) returns 3 and \(\text{find}(8, \Pi) \) returns 4. Then \(\text{union}(3, 4, \Pi) \) yields the tree shown on the right in Figure 2.6.

In order to speed up the algorithm, using an idea due to Tarjan, we can modify \(\text{find} \) as follows: during a call \(\text{find}(p, \Pi) \), as we follow the path from \(p \) to the root \(r \) of the tree containing \(p \), we redirect the parent pointer of every node \(q \) on the path from \(p \) (including \(p \) itself) to \(r \) (we perform \textit{path compression}). For example, applying \(\text{find}(8, \Pi) \) to the tree shown on the right in Figure 2.6 yields the tree shown in Figure 2.7.

Then, the algorithm is as follows:
The initial partition \(\Pi \) is the identity relation on \(Q \), i.e., it consists of blocks \(\{q\} \) for all states \(q \in Q \). The algorithm uses a stack \(st \). We are assuming that the DFA \(dd \) is specified by a list of two sublists, the first list, denoted \(\text{left}(dd) \) in the pseudo-code above, being a representation of the transition function, and the second one, denoted \(\text{right}(dd) \), the set of final states. The transition function itself is a list of lists, where the \(i \)-th list represents the \(i \)-th row of the transition table for \(dd \). The function \(\delta \) is such that \(\delta(3, a) = 2 \) and \(\delta(3, b) = 3 \).

The sequence of steps performed by the algorithm starting with \(p = 1 \) and \(q = 6 \) is shown below. At every step, we show the current pair of states, the partition, and the stack.
p = 1, q = 6, Π = \{\{1, 6\}, \{2\}, \{3\}, \{4\}, \{5\}, \{7\}, \{8\}, \{9\}\}, st = \{\{1, 6\}\}

\[p = 2, q = 7, \, \Pi = \{\{1, 6\}, \{2, 7\}, \{3\}, \{4\}, \{5\}, \{8\}, \{9\}\}, \, st = \{\{3, 6\}, \{2, 7\}\} \]
Figure 2.10: Testing state equivalence in a DFA

\[p = 4, q = 8, \Pi = \{\{1, 6\}, \{2, 7\}, \{3\}, \{4, 8\}, \{5, 9\}\}, st = \{\{3, 6\}, \{4, 8\}\} \]

Figure 2.11: Testing state equivalence in a DFA

\[p = 5, q = 9, \Pi = \{\{1, 6\}, \{2, 7\}, \{3\}, \{4, 8\}, \{5, 9\}\}, st = \{\{3, 6\}, \{5, 9\}\} \]
Figure 2.12: Testing state equivalence in a DFA

\[p = 3, q = 6, \Pi = \{\{1, 3, 6\}, \{2, 7\}, \{4, 8\}, \{5, 9\}\}, st = \{\{3, 6\}, \{3, 6\}\} \]

Since states 3 and 6 belong to the first block of the partition, the algorithm terminates.
Since no block of the partition contains a bad pair, the states \(p = 1 \) and \(q = 6 \) are equivalent.

Let us now test whether the states \(p = 3 \) and \(q = 7 \) are equivalent.

Figure 2.13: Testing state equivalence in a DFA
$p = 3, q = 7, \Pi = \{\{1\}, \{2\}, \{3, 7\}, \{4\}, \{5\}, \{6\}, \{8\}, \{9\}\}, st = \{\{3\}, \{7\}\}$

Figure 2.14: Testing state equivalence in a DFA

$p = 2, q = 7, \Pi = \{\{1\}, \{2, 3, 7\}, \{4\}, \{5\}, \{6\}, \{8\}, \{9\}\}, st = \{\{3\}, \{8\}, \{2, 7\}\}$

Figure 2.15: Testing state equivalence in a DFA
$p = 4, q = 8, \Pi = \{\{1\}, \{2, 3, 7\}, \{4, 8\}, \{5\}, \{6\}, \{9\}\}, \text{st} = \{\{3, 8\}, \{4, 8\}\}$

Figure 2.16: Testing state equivalence in a DFA

$p = 5, q = 9, \Pi = \{\{1\}, \{2, 3, 7\}, \{4, 8\}, \{5, 9\}, \{6\}\}, \text{st} = \{\{3, 8\}, \{5, 9\}\}$

Figure 2.17: Testing state equivalence in a DFA
\[p = 3, q = 6, \Pi = \{\{1\}, \{2, 3, 6, 7\}, \{4, 8\}, \{5, 9\}\}, \ st = \{\{3, 8\}, \{3, 6\}\}\]

Figure 2.18: Testing state equivalence in a DFA

\[p = 3, q = 8, \Pi = \{\{1\}, \{2, 3, 4, 6, 7, 8\}, \{5, 9\}\}, \ st = \{\{3, 8\}\}\]

Figure 2.19: Testing state equivalence in a DFA
\(p = 3, q = 9 \), \(\Pi = \{\{1\}, \{2, 3, 4, 6, 7, 8\}, \{5, 9\}\} \)

Since the pair \((3, 9)\) is a bad pair, the algorithm stops, and the states \(p = 3 \) and \(q = 7 \) are inequivalent.
Chapter 3

Context-Free Grammars, Context-Free Languages, Parse Trees and Ogden’s Lemma

3.1 Context-Free Grammars

A context-free grammar basically consists of a finite set of grammar rules. In order to define grammar rules, we assume that we have two kinds of symbols: the terminals, which are the symbols of the alphabet underlying the languages under consideration, and the nonterminals, which behave like variables ranging over strings of terminals. A rule is of the form $A \rightarrow \alpha$, where A is a single nonterminal, and the right-hand side α is a string of terminal and/or nonterminal symbols. As usual, first we need to define what the object is (a context-free grammar), and then we need to explain how it is used. Unlike automata, grammars are used to generate strings, rather than recognize strings.

Definition 3.1. A context-free grammar (for short, CFG) is a quadruple $G = (V, \Sigma, P, S)$, where

- V is a finite set of symbols called the vocabulary (or set of grammar symbols);
- $\Sigma \subseteq V$ is the set of terminal symbols (for short, terminals);
- $S \in (V - \Sigma)$ is a designated symbol called the start symbol;
- $P \subseteq (V - \Sigma) \times V^*$ is a finite set of productions (or rewrite rules, or rules).

The set $N = V - \Sigma$ is called the set of nonterminal symbols (for short, nonterminals). Thus, $P \subseteq N \times V^*$, and every production $\langle A, \alpha \rangle$ is also denoted as $A \rightarrow \alpha$. A production of the form $A \rightarrow \epsilon$ is called an epsilon rule, or null rule.
Remark: Context-free grammars are sometimes defined as $G = (V_N, V_T, P, S)$. The correspondence with our definition is that $\Sigma = V_T$ and $N = V_N$, so that $V = V_N \cup V_T$. Thus, in this other definition, it is necessary to assume that $V_T \cap V_N = \emptyset$.

Example 1. $G_1 = (\{E, a, b\}, \{a, b\}, P, E)$, where P is the set of rules

$$
E \rightarrow aEb, \\
E \rightarrow ab.
$$

As we will see shortly, this grammar generates the language $L_1 = \{a^n b^n \mid n \geq 1\}$, which is not regular.

Example 2. $G_2 = (\{E, +, *, (,), a\}, \{+, *, (,), a\}, P, E)$, where P is the set of rules

$$
E \rightarrow E + E, \\
E \rightarrow E * E, \\
E \rightarrow (E), \\
E \rightarrow a.
$$

This grammar generates a set of arithmetic expressions.

3.2 Derivations and Context-Free Languages

The productions of a grammar are used to derive strings. In this process, the productions are used as rewrite rules. Formally, we define the derivation relation associated with a context-free grammar. First, let us review the concepts of transitive closure and reflexive and transitive closure of a binary relation.

Given a set A, a binary relation R on A is any set of ordered pairs, i.e. $R \subseteq A \times A$. For short, instead of binary relation, we often simply say relation. Given any two relations R, S on A, their composition $R \circ S$ is defined as

$$
R \circ S = \{(x, y) \in A \times A \mid \exists z \in A, (x, z) \in R \text{ and } (z, y) \in S\}.
$$

The identity relation I_A on A is the relation I_A defined such that

$$
I_A = \{(x, x) \mid x \in A\}.
$$

For short, we often denote I_A as I. Note that

$$
R \circ I = I \circ R = R
$$

for every relation R on A. Given a relation R on A, for any $n \geq 0$ we define R^n as follows:

$$
R^0 = I, \\
R^{n+1} = R^n \circ R.
$$
3.2. DERIVATIONS AND CONTEXT-FREE LANGUAGES

It is obvious that $R^1 = R$. It is also easily verified by induction that $R^n \circ R = R \circ R^n$. The transitive closure R^+ of the relation R is defined as

$$R^+ = \bigcup_{n \geq 1} R^n.$$

It is easily verified that R^+ is the smallest transitive relation containing R, and that $(x, y) \in R^+$ iff there is some $n \geq 1$ and some $x_0, x_1, \ldots, x_n \in A$ such that $x_0 = x$, $x_n = y$, and $(x_i, x_{i+1}) \in R$ for all i, $0 \leq i \leq n - 1$. The transitive and reflexive closure R^* of the relation R is defined as

$$R^* = \bigcup_{n \geq 0} R^n.$$

Clearly, $R^* = R^+ \cup I$. It is easily verified that R^* is the smallest transitive and reflexive relation containing R.

Definition 3.2. Given a context-free grammar $G = (V, \Sigma, P, S)$, the (one-step) derivation relation \Rightarrow_G associated with G is the binary relation $\Rightarrow_G \subseteq V^* \times V^*$ defined as follows: for all $\alpha, \beta \in V^*$, we have

$$\alpha \Rightarrow_G \beta$$

iff there exist $\lambda, \rho \in V^*$, and some production $(A \rightarrow \gamma) \in P$, such that

$$\alpha = \lambda A \rho \quad \text{and} \quad \beta = \lambda \gamma \rho.$$

The transitive closure of \Rightarrow_G is denoted as \Rightarrow_G^+ and the reflexive and transitive closure of \Rightarrow_G is denoted as \Rightarrow_G^*.

When the grammar G is clear from the context, we usually omit the subscript G in \Rightarrow_G, \Rightarrow_G^+, and \Rightarrow_G^*.

A string $\alpha \in V^*$ such that $S \Rightarrow \alpha$ is called a sentential form, and a string $w \in \Sigma^*$ such that $S \Rightarrow w$ is called a sentence. A derivation $\alpha \Rightarrow_G^* \beta$ involving n steps is denoted as $\alpha \Rightarrow^n_G \beta$.

Note that a derivation step

$$\alpha \Rightarrow_G \beta$$

is rather nondeterministic. Indeed, one can choose among various occurrences of nonterminals A in α, and also among various productions $A \rightarrow \gamma$ with left-hand side A.

For example, using the grammar $G_1 = (\{E, a, b\}, \{a, b\}, P, E)$, where P is the set of rules

$$E \rightarrow aEb,$$

$$E \rightarrow ab,$$
every derivation from E is of the form

$$E \xrightarrow{*} a^n Eb^n \Rightarrow a^nabb = a^{n+1}b^{n+1},$$

or

$$E \xrightarrow{*} a^n Eb^n \Rightarrow a^n aEbb = a^{n+1}Eb^{n+1},$$

where $n \geq 0$.

Grammar G_1 is very simple: every string $a^n b^n$ has a unique derivation. This is usually not the case. For example, using the grammar $G_2 = (\{E, +, *, (,), a\}, \{+, *, (,), a\}, P, E)$, where P is the set of rules

$$P =
\begin{align*}
E &\rightarrow E + E, \\
E &\rightarrow E * E, \\
E &\rightarrow (E), \\
E &\rightarrow a,
\end{align*}$$

the string $a + a * a$ has the following distinct derivations, where the boldface indicates which occurrence of E is rewritten:

$$E \Rightarrow E * E \Rightarrow E + E * E$$

$$\Rightarrow a + E * E \Rightarrow a + a * E \Rightarrow a + a * a,$$

and

$$E \Rightarrow E + E \Rightarrow a + E$$

$$\Rightarrow a + E * E \Rightarrow a + a * E \Rightarrow a + a * a.$$

In the above derivations, the leftmost occurrence of a nonterminal is chosen at each step. Such derivations are called leftmost derivations. We could systematically rewrite the rightmost occurrence of a nonterminal, getting rightmost derivations. The string $a + a * a$ also has the following two rightmost derivations, where the boldface indicates which occurrence of E is rewritten:

$$E \Rightarrow E + E \Rightarrow E + E * E$$

$$\Rightarrow E + E * a \Rightarrow E + a * a \Rightarrow a + a * a,$$

and

$$E \Rightarrow E * E \Rightarrow E * a$$

$$\Rightarrow E + E * a \Rightarrow E + a * a \Rightarrow a + a * a.$$

The language generated by a context-free grammar is defined as follows.
3.2. DERIVATIONS AND CONTEXT-FREE LANGUAGES

Definition 3.3. Given a context-free grammar \(G = (V, \Sigma, P, S) \), the language generated by \(G \) is the set

\[
L(G) = \{ w \in \Sigma^* \mid S \xrightarrow{+} w \}.
\]

A language \(L \subseteq \Sigma^* \) is a context-free language (for short, CFL) iff \(L = L(G) \) for some context-free grammar \(G \).

It is technically very useful to consider derivations in which the leftmost nonterminal is always selected for rewriting, and dually, derivations in which the rightmost nonterminal is always selected for rewriting.

Definition 3.4. Given a context-free grammar \(G = (V, \Sigma, P, S) \), the (one-step) leftmost derivation relation \(\xrightarrow{lm} \) associated with \(G \) is the binary relation \(\xrightarrow{lm} \subseteq V^* \times V^* \) defined as follows: for all \(\alpha, \beta \in V^* \), we have

\[
\alpha \xrightarrow{lm} \beta
\]

iff there exist \(u \in \Sigma^* \), \(\rho \in V^* \), and some production \((A \rightarrow \gamma) \in P\), such that

\[
\alpha = uA\rho \quad \text{and} \quad \beta = u\gamma\rho.
\]

The transitive closure of \(\xrightarrow{lm} \) is denoted as \(\xrightarrow{+} \) and the reflexive and transitive closure of \(\xrightarrow{lm} \) is denoted as \(\xrightarrow{*} \). The (one-step) rightmost derivation relation \(\xrightarrow{rm} \) associated with \(G \) is the binary relation \(\xrightarrow{rm} \subseteq V^* \times V^* \) defined as follows: for all \(\alpha, \beta \in V^* \), we have

\[
\alpha \xrightarrow{rm} \beta
\]

iff there exist \(\lambda \in V^* \), \(v \in \Sigma^* \), and some production \((A \rightarrow \gamma) \in P\), such that

\[
\alpha = \lambda Av \quad \text{and} \quad \beta = \lambda\gamma v.
\]

The transitive closure of \(\xrightarrow{rm} \) is denoted as \(\xrightarrow{+} \) and the reflexive and transitive closure of \(\xrightarrow{rm} \) is denoted as \(\xrightarrow{*} \).

Remarks: It is customary to use the symbols \(a, b, c, d, e \) for terminal symbols, and the symbols \(A, B, C, D, E \) for nonterminal symbols. The symbols \(u, v, w, x, y, z \) denote terminal strings, and the symbols \(\alpha, \beta, \gamma, \lambda, \rho, \mu \) denote strings in \(V^* \). The symbols \(X, Y, Z \) usually denote symbols in \(V \).

Given a context-free grammar \(G = (V, \Sigma, P, S) \), parsing a string \(w \) consists in finding out whether \(w \in L(G) \), and if so, in producing a derivation for \(w \). The following lemma is technically very important. It shows that leftmost and rightmost derivations are “universal”. This has some important practical implications for the complexity of parsing algorithms.
Lemma 3.1. Let $G = (V, \Sigma, P, S)$ be a context-free grammar. For every $w \in \Sigma^*$, for every derivation $S \xrightarrow{+} w$, there is a leftmost derivation $S \xrightarrow{+ \text{lm}} w$, and there is a rightmost derivation $S \xrightarrow{+ \text{rm}} w$.

Proof. Of course, we have to somehow use induction on derivations, but this is a little tricky, and it is necessary to prove a stronger fact. We treat leftmost derivations, rightmost derivations being handled in a similar way.

Claim: For every $w \in \Sigma^*$, for every $\alpha \in V^+$, for every $n \geq 1$, if $\alpha \xrightarrow{n} w$, then there is a leftmost derivation $\alpha \xrightarrow{n \text{lm}} w$.

The claim is proved by induction on n.

For $n = 1$, there exist some $\lambda, \rho \in V^*$ and some production $A \rightarrow \gamma$, such that $\alpha = \lambda A \rho$ and $w = \lambda \gamma \rho$. Since w is a terminal string, λ, ρ, and γ, are terminal strings. Thus, A is the only nonterminal in α, and the derivation step $\alpha \xrightarrow{1} w$ is a leftmost step (and a rightmost step!).

If $n > 1$, then the derivation $\alpha \xrightarrow{n} w$ is of the form

$$\alpha \xrightarrow{n} \alpha_1 \xrightarrow{n-1} w.$$

There are two subcases.

Case 1. If the derivation step $\alpha \xrightarrow{n} \alpha_1$ is a leftmost step $\alpha \xrightarrow{n \text{lm}} \alpha_1$, by the induction hypothesis, there is a leftmost derivation $\alpha_1 \xrightarrow{n-1 \text{lm}} w$, and we get the leftmost derivation

$$\alpha \xrightarrow{n \text{lm}} \alpha_1 \xrightarrow{n-1 \text{lm}} w.$$

Case 2. The derivation step $\alpha \xrightarrow{n} \alpha_1$ is a not a leftmost step. In this case, there must be some $u \in \Sigma^*$, $\mu, \rho \in V^*$, some nonterminals A and B, and some production $B \rightarrow \delta$, such that

$$\alpha = uA\mu B\rho \quad \text{and} \quad \alpha_1 = uA\mu \delta \rho,$$

where A is the leftmost nonterminal in α. Since we have a derivation $\alpha_1 \xrightarrow{n-1 \text{lm}} w$ of length $n - 1$, by the induction hypothesis, there is a leftmost derivation

$$\alpha_1 \xrightarrow{n-1 \text{lm}} w.$$

Since $\alpha_1 = uA\mu \delta \rho$ where A is the leftmost terminal in α_1, the first step in the leftmost derivation $\alpha_1 \xrightarrow{n-1 \text{lm}} w$ is of the form

$$uA\mu \delta \rho \xrightarrow{l_m} w \gamma \mu \delta \rho,$$
for some production \(A \rightarrow \gamma \). Thus, we have a derivation of the form
\[
\alpha = uA\mu B\rho \Rightarrow uA\mu\epsilon \Rightarrow u\gamma \mu \delta \rho \overset{n-2}{\Rightarrow} w.
\]
We can commute the first two steps involving the productions \(B \rightarrow \delta \) and \(A \rightarrow \gamma \), and we get the derivation
\[
\alpha = uA\mu B\rho \overset{lm}{\Rightarrow} u\gamma \mu B\rho \Rightarrow u\gamma \mu \delta \rho \overset{n-2}{\Rightarrow} w.
\]
This may no longer be a leftmost derivation, but the first step is leftmost, and we are back in case 1. Thus, we conclude by applying the induction hypothesis to the derivation \(u\gamma B\rho \overset{n-1}{\Rightarrow} w \), as in case 1.

Lemma 3.1 implies that \(L(G) = \{w \in \Sigma^* | S \overset{?}{\Rightarrow} w\} = \{w \in \Sigma^* | S \overset{?}{\Rightarrow} w\} \).

We observed that if we consider the grammar \(G_2 = (\{E,+,*,(,),a\}, \{+,*,(,),a\}, P, E) \), where \(P \) is the set of rules
\[
E \rightarrow E + E, \\
E \rightarrow E * E, \\
E \rightarrow (E), \\
E \rightarrow a,
\]
the string \(a + a * a \) has the following two distinct leftmost derivations, where the boldface indicates which occurrence of \(E \) is rewritten:
\[
E \Rightarrow E * E \Rightarrow E + E * E \\
\Rightarrow a + E * E \Rightarrow a + a * E \Rightarrow a + a * a,
\]
and
\[
E \Rightarrow E + E \Rightarrow a + E \\
\Rightarrow a + E * E \Rightarrow a + a * E \Rightarrow a + a * a.
\]
When this happens, we say that we have an ambiguous grammars. In some cases, it is possible to modify a grammar to make it unambiguous. For example, the grammar \(G_2 \) can be modified as follows.

Let \(G_3 = (\{E,T,F,+,*,(,),a\}, \{+,*,(,),a\}, P, E) \), where \(P \) is the set of rules
\[
E \rightarrow E + T, \\
E \rightarrow T, \\
T \rightarrow T * F, \\
T \rightarrow F, \\
F \rightarrow (E), \\
F \rightarrow a.
\]
We leave as an exercise to show that $L(G_3) = L(G_2)$, and that every string in $L(G_3)$ has a unique leftmost derivation. Unfortunately, it is not always possible to modify a context-free grammar to make it unambiguous. There exist context-free languages that have no unambiguous context-free grammars. For example, the language

$$L_3 = \{a^m b^m c^n \mid m, n \geq 1\} \cup \{a^m b^n c^n \mid m, n \geq 1\}$$

is context-free, since it is generated by the following context-free grammar:

- $S \rightarrow S_1,$
- $S \rightarrow S_2,$
- $S_1 \rightarrow XC,$
- $S_2 \rightarrow AY,$
- $X \rightarrow aXb,$
- $X \rightarrow ab,$
- $Y \rightarrow bYc,$
- $Y \rightarrow bc,$
- $A \rightarrow aA,$
- $A \rightarrow a,$
- $C \rightarrow cC,$
- $C \rightarrow c.$

However, it can be shown that L_3 has no unambiguous grammars. All this motivates the following definition.

Definition 3.5. A context-free grammar $G = (V, \Sigma, P, S)$ is *ambiguous* if there is some string $w \in L(G)$ that has two distinct leftmost derivations (or two distinct rightmost derivations). Thus, a grammar G is *unambiguous* if every string $w \in L(G)$ has a unique leftmost derivation (or a unique rightmost derivation). A context-free language L is *inherently ambiguous* if every CFG G for L is ambiguous.

Whether or not a grammar is ambiguous affects the complexity of parsing. Parsing algorithms for unambiguous grammars are more efficient than parsing algorithms for ambiguous grammars.

We now consider various normal forms for context-free grammars.

3.3 Normal Forms for Context-Free Grammars, Chomsky Normal Form

One of the main goals of this section is to show that every CFG G can be converted to an equivalent grammar in *Chomsky Normal Form* (for short, CNF). A context-free grammar
3.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS

$G = (V, \Sigma, P, S)$ is in Chomsky Normal Form iff its productions are of the form

\[A \rightarrow BC, \]
\[A \rightarrow a, \] or
\[S \rightarrow \epsilon, \]

where $A, B, C \in N$, $a \in \Sigma$, $S \rightarrow \epsilon$ is in P iff $\epsilon \in L(G)$, and S does not occur on the right-hand side of any production.

Note that a grammar in Chomsky Normal Form does not have ϵ-rules, i.e., rules of the form $A \rightarrow \epsilon$, except when $\epsilon \in L(G)$, in which case $S \rightarrow \epsilon$ is the only ϵ-rule. It also does not have chain rules, i.e., rules of the form $A \rightarrow B$, where $A, B \in N$. Thus, in order to convert a grammar to Chomsky Normal Form, we need to show how to eliminate ϵ-rules and chain rules. This is not the end of the story, since we may still have rules of the form $A \rightarrow \alpha$ where either $|\alpha| \geq 3$ or $|\alpha| \geq 2$ and α contains terminals. However, dealing with such rules is a simple recoding matter, and we first focus on the elimination of ϵ-rules and chain rules. It turns out that ϵ-rules must be eliminated first.

The first step to eliminate ϵ-rules is to compute the set $E(G)$ of erasable (or nullable) nonterminals

\[E(G) = \{ A \in N \mid A \xrightarrow{\dagger} \epsilon \}. \]

The set $E(G)$ is computed using a sequence of approximations E_i defined as follows:

\[E_0 = \{ A \in N \mid (A \rightarrow \epsilon) \in P \}, \]
\[E_{i+1} = E_i \cup \{ A \mid \exists (A \rightarrow B_1 \ldots B_j \ldots B_k) \in P, B_j \in E_i, 1 \leq j \leq k \}. \]

Clearly, the E_i form an ascending chain

\[E_0 \subseteq E_1 \subseteq \cdots \subseteq E_i \subseteq E_{i+1} \subseteq \cdots \subseteq N, \]

and since N is finite, there is a least i, say i_0, such that $E_{i_0} = E_{i_0+1}$. We claim that $E(G) = E_{i_0}$. Actually, we prove the following lemma.

Lemma 3.2. Given a context-free grammar $G = (V, \Sigma, P, S)$, one can construct a context-free grammar $G' = (V', \Sigma, P', S')$ such that:

1. $L(G') = L(G)$;
2. P' contains no ϵ-rules other than $S' \rightarrow \epsilon$, and $S' \rightarrow \epsilon \in P'$ iff $\epsilon \in L(G)$;
3. S' does not occur on the right-hand side of any production in P'.

Proof. We begin by proving that $E(G) = E_{i_0}$. For this, we prove that $E(G) \subseteq E_{i_0}$ and $E_{i_0} \subseteq E(G)$.

To prove that $E_{i_0} \subseteq E(G)$, we proceed by induction on i. Since $E_0 = \{ A \in N \mid (A \rightarrow \epsilon) \in P \}$, we have $A \xrightarrow{\dagger} \epsilon$, and thus $A \in E(G)$. By the induction hypothesis, $E_i \subseteq$
$E(G)$. If $A \in E_{i+1}$, either $A \in E_i$ and then $A \in E(G)$, or there is some production $(A \to B_1 \ldots B_j \ldots B_k) \in P$, such that $B_j \in E_i$ for all j, $1 \leq j \leq k$. By the induction hypothesis, $B_j \not\Rightarrow \epsilon$ for each j, $1 \leq j \leq k$, and thus

$$A \Rightarrow B_1 \ldots B_j \ldots B_k \Rightarrow B_2 \ldots B_j \ldots B_k \Rightarrow B_j \ldots B_k \Rightarrow \epsilon,$$

which shows that $A \in E(G)$.

To prove that $E(G) \subseteq E_{i_0}$, we also proceed by induction, but on the length of a derivation $A \Rightarrow \epsilon$. If $A \Rightarrow \epsilon$, then $A \to \epsilon \in P$, and thus $A \in E_0$ since $E_0 = \{A \in N \mid (A \to \epsilon) \in P\}$. If $A \nRightarrow \epsilon$, then

$$A \Rightarrow \alpha \Rightarrow^n \epsilon,$$

for some production $A \to \alpha \in P$. If α contains terminals of nonterminals not in $E(G)$, it is impossible to derive ϵ from α, and thus, we must have $\alpha = B_1 \ldots B_j \ldots B_k$, with $B_j \in E(G)$, for all j, $1 \leq j \leq k$. However, $B_j \Rightarrow^n \epsilon$ where $n_j \leq n$, and by the induction hypothesis, $B_j \in E_{i_0}$. But then, we get $A \in E_{i_0+1} = E_{i_0}$, as desired.

Having shown that $E(G) = E_{i_0}$, we construct the grammar G'. Its set of production P' is defined as follows. First, we create the production $S' \to S$ where $S' \notin V$, to make sure that S' does not occur on the right-hand side of any rule in P'. Let

$$P_1 = \{A \to \alpha \in P \mid \alpha \in V^+\} \cup \{S' \to S\},$$

and let P_2 be the set of productions

$$P_2 = \{A \to \alpha_1 \alpha_2 \ldots \alpha_k \alpha_{k+1} \mid \exists \alpha_1 \in V^*, \ldots, \exists \alpha_{k+1} \in V^*, \exists B_1 \in E(G), \ldots, \exists B_k \in E(G)
A \to \alpha_1 B_1 \alpha_2 \ldots \alpha_k B_k \alpha_{k+1} \in P, k \geq 1, \alpha_1 \ldots \alpha_{k+1} \neq \epsilon\}.$$

Note that $\epsilon \in L(G')$ iff $S \in E(G)$. If $S \notin E(G)$, then let $P' = P_1 \cup P_2$, and if $S \in E(G)$, then let $P' = P_1 \cup P_2 \cup \{S' \to \epsilon\}$. We claim that $L(G') = L(G)$, which is proved by showing that every derivation using G can be simulated by a derivation using G', and vice-versa. All the conditions of the lemma are now met.

From a practical point of view, the construction or lemma 3.2 is very costly. For example, given a grammar containing the productions

$$S \to ABCDEF,$$
$$A \to \epsilon,$$
$$B \to \epsilon,$$
$$C \to \epsilon,$$
$$D \to \epsilon,$$
$$E \to \epsilon,$$
$$F \to \epsilon,$$
$$\ldots \to \ldots,$$
3.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS

Eliminating \(\epsilon \)-rules will create \(2^6 - 1 = 63 \) new rules corresponding to the 63 nonempty subsets of the set \(\{A, B, C, D, E, F\} \). We now turn to the elimination of chain rules.

It turns out that matters are greatly simplified if we first apply lemma 3.2 to the input grammar \(G \), and we explain the construction assuming that \(G = (V, \Sigma, P, S) \) satisfies the conditions of lemma 3.2. For every nonterminal \(A \in N \), we define the set

\[
I_A = \{ B \in N \mid A \Rightarrow B \}.
\]

The sets \(I_A \) are computed using approximations \(I_{A,i} \) defined as follows:

\[
I_{A,0} = \{ B \in N \mid (A \rightarrow B) \in P \},
I_{A,i+1} = I_{A,i} \cup \{ C \in N \mid \exists (B \rightarrow C) \in P \text{ and } B \in I_{A,i} \}.
\]

Clearly, for every \(A \in N \), the \(I_{A,i} \) form an ascending chain

\[
I_{A,0} \subseteq I_{A,1} \subseteq \cdots \subseteq I_{A,i} \subseteq I_{A,i+1} \subseteq \cdots \subseteq N,
\]

and since \(N \) is finite, there is a least \(i \), say \(i_0 \), such that \(I_{A,i_0} = I_{A,i_0+1} \). We claim that \(I_A = I_{A,i_0} \). Actually, we prove the following lemma.

Lemma 3.3. Given a context-free grammar \(G = (V, \Sigma, P, S) \), one can construct a context-free grammar \(G' = (V', \Sigma, P', S') \) such that:

1. \(L(G') = L(G) \);
2. Every rule in \(P' \) is of the form \(A \rightarrow \alpha \) where \(|\alpha| \geq 2 \), or \(A \rightarrow a \) where \(a \in \Sigma \), or \(S' \rightarrow \epsilon \) iff \(\epsilon \in L(G) \);
3. \(S' \) does not occur on the right-hand side of any production in \(P' \).

Proof. First, we apply lemma 3.2 to the grammar \(G \), obtaining a grammar \(G_1 = (V_1, \Sigma, S_1, P_1) \). The proof that \(I_A = I_{A,i_0} \) is similar to the proof that \(E(G) = E_{i_0} \). First, we prove that \(I_{A,i} \subseteq I_A \) by induction on \(i \). This is straightforward. Next, we prove that \(I_A \subseteq I_{A,i_0} \) by induction on derivations of the form \(A \Rightarrow B \). In this part of the proof, we use the fact that \(G_1 \) has no \(\epsilon \)-rules except perhaps \(S_1 \rightarrow \epsilon \), and that \(S_1 \) does not occur on the right-hand side of any rule. This implies that a derivation \(A \Rightarrow B \Rightarrow C \) is necessarily of the form \(A \Rightarrow B \Rightarrow C \) for some \(B \in N \). Then, in the induction step, we have \(B \in I_{A,i_0} \), and thus \(C \in I_{A,i_0+1} \).

We now define the following sets of rules. Let

\[
P_2 = P_1 - \{ A \rightarrow B \mid A \rightarrow B \in P_1 \},
\]

and let

\[
P_3 = \{ A \rightarrow \alpha \mid B \rightarrow \alpha \in P_1, \alpha \notin N_1, B \in I_A \}.
\]

We claim that \(G' = (V_1, \Sigma, P_2 \cup P_3, S_1) \) satisfies the conditions of the lemma. For example, \(S_1 \) does not appear on the right-hand side of any production, since the productions in \(P_3 \) have right-hand sides from \(P_1 \), and \(S_1 \) does not appear on the right-hand side in \(P_1 \). It is also easily shown that \(L(G') = L(G_1) = L(G) \). \(\square \)
Let us apply the method of lemma 3.3 to the grammar

\[G_3 = (\{E, T, F, +, *, (,)\}, \{+, *, (,), a\}, P, E), \]

where \(P \) is the set of rules

- \(E \rightarrow E + T \)
- \(E \rightarrow T \)
- \(T \rightarrow T * F \)
- \(T \rightarrow F \)
- \(F \rightarrow (E) \)
- \(F \rightarrow a \)

We get \(I_E = \{T, F\} \), \(I_T = \{F\} \), and \(I_F = \emptyset \). The new grammar \(G_3' \) has the set of rules

- \(E \rightarrow E + T \)
- \(E \rightarrow T * F \)
- \(E \rightarrow (E) \)
- \(E \rightarrow a \)
- \(T \rightarrow T * F \)
- \(T \rightarrow (E) \)
- \(T \rightarrow a \)
- \(F \rightarrow (E) \)
- \(F \rightarrow a \)

At this stage, the grammar obtained in lemma 3.3 no longer has \(\epsilon \)-rules (except perhaps \(S' \rightarrow \epsilon \) iff \(\epsilon \in L(G) \)) or chain rules. However, it may contain rules \(A \rightarrow \alpha \) with \(|\alpha| \geq 3 \), or with \(|\alpha| \geq 2 \) and where \(\alpha \) contains terminals(s). To obtain the Chomsky Normal Form, we need to eliminate such rules. This is not difficult, but notationally a bit messy.

Lemma 3.4. Given a context-free grammar \(G = (V, \Sigma, P, S) \), one can construct a context-free grammar \(G' = (V', \Sigma, P', S') \) such that \(L(G') = L(G) \) and \(G' \) is in Chomsky Normal Form, that is, a grammar whose productions are of the form

- \(A \rightarrow BC \)
- \(A \rightarrow a \), or
- \(S' \rightarrow \epsilon \),

where \(A, B, C \in N' \), \(a \in \Sigma \), \(S' \rightarrow \epsilon \) is in \(P' \) iff \(\epsilon \in L(G) \), and \(S' \) does not occur on the right-hand side of any production in \(P' \).
3.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS

Proof. First, we apply lemma 3.3, obtaining \(G_1 \). Let \(\Sigma_r \) be the set of terminals occurring on the right-hand side of rules \(A \to \alpha \in P_1 \), with \(|\alpha| \geq 2 \). For every \(a \in \Sigma_r \), let \(X_a \) be a new nonterminal not in \(V_1 \). Let

\[
P_2 = \{ X_a \to a \mid a \in \Sigma_r \}. \]

Let \(P_{1,r} \) be the set of productions

\[
A \to \alpha_1 \alpha_2 \cdots \alpha_k \alpha_{k+1},
\]

where \(a_1, \ldots, a_k \in \Sigma_r \) and \(\alpha_i \in N_1^* \). For every production

\[
A \to \alpha_1 \alpha_2 \cdots \alpha_k \alpha_{k+1}
\]

in \(P_{1,r} \), let

\[
A \to \alpha_1 X_{a_1} \alpha_2 \cdots \alpha_k X_{a_k} \alpha_{k+1}
\]

be a new production, and let \(P_3 \) be the set of all such productions. Let \(P_4 = (P_1 - P_{1,r}) \cup P_2 \cup P_3 \). Now, productions \(A \to \alpha \) in \(P_4 \) with \(|\alpha| \geq 2 \) do not contain terminals. However, we may still have productions \(A \to \alpha \in P_4 \) with \(|\alpha| \geq 3 \). We can perform some recoding using some new nonterminals. For every production of the form

\[
A \to B_1 \cdots B_k,
\]

where \(k \geq 3 \), create the new nonterminals

\[
[B_1 \cdots B_{k-1}], [B_1 \cdots B_{k-2}], \ldots, [B_1 B_2 B_3], [B_1 B_2],
\]

and the new productions

\[
A \to [B_1 \cdots B_{k-1}]B_k,
\]

\[
[B_1 \cdots B_{k-1}] \to [B_1 \cdots B_{k-2}]B_{k-1},
\]

\[
\cdots \to \cdots,
\]

\[
[B_1 B_2 B_3] \to [B_1 B_2]B_3,
\]

\[
[B_1 B_2] \to B_1 B_2.
\]

All the productions are now in Chomsky Normal Form, and it is clear that the same language is generated. \(\square \)
Applying the first phase of the method of lemma 3.4 to the grammar G'_3, we get the rules

\[
\begin{align*}
E & \rightarrow EX_+T, \\
E & \rightarrow TX_+F, \\
E & \rightarrow X(E), \\
E & \rightarrow a, \\
T & \rightarrow TX_+F, \\
T & \rightarrow X(E), \\
T & \rightarrow a, \\
F & \rightarrow X(E), \\
F & \rightarrow a, \\
X_+ & \rightarrow +, \\
X_+ & \rightarrow *, \\
X(& \rightarrow (, \\
X) & \rightarrow).
\end{align*}
\]

After applying the second phase of the method, we get the following grammar in Chomsky Normal Form:

\[
\begin{align*}
E & \rightarrow \left[EX_+\right]T, \\
[EX_+] & \rightarrow EX_+, \\
E & \rightarrow \left[TX_+\right]F, \\
[TX_+] & \rightarrow TX_+, \\
E & \rightarrow \left[X(E)\right], \\
[X(E)] & \rightarrow X(E), \\
E & \rightarrow a, \\
T & \rightarrow \left[TX_+\right]F, \\
T & \rightarrow \left[X(E)\right], \\
T & \rightarrow a, \\
F & \rightarrow \left[X(E)\right], \\
F & \rightarrow a, \\
X_+ & \rightarrow +, \\
X_+ & \rightarrow *, \\
X(& \rightarrow (, \\
X) & \rightarrow).
\end{align*}
\]

For large grammars, it is often convenient to use the abbreviation which consists in grouping productions having a common left-hand side, and listing the right-hand sides separated
by the symbol |. Thus, a group of productions

\[
A \rightarrow \alpha_1, \\
A \rightarrow \alpha_2, \\
\ldots \rightarrow \ldots , \\
A \rightarrow \alpha_k,
\]

may be abbreviated as

\[
A \rightarrow \alpha_1 | \alpha_2 | \cdots | \alpha_k.
\]

An interesting corollary of the CNF is the following decidability result. There is an algorithm which, given a context-free grammar \(G \), given any string \(w \in \Sigma^* \), decides whether \(w \in L(G) \). Indeed, we first convert \(G \) to a grammar \(G' \) in Chomsky Normal Form. If \(w = \epsilon \), we can test whether \(\epsilon \in L(G) \), since this is the case iff \(S' \rightarrow \epsilon \in P' \). If \(w \neq \epsilon \), letting \(n = |w| \), note that since the rules are of the form \(A \rightarrow BC \) or \(A \rightarrow a \), where \(a \in \Sigma \), any derivation for \(w \) has \(n - 1 + n = 2n - 1 \) steps. Thus, we enumerate all (leftmost) derivations of length \(2n - 1 \).

There are much better parsing algorithms than this naive algorithm. We now show that every regular language is context-free.

3.4 Regular Languages are Context-Free

The regular languages can be characterized in terms of very special kinds of context-free grammars, right-linear (and left-linear) context-free grammars.

Definition 3.6. A context-free grammar \(G = (V, \Sigma, P, S) \) is **left-linear** iff its productions are of the form

\[
A \rightarrow B a, \\
A \rightarrow a, \\
A \rightarrow \epsilon.
\]

where \(A, B \in N \), and \(a \in \Sigma \). A context-free grammar \(G = (V, \Sigma, P, S) \) is **right-linear** iff its productions are of the form

\[
A \rightarrow a B, \\
A \rightarrow a, \\
A \rightarrow \epsilon.
\]

where \(A, B \in N \), and \(a \in \Sigma \).

The following lemma shows the equivalence between NFA’s and right-linear grammars.
Lemma 3.5. A language L is regular if and only if it is generated by some right-linear grammar.

Proof. Let $L = L(D)$ for some DFA $D = (Q, \Sigma, \delta, q_0, F)$. We construct a right-linear grammar G as follows. Let $V = Q \cup \Sigma$, $S = q_0$, and let P be defined as follows:

$$P = \{ p \to aq \mid q = \delta(p, a), \ p, q \in Q, \ a \in \Sigma \} \cup \{ p \to \epsilon \mid p \in F \}.$$

It is easily shown by induction on the length of w that

$$p \xrightarrow{*} wq \iff q = \delta^*(p, w),$$

and thus, $L(D) = L(G)$.

Conversely, let $G = (V, \Sigma, P, S)$ be a right-linear grammar. First, let $G' = (V', \Sigma, P', S)$ be the right-linear grammar obtained from G by adding the new nonterminal E to N, replacing every rule in P of the form $A \to a$ where $a \in \Sigma$ by the rule $A \to aE$, and adding the rule $E \to \epsilon$. It is immediately verified that $L(G') = L(G)$. Next, we construct the NFA $M = (Q, \Sigma, \delta, q_0, F)$ as follows: $Q = N' = N \cup \{ E \}$, $q_0 = S$, $F = \{ A \in N' \mid A \to \epsilon \}$, and

$$\delta(A, a) = \{ B \in N' \mid A \to aB \in P' \},$$

for all $A \in N$ and all $a \in \Sigma$. It is easily shown by induction on the length of w that

$$A \xrightarrow{*} wB \iff B \in \delta^*(A, w),$$

and thus, $L(M) = L(G') = L(G)$.

A similar lemma holds for left-linear grammars. It is also easily shown that the regular languages are exactly the languages generated by context-free grammars whose rules are of the form

$$A \to Bu,$$

$$A \to u,$$

where $A, B \in N$, and $u \in \Sigma^*$.

3.5 Useless Productions in Context-Free Grammars

Given a context-free grammar $G = (V, \Sigma, P, S)$, it may contain rules that are useless for a number of reasons. For example, consider the grammar $G_3 = (\{ E, A, a, b \}, \{ a, b \}, P, E)$, where P is the set of rules

$$E \to aEb,$$

$$E \to ab,$$

$$E \to A,$$

$$A \to bAa.$$
The problem is that the nonterminal A does not derive any terminal strings, and thus, it is useless, as well as the last two productions. Let us now consider the grammar $G_4 = (\{E, A, a, b, c, d\}, \{a, b, c, d\}, P, E)$, where P is the set of rules

\[
\begin{align*}
E & \rightarrow aEb, \\
E & \rightarrow ab, \\
A & \rightarrow cAd, \\
A & \rightarrow cd.
\end{align*}
\]

This time, the nonterminal A generates strings of the form $c^n d^n$, but there is no derivation $E \Rightarrow^+ \alpha$ from E where A occurs in α. The nonterminal A is not connected to E, and the last two rules are useless. Fortunately, it is possible to find such useless rules, and to eliminate them.

Let $T(G)$ be the set of nonterminals that actually derive some terminal string, i.e.

\[
T(G) = \{A \in (V - \Sigma) \mid \exists w \in \Sigma^*, A \Rightarrow^+ w\}.
\]

The set $T(G)$ can be defined by stages. We define the sets $T_n (n \geq 1)$ as follows:

\[
T_1 = \{A \in (V - \Sigma) \mid \exists (A \rightarrow w) \in P, \text{ with } w \in \Sigma^*\},
\]

and

\[
T_{n+1} = T_n \cup \{A \in (V - \Sigma) \mid \exists (A \rightarrow \beta) \in P, \text{ with } \beta \in (T_n \cup \Sigma)^*\}.
\]

It is easy to prove that there is some least n such that $T_{n+1} = T_n$, and that for this n, $T(G) = T_n$.

If $S \notin T(G)$, then $L(G) = \emptyset$, and G is equivalent to the trivial grammar

\[
G' = (\{S\}, \Sigma, \emptyset, S).
\]

If $S \in T(G)$, then let $U(G)$ be the set of nonterminals that are actually useful, i.e.,

\[
U(G) = \{A \in T(G) \mid \exists \alpha, \beta \in (T(G) \cup \Sigma)^*, S \Rightarrow^* \alpha A \beta\}.
\]

The set $U(G)$ can also be computed by stages. We define the sets $U_n (n \geq 1)$ as follows:

\[
U_1 = \{A \in T(G) \mid \exists (S \rightarrow \alpha A \beta) \in P, \text{ with } \alpha, \beta \in (T(G) \cup \Sigma)^*\},
\]

and

\[
U_{n+1} = U_n \cup \{B \in T(G) \mid \exists (A \rightarrow \alpha B \beta) \in P, \text{ with } A \in U_n, \alpha, \beta \in (T(G) \cup \Sigma)^*\}.
\]

It is easy to prove that there is some least n such that $U_{n+1} = U_n$, and that for this n, $U(G) = U_n \cup \{S\}$. Then, we can use $U(G)$ to transform G into an equivalent CFG in
which every nonterminal is useful (i.e., for which \(V - \Sigma = U(G) \)). Indeed, simply delete all rules containing symbols not in \(U(G) \). The details are left as an exercise. We say that a context-free grammar \(G \) is reduced if all its nonterminals are useful, i.e., \(N = U(G) \).

It should be noted that although dull, the above considerations are important in practice. Certain algorithms for constructing parsers, for example, \(LR \)-parsers, may loop if useless rules are not eliminated!

We now consider another normal form for context-free grammars, the Greibach Normal Form.

3.6 The Greibach Normal Form

Every CFG \(G \) can also be converted to an equivalent grammar in Greibach Normal Form (for short, GNF). A context-free grammar \(G = (V, \Sigma, P, S) \) is in Greibach Normal Form iff its productions are of the form

\[
\begin{align*}
A &\rightarrow aBC, \\
A &\rightarrow aB, \\
A &\rightarrow a, \quad \text{or} \\
S &\rightarrow \epsilon,
\end{align*}
\]

where \(A, B, C \in N \), \(a \in \Sigma \), \(S \rightarrow \epsilon \) is in \(P \) iff \(\epsilon \in L(G) \), and \(S \) does not occur on the right-hand side of any production.

Note that a grammar in Greibach Normal Form does not have \(\epsilon \)-rules other than possibly \(S \rightarrow \epsilon \). More importantly, except for the special rule \(S \rightarrow \epsilon \), every rule produces some terminal symbol.

An important consequence of the Greibach Normal Form is that every nonterminal is not left recursive. A nonterminal \(A \) is left recursive iff \(A \xrightarrow{\dagger} A\alpha \) for some \(\alpha \in V^* \). Left recursive nonterminals cause top-down deterministic parsers to loop. The Greibach Normal Form provides a way of avoiding this problem.

There are no easy proofs that every CFG can be converted to a Greibach Normal Form. A particularly elegant method due to Rosenkrantz using least fixed-points and matrices will be given in section 3.9.

Lemma 3.6. Given a context-free grammar \(G = (V, \Sigma, P, S) \), one can construct a context-free grammar \(G' = (V', \Sigma, P', S') \) such that \(L(G') = L(G) \) and \(G' \) is in Greibach Normal Form, that is, a grammar whose productions are of the form

\[
\begin{align*}
A &\rightarrow aBC, \\
A &\rightarrow aB, \\
A &\rightarrow a, \quad \text{or} \\
S' &\rightarrow \epsilon,
\end{align*}
\]
where $A, B, C \in N'$, $a \in \Sigma$, $S' \to \epsilon$ is in P' iff $\epsilon \in L(G)$, and S' does not occur on the right-hand side of any production in P'.

3.7 Least Fixed-Points

Context-free languages can also be characterized as least fixed-points of certain functions induced by grammars. This characterization yields a rather quick proof that every context-free grammar can be converted to Greibach Normal Form. This characterization also reveals very clearly the recursive nature of the context-free languages.

We begin by reviewing what we need from the theory of partially ordered sets.

Definition 3.7. Given a partially ordered set $\langle A, \leq \rangle$, an ω-chain $(a_n)_{n \geq 0}$ is a sequence such that $a_n \leq a_{n+1}$ for all $n \geq 0$. The least-upper bound of an ω-chain (a_n) is an element $a \in A$ such that:

1. $a_n \leq a$, for all $n \geq 0$;
2. For any $b \in A$, if $a_n \leq b$, for all $n \geq 0$, then $a \leq b$.

A partially ordered set $\langle A, \leq \rangle$ is an ω-chain complete poset iff it has a least element \bot, and iff every ω-chain has a least upper bound denoted as $\bigsqcup a_n$.

Remark: The ω in ω-chain means that we are considering countable chains (ω is the ordinal associated with the order-type of the set of natural numbers). This notation may seem arcane, but is standard in denotational semantics.

For example, given any set X, the power set 2^X ordered by inclusion is an ω-chain complete poset with least element \emptyset. The Cartesian product $2^X \times \cdots \times 2^X$ ordered such that

$$(A_1, \ldots, A_n) \leq (B_1, \ldots, B_n)$$

iff $A_i \subseteq B_i$ (where $A_i, B_i \in 2^X$) is an ω-chain complete poset with least element $(\emptyset, \ldots, \emptyset)$.

We are interested in functions between partially ordered sets.

Definition 3.8. Given any two partially ordered sets $\langle A_1, \leq_1 \rangle$ and $\langle A_2, \leq_2 \rangle$, a function $f : A_1 \rightarrow A_2$ is monotonic iff for all $x, y \in A_1$,

$$x \leq_1 y \quad \text{implies that} \quad f(x) \leq_2 f(y).$$

If $\langle A_1, \leq_1 \rangle$ and $\langle A_2, \leq_2 \rangle$ are ω-chain complete posets, a function $f : A_1 \rightarrow A_2$ is ω-continuous iff it is monotonic, and for every ω-chain (a_n),

$$f(\bigsqcup a_n) = \bigsqcup f(a_n).$$
Remark: Note that we are not requiring that an ω-continuous function $f: A_1 \to A_2$ preserve least elements, i.e., it is possible that $f(\bot_1) \neq \bot_2$.

We now define the crucial concept of a least fixed-point.

Definition 3.9. Let $\langle A, \leq \rangle$ be a partially ordered set, and let $f: A \to A$ be a function. A *fixed-point of* f is an element $a \in A$ such that $f(a) = a$. The *least fixed-point of* f is an element $a \in A$ such that $f(a) = a$, and for every $b \in A$ such that $f(b) = b$, then $a \leq b$.

The following lemma gives sufficient conditions for the existence of least fixed-points. It is one of the key lemmas in denotational semantics.

Lemma 3.7. Let $\langle A, \leq \rangle$ be an ω-chain complete poset with least element \bot. Every ω-continuous function $f: A \to A$ has a unique least fixed-point x_0 given by

$$x_0 = \bigsqcup f^n(\bot).$$

Furthermore, for any $b \in A$ such that $f(b) \leq b$, then $x_0 \leq b$.

Proof. First, we prove that the sequence

$$\bot, f(\bot), f^2(\bot), \ldots, f^n(\bot), \ldots$$

is an ω-chain. This is shown by induction on n. Since \bot is the least element of A, we have $\bot \leq f(\bot)$. Assuming by induction that $f^n(\bot) \leq f^{n+1}(\bot)$, since f is ω-continuous, it is monotonic, and thus we get $f^{n+1}(\bot) \leq f^{n+2}(\bot)$, as desired.

Since A is an ω-chain complete poset, the ω-chain $(f^n(\bot))$ has a least upper bound

$$x_0 = \bigsqcup f^n(\bot).$$

Since f is ω-continuous, we have

$$f(x_0) = f(\bigsqcup f^n(\bot)) = \bigsqcup f(f^n(\bot)) = \bigsqcup f^{n+1}(\bot) = x_0,$$

and x_0 is indeed a fixed-point of f.

Clearly, if $f(b) \leq b$ implies that $x_0 \leq b$, then $f(b) = b$ implies that $x_0 \leq b$. Thus, assume that $f(b) \leq b$ for some $b \in A$. We prove by induction of n that $f^n(\bot) \leq b$. Indeed, $\bot \leq b$, since \bot is the least element of A. Assuming by induction that $f^n(\bot) \leq b$, by monotonicity of f, we get

$$f(f^n(\bot)) \leq f(b),$$

and since $f(b) \leq b$, this yields

$$f^{n+1}(\bot) \leq b.$$

Since $f^n(\bot) \leq b$ for all $n \geq 0$, we have

$$x_0 = \bigsqcup f^n(\bot) \leq b.$$

\Box
The second part of lemma 3.7 is very useful to prove that functions have the same least fixed-point. For example, under the conditions of lemma 3.7, if \(g: A \rightarrow A \) is another \(\omega \)-chain continuous function, letting \(x_0 \) be the least fixed-point of \(f \) and \(y_0 \) be the least fixed-point of \(g \), if \(f(y_0) \leq y_0 \) and \(g(x_0) \leq x_0 \), we can deduce that \(x_0 = y_0 \). Indeed, since \(f(y_0) \leq y_0 \) and \(y_0 \) is the least fixed-point of \(f \), we get \(x_0 \leq y_0 \), and since \(g(x_0) \leq x_0 \) and \(x_0 \) is the least fixed-point of \(g \), we get \(x_0 = y_0 \).

Lemma 3.7 also shows that the least fixed-point \(x_0 \) of \(f \) can be approximated as much as desired, using the sequence \((f^n(\perp)) \). We will now apply this fact to context-free grammars. For this, we need to show how a context-free grammar \(G = (V, \Sigma, P, S) \) with \(m \) nonterminals induces an \(\omega \)-continuous map

\[
\Phi_G: \underbrace{2^{\Sigma^*} \times \cdots \times 2^{\Sigma^*}}_m \rightarrow \underbrace{2^{\Sigma^*} \times \cdots \times 2^{\Sigma^*}}_m.
\]

3.8 Context-Free Languages as Least Fixed-Points

Given a context-free grammar \(G = (V, \Sigma, P, S) \) with \(m \) nonterminals \(A_1, \ldots, A_m \), grouping all the productions having the same left-hand side, the grammar \(G \) can be concisely written as

\[
\begin{align*}
A_1 & \rightarrow \alpha_{1,1} + \cdots + \alpha_{1,n_1}, \\
& \quad \cdots \quad \cdots \\
A_i & \rightarrow \alpha_{i,1} + \cdots + \alpha_{i,n_i}, \\
& \quad \cdots \quad \cdots \\
A_m & \rightarrow \alpha_{m,1} + \cdots + \alpha_{m,n_m}.
\end{align*}
\]

Given any set \(A \), let \(\mathcal{P}_{fin}(A) \) be the set of finite subsets of \(A \).

Definition 3.10. Let \(G = (V, \Sigma, P, S) \) be a context-free grammar with \(m \) nonterminals \(A_1, \ldots, A_m \). For any \(m \)-tuple \(\Lambda = (L_1, \ldots, L_m) \) of languages \(L_i \subseteq \Sigma^* \), we define the function

\[
\Phi[\Lambda]: \mathcal{P}_{fin}(V^*) \rightarrow 2^{\Sigma^*}
\]

inductively as follows:

\[
\begin{align*}
\Phi[\Lambda](\emptyset) &= \emptyset, \\
\Phi[\Lambda](\{\epsilon\}) &= \{\epsilon\}, \\
\Phi[\Lambda](\{a\}) &= \{a\}, \quad \text{if } a \in \Sigma, \\
\Phi[\Lambda](\{A_i\}) &= L_i, \quad \text{if } A_i \in N, \\
\Phi[\Lambda](\{\alpha X\}) &= \Phi[\Lambda](\{\alpha\})\Phi[\Lambda](\{X\}), \quad \text{if } \alpha \in V^+, \ X \in V, \\
\Phi[\Lambda](Q \cup \{\alpha\}) &= \Phi[\Lambda](Q) \cup \Phi[\Lambda](\{\alpha\}), \quad \text{if } Q \in \mathcal{P}_{fin}(V^*), \ Q \neq \emptyset, \ \alpha \in V^*, \ \alpha \notin Q.
\end{align*}
\]
Then, writing the grammar G as

$$
A_1 \rightarrow \alpha_{1,1} + \cdots + \alpha_{1,n_1}, \\
\cdots \rightarrow \cdots \\
A_i \rightarrow \alpha_{i,1} + \cdots + \alpha_{i,n_i}, \\
\cdots \rightarrow \cdots \\
A_m \rightarrow \alpha_{m,1} + \cdots + \alpha_{m,n_m},
$$

we define the map

$$
\Phi_G : \underbrace{2^\Sigma^* \times \cdots \times 2^\Sigma^*}_m \rightarrow \underbrace{2^\Sigma^* \times \cdots \times 2^\Sigma^*}_m
$$

such that

$$
\Phi_G(L_1, \ldots, L_m) = (\Phi[\Lambda](\{\alpha_{1,1}, \ldots, \alpha_{1,n_1}\}), \ldots, \Phi[\Lambda](\{\alpha_{m,1}, \ldots, \alpha_{m,n_m}\}))
$$

for all $\Lambda = (L_1, \ldots, L_m) \in \underbrace{2^\Sigma^* \times \cdots \times 2^\Sigma^*}_m$.

One should verify that the map $\Phi[\Lambda]$ is well defined, but this is easy. The following lemma is easily shown:

Lemma 3.8. Given a context-free grammar $G = (V, \Sigma, P, S)$ with m nonterminals A_1, \ldots, A_m, the map

$$
\Phi_G : \underbrace{2^\Sigma^* \times \cdots \times 2^\Sigma^*}_m \rightarrow \underbrace{2^\Sigma^* \times \cdots \times 2^\Sigma^*}_m
$$

is ω-continuous.

Now, $\underbrace{2^\Sigma^* \times \cdots \times 2^\Sigma^*}_m$ is an ω-chain complete poset, and the map Φ_G is ω-continuous. Thus, by lemma 3.7, the map Φ_G has a least-fixed point. It turns out that the components of this least fixed-point are precisely the languages generated by the grammars (V, Σ, P, A_i). Before proving this fact, let us give an example illustrating it.

Example. Consider the grammar $G = (\{A, B, a, b\}, \{a, b\}, P, A)$ defined by the rules

$$
A \rightarrow BB + ab, \\
B \rightarrow aBb + ab.
$$

The least fixed-point of Φ_G is the least upper bound of the chain

$$(\Phi^n_G(\emptyset, \emptyset)) = ((\Phi^n_{G,A}(\emptyset, \emptyset), \Phi^n_{G,B}(\emptyset, \emptyset)),
$$

where

$$
\Phi^0_{G,A}(\emptyset, \emptyset) = \Phi^0_{G,B}(\emptyset, \emptyset) = \emptyset,
$$
and

\[
\Phi_{G,A}^{n+1}(\emptyset, \emptyset) = \Phi_{G,B}^n(\emptyset, \emptyset)\Phi_{G,B}^n(\emptyset, \emptyset) \cup \{ab\}, \\
\Phi_{G,B}^{n+1}(\emptyset, \emptyset) = a\Phi_{G,B}^n(\emptyset, \emptyset)b \cup \{ab\}.
\]

It is easy to verify that

\[
\Phi_1^1(\emptyset, \emptyset) = \{ab\}, \\
\Phi_1^1(\emptyset, \emptyset) = \{ab\}, \\
\Phi_2^2(\emptyset, \emptyset) = \{ab, abab\}, \\
\Phi_2^2(\emptyset, \emptyset) = \{ab, aabb\}, \\
\Phi_3^3(\emptyset, \emptyset) = \{ab, abab, abaabb, aabbab, aabbaabb\}, \\
\Phi_3^3(\emptyset, \emptyset) = \{ab, aabb, aaabbb\}.
\]

By induction, we can easily prove that the two components of the least fixed-point are the languages

\[
L_A = \{a^m b^m a^n b^n \mid m, n \geq 1\} \cup \{ab\} \quad \text{and} \quad L_B = \{a^n b^n \mid n \geq 1\}.
\]

Letting \(G_A = (\{A, B, a, b\}, \{a, b\}, P, A) \) and \(G_B = (\{A, B, a, b\}, \{a, b\}, P, B) \), it is indeed true that \(L_A = L(G_A) \) and \(L_B = L(G_B) \).

We have the following theorem due to Ginsburg and Rice:

Theorem 3.9. Given a context-free grammar \(G = (V, \Sigma, P, S) \) with \(m \) nonterminals \(A_1, \ldots, A_m \), the least fixed-point of the map \(\Phi_G \) is the \(m \)-tuple of languages

\[
(L(G_{A_1}), \ldots, L(G_{A_m})),
\]

where \(G_{A_i} = (V, \Sigma, P, A_i) \).

Proof. Writing \(G \) as

\[
A_1 \rightarrow \alpha_{1,1} + \cdots + \alpha_{1,n_1}, \\
\ldots \rightarrow \ldots \\
A_i \rightarrow \alpha_{i,1} + \cdots + \alpha_{i,n_i}, \\
\ldots \rightarrow \ldots \\
A_m \rightarrow \alpha_{m,1} + \cdots + \alpha_{m,n_m},
\]

let \(M = \max\{|\alpha_{i,j}|\} \) be the maximum length of right-hand sides of rules in \(P \). Let

\[
\Phi^n_G(\emptyset, \ldots, \emptyset) = (\Phi^n_{G,1}(\emptyset, \ldots, \emptyset), \ldots, \Phi^n_{G,m}(\emptyset, \ldots, \emptyset)).
\]
Then, for any $w \in \Sigma^*$, observe that

$$w \in \Phi_{G,i}^1(\emptyset, \ldots, \emptyset)$$

iff there is some rule $A_i \rightarrow \alpha_{i,j}$ with $w = \alpha_{i,j}$, and that

$$w \in \Phi_{G,i}^n(\emptyset, \ldots, \emptyset)$$

for some $n \geq 2$ iff there is some rule $A_i \rightarrow \alpha_{i,j}$ with $\alpha_{i,j}$ of the form

$$\alpha_{i,j} = u_1A_{j_1}u_2 \cdots u_kA_{j_k}u_{k+1},$$

where $u_1, \ldots, u_{k+1} \in \Sigma^*$, $k \geq 1$, and some $w_1, \ldots, w_k \in \Sigma^*$ such that

$$w_h \in \Phi_{G,j_h}^{n_h-1}(\emptyset, \ldots, \emptyset),$$

and

$$w = u_1w_1u_2 \cdots u_kw_ku_{k+1}.$$

We prove the following two claims.

Claim 1: For every $w \in \Sigma^*$, if $A_i \xrightarrow{n} w$, then $w \in \Phi_{G,i}^p(\emptyset, \ldots, \emptyset)$, for some $p \geq 1$.

Claim 2: For every $w \in \Sigma^*$, if $w \in \Phi_{G,i}^n(\emptyset, \ldots, \emptyset)$, with $n \geq 1$, then $A_i \xrightarrow{p} w$ for some $p \leq (M + 1)^{n-1}$.

Proof of Claim 1. We proceed by induction on n. If $A_i \xrightarrow{1} w$, then $w = \alpha_{i,j}$ for some rule $A \rightarrow \alpha_{i,j}$, and by the remark just before the claim, $w \in \Phi_{G,i}^1(\emptyset, \ldots, \emptyset)$.

If $A_i \xrightarrow{n+1} w$ with $n \geq 1$, then

$$A_i \xrightarrow{n} \alpha_{i,j} \xrightarrow{} w$$

for some rule $A_i \rightarrow \alpha_{i,j}$. If

$$\alpha_{i,j} = u_1A_{j_1}u_2 \cdots u_kA_{j_k}u_{k+1},$$

where $u_1, \ldots, u_{k+1} \in \Sigma^*$, $k \geq 1$, then $A_{j_h} \xrightarrow{n_h} w_h$, where $n_h \leq n$, and

$$w = u_1w_1u_2 \cdots u_kw_ku_{k+1}$$

for some $w_1, \ldots, w_k \in \Sigma^*$. By the induction hypothesis,

$$w_h \in \Phi_{G,j_h}^{p_h}(\emptyset, \ldots, \emptyset),$$

for some $p_h \geq 1$, for every h, $1 \leq h \leq k$. Letting $p = \max\{p_1, \ldots, p_k\}$, since each sequence $(\Phi_{G,i}^{p_h}(\emptyset, \ldots, \emptyset))$ is an ω-chain, we have $w_h \in \Phi_{G,j_h}^p(\emptyset, \ldots, \emptyset)$ for every h, $1 \leq h \leq k$, and by the remark just before the claim, $w \in \Phi_{G,i}^{p+1}(\emptyset, \ldots, \emptyset)$. \qed
3.9. LEAST FIXED-POINTS AND THE GREIBACH NORMAL FORM

Proof of Claim 2. We proceed by induction on \(n\). If \(w \in \Phi^1_{G,i}(\emptyset, \ldots, \emptyset)\), by the remark just before the claim, then \(w = \alpha_{i,j}\) for some rule \(A \rightarrow \alpha_{i,j}\), and \(A \rightarrow w\).

If \(w \in \Phi^n_{G,i}(\emptyset, \ldots, \emptyset)\) for some \(n \geq 2\), then there is some rule \(A_i \rightarrow \alpha_{i,j}\) with \(\alpha_{i,j}\) of the form

\[
\alpha_{i,j} = u_1A_{j_1}u_2 \cdots u_kA_{j_k}u_{k+1},
\]

where \(u_1, \ldots, u_{k+1} \in \Sigma^*, \ k \geq 1\), and some \(w_1, \ldots, w_k \in \Sigma^*\) such that

\[
w_h \in \Phi^{n-1}_{G,j_h}(\emptyset, \ldots, \emptyset),
\]

and

\[
w = u_1w_1u_2 \cdots u_kw_ku_{k+1}.
\]

By the induction hypothesis, \(A_{j_h} \xrightarrow{p_h} w_h\) with \(p_h \leq (M + 1)^{n-2}\), and thus

\[
A_i \Rightarrow u_1A_{j_1}u_2 \cdots u_kA_{j_k}u_{k+1} \xrightarrow{p_{i_1}} \cdots \xrightarrow{p_k} w,
\]

so that \(A_i \xrightarrow{p} w\) with

\[
p \leq p_1 + \cdots + p_k + 1 \leq M(M + 1)^{n-2} + 1 \leq (M + 1)^{n-1},
\]

since \(k \leq M\).

Combining Claim 1 and Claim 2, we have

\[
L(G_{A_i}) = \bigcup_n \Phi^n_{G,i}(\emptyset, \ldots, \emptyset),
\]

which proves that the least fixed-point of the map \(\Phi_G\) is the \(m\)-tuple of languages

\[
(L(G_{A_1}), \ldots, L(G_{A_m})).
\]

We now show how theorem 3.9 can be used to give a short proof that every context-free grammar can be converted to Greibach Normal Form.

3.9 Least Fixed-Points and the Greibach Normal Form

The hard part in converting a grammar \(G = (V, \Sigma, P, S)\) to Greibach Normal Form is to convert it to a grammar in so-called weak Greibach Normal Form, where the productions are of the form

\[
A \rightarrow a\alpha, \quad \text{or} \quad S \rightarrow \epsilon,
\]
where $a \in \Sigma$, $\alpha \in \mathbf{V}^*$, and if $S \rightarrow \epsilon$ is a rule, then S does not occur on the right-hand side of any rule. Indeed, if we first convert G to Chomsky Normal Form, it turns out that we will get rules of the form $A \rightarrow aBC$, $A \rightarrow aB$ or $A \rightarrow a$.

Using the algorithm for eliminating ϵ-rules and chain rules, we can first convert the original grammar to a grammar with no chain rules and no ϵ-rules except possibly $S \rightarrow \epsilon$, in which case, S does not appear on the right-hand side of rules. Thus, for the purpose of converting to weak Greibach Normal Form, we can assume that we are dealing with grammars without chain rules and without ϵ-rules. Let us also assume that we computed the set $T(G)$ of nonterminals that actually derive some terminal string, and that useless productions involving symbols not in $T(G)$ have been deleted.

Let us explain the idea of the conversion using the following grammar:

$$
A \rightarrow AaB + BB + b.
B \rightarrow Bd + BAAa + aA + c.
$$

The first step is to group the right-hand sides α into two categories: those whose leftmost symbol is a terminal ($\alpha \in \Sigma \mathbf{V}^*$) and those whose leftmost symbol is a nonterminal ($\alpha \in \mathbf{N \mathbf{V}}^*$). It is also convenient to adopt a matrix notation, and we can write the above grammar as

$$(A, B) = (A, B) \begin{pmatrix} aB & \emptyset \\ B & \{d, Aa\} \end{pmatrix} + (b, \{aA, c\})$$

Thus, we are dealing with matrices (and row vectors) whose entries are finite subsets of \mathbf{V}^*. For notational simplicity, braces around singleton sets are omitted. The finite subsets of \mathbf{V}^* form a semiring, where addition is union, and multiplication is concatenation. Addition and multiplication of matrices are as usual, except that the semiring operations are used. We will also consider matrices whose entries are languages over Σ. Again, the languages over Σ form a semiring, where addition is union, and multiplication is concatenation. The identity element for addition is \emptyset, and the identity element for multiplication is $\{\epsilon\}$. As above, addition and multiplication of matrices are as usual, except that the semiring operations are used. For example, given any languages $A_{i,j}$ and $B_{i,j}$ over Σ, where $i, j \in \{1, 2\}$, we have

$$(A_{1,1} \quad A_{1,2}) (B_{1,1} \quad B_{1,2}) = (A_{1,1}B_{1,1} \cup A_{1,2}B_{2,1} \quad A_{1,1}B_{1,2} \cup A_{1,2}B_{2,2})$$

$$
(A_{2,1} \quad A_{2,2}) (B_{2,1} \quad B_{2,2}) = (A_{2,1}B_{1,1} \cup A_{2,2}B_{2,1} \quad A_{2,1}B_{1,2} \cup A_{2,2}B_{2,2})
$$

Letting $X = (A, B)$, $K = (b, \{aA, c\})$, and

$$H = \begin{pmatrix} aB & \emptyset \\ B & \{d, Aa\} \end{pmatrix}$$
3.9. LEAST FIXED-POINTS AND THE GREIBACH NORMAL FORM

the above grammar can be concisely written as

\[X = XH + K. \]

More generally, given any context-free grammar \(G = (V, \Sigma, P, S) \) with \(m \) nonterminals \(A_1, \ldots, A_m \), assuming that there are no chain rules, no \(\epsilon \)-rules, and that every nonterminal belongs to \(T(G) \), letting

\[X = (A_1, \ldots, A_m), \]

we can write \(G \) as

\[X = XH + K, \]

for some appropriate \(m \times m \) matrix \(H \) in which every entry contains a set (possibly empty) of strings in \(V^+ \), and some row vector \(K \) in which every entry contains a set (possibly empty) of strings \(\alpha \) each beginning with a terminal \((\alpha \in \Sigma V^*) \).

Given an \(m \times m \) square matrix \(A = (A_{i,j}) \) of languages over \(\Sigma \), we can define the matrix \(A^* \) whose entry \(A^*_{i,j} \) is given by

\[A^*_{i,j} = \bigcup_{n \geq 0} A^n_{i,j}, \]

where \(A^0 = Id_m \), the identity matrix, and \(A^n \) is the \(n \)-th power of \(A \). Similarly, we define \(A^+ \) where

\[A^+_{i,j} = \bigcup_{n \geq 1} A^n_{i,j}. \]

Given a matrix \(A \) where the entries are finite subset of \(V^* \), where \(N = \{A_1, \ldots, A_m\} \), for any \(m \)-tuple \(\Lambda = (L_1, \ldots, L_m) \) of languages over \(\Sigma \), we let

\[\Phi[\Lambda](A) = (\Phi[\Lambda](A_{i,j})). \]

Given a system \(X = XH + K \) where \(H \) is an \(m \times m \) matrix and \(X, K \) are row matrices, if \(H \) and \(K \) do not contain any nonterminals, we claim that the least fixed-point of the grammar \(G \) associated with \(X = XH + K \) is \(KH^* \). This is easily seen by computing the approximations \(X^n = \Phi^n_G(\emptyset, \ldots, \emptyset) \). Indeed, \(X^0 = K \), and

\[X^n = KH^n + KH^{n-1} + \cdots + KH + K = K(H^n + H^{n-1} + \cdots + H + I_m). \]

Similarly, if \(Y \) is an \(m \times m \) matrix of nonterminals, the least fixed-point of the grammar associated with \(Y = HY + H \) is \(H^+ \) (provided that \(H \) does not contain any nonterminals).

Given any context-free grammar \(G = (V, \Sigma, P, S) \) with \(m \) nonterminals \(A_1, \ldots, A_m \), writing \(G \) as \(X = XH + K \) as explained earlier, we can form another grammar \(GH \) by creating \(m^2 \) new nonterminals \(Y_{i,j} \), where the rules of this new grammar are defined by the system of two matrix equations

\[X = KY + K, \]

\[Y = HY + H, \]
where \(Y = (Y_{i,j}) \).

The following lemma is the key to the Greibach Normal Form.

Lemma 3.10. Given any context-free grammar \(G = (V, \Sigma, P, S) \) with \(m \) nonterminals \(A_1, \ldots, A_m \), writing \(G \) as

\[
X = XH + K
\]

as explained earlier, if \(GH \) is the grammar defined by the system of two matrix equations

\[
\begin{align*}
X &= KY + K, \\
Y &= HY + H,
\end{align*}
\]

as explained above, then the components in \(X \) of the least-fixed points of the maps \(\Phi_G \) and \(\Phi_{GH} \) are equal.

Proof. Let \(U \) be the least-fixed point of \(\Phi_G \), and let \((V, W) \) be the least fixed-point of \(\Phi_{GH} \). We shall prove that \(U = V \). For notational simplicity, let us denote \(\Phi[U](H) \) as \(H[U] \) and \(\Phi[U](K) \) as \(K[U] \).

Since \(U \) is the least fixed-point of \(X = XH + K \), we have

\[
U = UH[U] + K[U].
\]

Since \(H[U] \) and \(K[U] \) do not contain any nonterminals, by a previous remark, \(K[U]H^*[U] \) is the least-fixed point of \(X = XH[U] + K[U] \), and thus,

\[
K[U]H^*[U] \leq U.
\]

On the other hand, by monotonicity,

\[
\]

and since \(U \) is the least fixed-point of \(X = XH + K \),

\[
U \leq K[U]H^*[U].
\]

Therefore, \(U = K[U]H^*[U] \). We can prove in a similar manner that \(W = H[V]^+ \).

Let \(Z = H[U]^+ \). We have

\[
\]

and

\[
\]

and since \((V, W) \) is the least fixed-point of \(X = KY + K \) and \(Y = HY + H \), we get \(V \leq U \) and \(W \leq H[U]^+ \).
We also have

and

and since \(U \) is the least fixed-point of \(X = XH + K \), we get \(U \leq V \). Therefore, \(U = V \), as claimed.

Note that the above lemma actually applies to any grammar. Applying lemma 3.10 to our example grammar, we get the following new grammar:

\[
(A, B) = (b, \{aA, c\}) \left(\begin{array}{c} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \end{array} \right) + (b, \{aA, c\}),
\]

\[
\begin{pmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{pmatrix} = \left(\begin{array}{c} aB \\ \emptyset \end{array} \right) \left(\begin{array}{c} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \end{array} \right) + \left(\begin{array}{c} aB \\ \emptyset \end{array} \right) \left(\begin{array}{c} B \\ \{d, Aa\} \end{array} \right)
\]

There are still some nonterminals appearing as leftmost symbols, but using the equations defining \(A \) and \(B \), we can replace \(A \) with

\[\{bY_1, aAY_3, cY_3, b\} \]

and \(B \) with

\[\{bY_2, aAY_4, cY_4, aA, c\}, \]

obtaining a system in weak Greibach Normal Form. This amounts to converting the matrix

\[H = \left(\begin{array}{c} aB \\ \emptyset \end{array} \right) \left(\begin{array}{c} B \\ \{d, Aa\} \end{array} \right) \]

to the matrix

\[L = \left(\begin{array}{c} aB \\ \emptyset \end{array} \right) \left(\begin{array}{c} \{bY_2, aAY_4, cY_4, aA, c\} \\ \{d, bY_1a, aAY_3a, cY_3a, ba\} \end{array} \right) \]

The weak Greibach Normal Form corresponds to the new system

\[X = KY + K, \]
\[Y = LY + L. \]

This method works in general for any input grammar with no \(\epsilon \)-rules, no chain rules, and such that every nonterminal belongs to \(T(G) \). Under these conditions, the row vector \(K \).
contains some nonempty entry, all strings in K are in ΣV^*, and all strings in H are in V^+. After obtaining the grammar GH defined by the system

$$X = KY + K,$$
$$Y = HY + H,$$

we use the system $X = KY + K$ to express every nonterminal A_i in terms of expressions containing strings $\alpha_{i,j}$ involving a terminal as the leftmost symbol ($\alpha_{i,j} \in \Sigma V^*$), and we replace all leftmost occurrences of nonterminals in H (occurrences A_i in strings of the form $A_i\beta$, where $\beta \in V^*$) using the above expressions. In this fashion, we obtain a matrix L, and it is immediately shown that the system

$$X = KY + K,$$
$$Y = LY + L,$$

generates the same tuple of languages. Furthermore, this last system corresponds to a weak Greibach Normal Form.

If we start with a grammar in Chomsky Normal Form (with no production $S \to \epsilon$) such that every nonterminal belongs to $T(G)$, we actually get a Greibach Normal Form (the entries in K are terminals, and the entries in H are nonterminals). Thus, we have justified lemma 3.6. The method is also quite economical, since it introduces only m^2 new nonterminals. However, the resulting grammar may contain some useless nonterminals.

3.10 Tree Domains and Gorn Trees

Derivation trees play a very important role in parsing theory and in the proof of a strong version of the pumping lemma for the context-free languages known as Ogden’s lemma. Thus, it is important to define derivation trees rigorously. We do so using Gorn trees.

Let $N_+ = \{1, 2, 3, \ldots\}$.

Definition 3.11. A *tree domain* D is a nonempty subset of strings in N_+^* satisfying the conditions:

1. For all $u, v \in N_+^*$, if $uv \in D$, then $u \in D$.
2. For all $u \in N_+^*$, for every $i \in N_+$, if $ui \in D$ then $uj \in D$ for every j, $1 \leq j \leq i$.

The tree domain

$$D = \{\epsilon, 1, 2, 11, 21, 22, 221, 222, 2211\}$$

is represented as follows:
A tree labeled with symbols from a set Δ is defined as follows.

Definition 3.12. Given a set Δ of labels, a Δ-tree (for short, a tree) is a total function $t : D \to \Delta$, where D is a tree domain.

The domain of a tree t is denoted as $\text{dom}(t)$. Every string $u \in \text{dom}(t)$ is called a tree address or a node.

Let $\Delta = \{f, g, h, a, b\}$. The tree $t : D \to \Delta$, where D is the tree domain of the previous example and t is the function whose graph is

$$\{(\epsilon, f), (1, h), (2, g), (11, a), (21, a), (22, f), (221, h), (222, b), (2211, a)\}$$

is represented as follows:

![Tree Diagram](https://via.placeholder.com/150)

The outdegree (sometimes called ramification) $r(u)$ of a node u is the cardinality of the set

$$\{i \mid ui \in \text{dom}(t)\}.$$

Note that the outdegree of a node can be infinite. Most of the trees that we shall consider will be finite-branching, that is, for every node u, $r(u)$ will be an integer, and hence finite. If the outdegree of all nodes in a tree is bounded by n, then we can view the domain of the tree as being defined over $\{1, 2, \ldots, n\}^*$.
A node of outdegree 0 is called a leaf. The node whose address is ε is called the root of the tree. A tree is finite if its domain $\text{dom}(t)$ is finite. Given a node u in $\text{dom}(t)$, every node of the form ui in $\text{dom}(t)$ with $i \in \mathbb{N}_+$ is called a son (or immediate successor) of u.

Tree addresses are totally ordered lexicographically: $u \leq v$ if either u is a prefix of v or, there exist strings $x, y, z \in \mathbb{N}_+^*$ and $i, j \in \mathbb{N}_+$, with $i < j$, such that $u = xiy$ and $v = xjz$.

In the first case, we say that u is an ancestor (or predecessor) of v (or u dominates v) and in the second case, that u is to the left of v.

If $y = \varepsilon$ and $z = \varepsilon$, we say that xi is a left brother (or left sibling) of xj, ($i < j$). Two tree addresses u and v are independent if u is not a prefix of v and v is not a prefix of u.

Given a finite tree t, the yield of t is the string

$$t(u_1)t(u_2)\cdots t(u_k),$$

where u_1, u_2, \ldots, u_k is the sequence of leaves of t in lexicographic order.

For example, the yield of the tree below is $aaab$:

```
      f
   /   \
 h    g
 /     \
 a     a
       /  \
      f    \\
     /   \  \
 h   b  a
    /  \
 a   
```

Given a finite tree t, the depth of t is the integer

$$d(t) = \max\{|u| \mid u \in \text{dom}(t)\}.$$

Given a tree t and a node u in $\text{dom}(t)$, the subtree rooted at u is the tree t/u, whose domain is the set

$$\{v \mid uv \in \text{dom}(t)\}$$

and such that $t/u(v) = t(uv)$ for all v in $\text{dom}(t/u)$.

Another important operation is the operation of tree replacement (or tree substitution).

Definition 3.13. Given two trees t_1 and t_2 and a tree address u in t_1, the result of substituting t_2 at u in t_1, denoted by $t_1[u \leftarrow t_2]$, is the function whose graph is the set of pairs

$$\{(v, t_1(v)) \mid v \in \text{dom}(t_1), u \text{ is not a prefix of } v\} \cup \{(uv, t_2(v)) \mid v \in \text{dom}(t_2)\}.$$
Let \(t_1 \) and \(t_2 \) be the trees defined by the following diagrams:

Tree \(t_1 \)

\[
\begin{array}{c}
\text{g} \\
\downarrow \quad \downarrow \\
\text{f} \\
\downarrow \\
\text{h} \\
\downarrow \\
\text{a}
\end{array}
\]

Tree \(t_2 \)

\[
\begin{array}{c}
\text{g} \\
\downarrow \quad \downarrow \\
\text{a} \\
\downarrow \\
\text{b}
\end{array}
\]

The tree \(t_1[22 \leftarrow t_2] \) is defined by the following diagram:

\[
\begin{array}{c}
\text{f} \\
\downarrow \quad \downarrow \\
\text{h} \\
\downarrow \\
\text{a} \\
\downarrow \\
\text{a}
\end{array}
\]

We can now define derivation trees and relate derivations to derivation trees.

3.11 Derivations Trees

Definition 3.14. Given a context-free grammar \(G = (V, \Sigma, P, S) \), for any \(A \in N \), an \(A \)-derivation tree for \(G \) is a \((V \cup \{\varepsilon\})\)-tree \(t \) (a tree with set of labels \((V \cup \{\varepsilon\})\)) such that:

1. \(t(\varepsilon) = A \);

2. For every nonleaf node \(u \in \text{dom}(t) \), if \(u_1, \ldots, u_k \) are the successors of \(u \), then either
 - there is a production \(B \rightarrow X_1 \cdots X_k \) in \(P \) such that \(t(u) = B \) and \(t(u_i) = X_i \) for all \(i, 1 \leq i \leq k \), or
 - \(B \rightarrow \varepsilon \in P \), \(t(u) = B \) and \(t(u1) = \varepsilon \). A complete derivation (or parse tree) is an \(S \)-tree whose yield belongs to \(\Sigma^* \).
A derivation tree for the grammar

\[G_3 = (\{E, T, F, +, *, (,), a\}, \{+, *, (,), a\}, P, E), \]

where \(P \) is the set of rules

\[
\begin{align*}
E & \rightarrow E + T, \\
E & \rightarrow T, \\
T & \rightarrow T * F, \\
T & \rightarrow F, \\
F & \rightarrow (E), \\
F & \rightarrow a,
\end{align*}
\]

is shown in Figure 3.1. The yield of the derivation tree is \(a + a * a \).

![Figure 3.1: A complete derivation tree](image)

Derivations trees are associated to derivations inductively as follows.

Definition 3.15. Given a context-free grammar \(G = (V, \Sigma, P, S) \), for any \(A \in N \), if \(\pi : A \xrightarrow{n} \alpha \) is a derivation in \(G \), we construct an \(A \)-derivation tree \(t_\pi \) with yield \(\alpha \) as follows.

1. If \(n = 0 \), then \(t_\pi \) is the one-node tree such that \(dom(t_\pi) = \{\epsilon\} \) and \(t_\pi(\epsilon) = A \).

2. If \(A \xrightarrow{n-1} \lambda B \rho \xrightarrow{} \lambda \gamma \rho = \alpha \), then if \(t_1 \) is the \(A \)-derivation tree with yield \(\lambda B \rho \) associated with the derivation \(A \xrightarrow{n-1} \lambda B \rho \), and if \(t_2 \) is the tree associated with the production \(B \rightarrow \gamma \) (that is, if \(\gamma = X_1 \cdots X_k \)), then \(dom(t_2) = \{\epsilon, 1, \ldots, k\} \), \(t_2(\epsilon) = B \), and \(t_2(i) = X_i \) for all \(i, 1 \leq i \leq k \), or if \(\gamma = \epsilon \), then \(dom(t_2) = \{\epsilon, 1\} \), \(t_2(\epsilon) = B \), and \(t_2(1) = \epsilon \), then

\[t_\pi = t_1[u \leftarrow t_2], \]

where \(u \) is the address of the leaf labeled \(B \) in \(t_1 \).
The tree \(t_\pi \) is the \(A \)-derivation tree associated with the derivation \(A \xrightarrow{n} \alpha \).

Given the grammar

\[
G_2 = (\{E, +, *, (,) , a\}, \{+,*,(,),a\}, P, E),
\]
where \(P \) is the set of rules

\[
\begin{align*}
E & \rightarrow E + E, \\
E & \rightarrow E \ast E, \\
E & \rightarrow (E), \\
E & \rightarrow a,
\end{align*}
\]

the parse trees associated with two derivations of the string \(a + a \ast a \) are shown in Figure 3.2:

![Parse Trees](image)

Figure 3.2: Two derivation trees for \(a + a \ast a \)

The following lemma is easily shown.

Lemma 3.11. Let \(G = (V, \Sigma, P, S) \) be a context-free grammar. For any derivation \(A \xrightarrow{n} \alpha \), there is a unique \(A \)-derivation tree associated with this derivation, with yield \(\alpha \). Conversely, for any \(A \)-derivation tree \(t \) with yield \(\alpha \), there is a unique leftmost derivation \(A \xrightarrow{lm} \alpha \) in \(G \) having \(t \) as its associated derivation tree.

We will now prove a strong version of the pumping lemma for context-free languages due to Bill Ogden (1968).

3.12 Ogden’s Lemma

Ogden’s lemma states some combinatorial properties of parse trees that are deep enough. The yield \(w \) of such a parse tree can be split into 5 substrings \(u, v, x, y, z \) such that

\[
w = uvxyz,
\]
where \(u, v, x, y, z \) satisfy certain conditions. It turns out that we get a more powerful version of the lemma if we allow ourselves to mark certain occurrences of symbols in \(w \) before invoking the lemma. We can imagine that marked occurrences in a nonempty string \(w \) are occurrences of symbols in \(w \) in boldface, or red, or any given color (but one color only). For example, given \(w = aaababbbaa \), we can mark the symbols of even index as follows:

\[
aaabab\text{bbbaa}.
\]

More rigorously, we can define a marking of a nonnull string \(w : \{1, \ldots, n\} \to \Sigma \) as any function \(m : \{1, \ldots, n\} \to \{0, 1\} \). Then, a letter \(w_i \) in \(w \) is a marked occurrence iff \(m(i) = 1 \), and an unmarked occurrence if \(m(i) = 0 \). The number of marked occurrences in \(w \) is equal to

\[
\sum_{i=1}^{n} m(i).
\]

Ogden’s lemma only yields useful information for grammars \(G \) generating an infinite language. We could make this hypothesis, but it seems more elegant to use the precondition that the lemma only applies to strings \(w \in L(D) \) such that \(w \) contains at least \(K \) marked occurrences, for a constant \(K \) large enough. If \(K \) is large enough, \(L(G) \) will indeed be infinite.

Lemma 3.12. For every context-free grammar \(G \), there is some integer \(K > 1 \) such that, for every string \(w \in \Sigma^+ \), for every marking of \(w \), if \(w \in L(G) \) and \(w \) contains at least \(K \) marked occurrences, then there exists some decomposition of \(w \) as \(w = uvxyz \), and some \(A \in N \), such that the following properties hold:

1. There are derivations \(S \xrightarrow{+} uAz \), \(A \xrightarrow{+} vAy \), and \(A \xrightarrow{+} x \), so that

\[
uv^nxy^nz \in L(G)
\]

 for all \(n \geq 0 \) (the pumping property);

2. \(x \) contains some marked occurrence;

3. Either (both \(u \) and \(v \) contain some marked occurrence), or (both \(y \) and \(z \) contain some marked occurrence);

4. \(vxy \) contains less than \(K \) marked occurrences.

Proof. Let \(t \) be any parse tree for \(w \). We call a leaf of \(t \) a marked leaf if its label is a marked occurrence in the marked string \(w \). The general idea is to make sure that \(K \) is large enough so that parse trees with yield \(w \) contain enough repeated nonterminals along some path from the root to some marked leaf. Let \(r = |N| \), and let

\[
p = \max\{2, \max\{|\alpha| \mid (A \to \alpha) \in P\}\}.
\]
We claim that $K = p^{2r+3}$ does the job.

The key concept in the proof is the notion of a B-node. Given a parse tree t, a B-node is a node with at least two immediate successors u_1, u_2, such that for $i = 1, 2$, either u_i is a marked leaf, or u_i has some marked leaf as a descendant. We construct a path from the root to some marked leaf, so that for every B-node, we pick the leftmost successor with the maximum number of marked leaves as descendants. Formally, define a path (s_0, \ldots, s_n) from the root to some marked leaf, so that:

(i) Every node s_i has some marked leaf as a descendant, and s_0 is the root of t;

(ii) If s_j is in the path, s_j is not a leaf, and s_j has a single immediate descendant which is either a marked leaf or has marked leaves as its descendants, let s_{j+1} be that unique immediate descendant of s_i.

(iii) If s_j is a B-node in the path, then let s_{j+1} be the leftmost immediate successors of s_j with the maximum number of marked leaves as descendants (assuming that if s_{j+1} is a marked leaf, then it is its own descendant).

(iv) If s_j is a leaf, then it is a marked leaf and $n = j$.

We will show that the path (s_0, \ldots, s_n) contains at least $2r + 3$ B-nodes.

Claim: For every i, $0 \leq i \leq n$, if the path (s_i, \ldots, s_n) contains b B-nodes, then s_i has at most p^b marked leaves as descendants.

Proof. We proceed by “backward induction”, i.e., by induction on $n - i$. For $i = n$, there are no B-nodes, so that $b = 0$, and there is indeed $p^0 = 1$ marked leaf s_n. Assume that the claim holds for the path (s_{i+1}, \ldots, s_n).

If s_i is not a B-node, then the number b of B-nodes in the path (s_{i+1}, \ldots, s_n) is the same as the number of B-nodes in the path (s_i, \ldots, s_n), and s_{i+1} is the only immediate successor of s_i having a marked leaf as descendant. By the induction hypothesis, s_{i+1} has at most p^b marked leaves as descendants, and this is also an upper bound on the number of marked leaves which are descendants of s_i.

If s_i is a B-node, then if there are b B-nodes in the path (s_{i+1}, \ldots, s_n), there are $b + 1$ B-nodes in the path (s_i, \ldots, s_n). By the induction hypothesis, s_{i+1} has at most p^b marked leaves as descendants. Since s_i is a B-node, s_{i+1} was chosen to be the leftmost immediate successor of s_i having the maximum number of marked leaves as descendants. Thus, since the outdegree of s_i is at most p, and each of its immediate successors has at most p^b marked leaves as descendants, the node s_i has at most $pp^d = p^{d+1}$ marked leaves as descendants, as desired. □

Applying the claim to s_0, since w has at least $K = p^{2r+3}$ marked occurrences, we have $p^b \geq p^{2r+3}$, and since $p \geq 2$, we have $b \geq 2r + 3$, and the path (s_0, \ldots, s_n) contains at least $2r + 3$ B-nodes (Note that this would not follow if we had $p = 1$).
Let us now select the lowest \(2r + 3\) \(B\)-nodes in the path, \((s_0, \ldots, s_n)\), and denote them \((b_1, \ldots, b_{2r+3})\). Every \(B\)-node \(b_i\) has at least two immediate successors \(u_i < v_i\) such that \(u_i\) or \(v_i\) is on the path \((s_0, \ldots, s_n)\). If the path goes through \(u_i\), we say that \(b_i\) is a \(right\) \(B\)-node and if the path goes through \(v_i\), we say that \(b_i\) is a \(left\) \(B\)-node. Since \(2r + 3 = r + 2 + r + 1\), either there are \(r + 2\) left \(B\)-nodes or there are \(r + 2\) right \(B\)-nodes in the path \((b_1, \ldots, b_{2r+3})\). Let us assume that there are \(r + 2\) left \(B\)-nodes, the other case being similar.

Let \((d_1, \ldots, d_{r+2})\) be the lowest \(r + 2\) left \(B\)-nodes in the path. Since there are \(r + 1\) \(B\)-nodes in the sequence \((d_2, \ldots, d_{r+2})\), and there are only \(r\) distinct nonterminals, there are two nodes \(d_i\) and \(d_j\), with \(2 \leq i < j \leq r + 2\), such that \(t(d_i) = t(d_j) = A\), for some \(A \in N\). We can assume that \(d_i\) is an ancestor of \(d_j\), and thus, \(d_j = d_i \alpha\), for some \(\alpha \neq \epsilon\).

If we prune out the subtree \(t/d_i\) rooted at \(d_i\) from \(t\), we get an \(S\)-derivation tree having a yield of the form \(uAz\), and we have a derivation of the form \(S \xrightarrow{+} uAz\), since there are at least \(r + 2\) left \(B\)-nodes on the path, and we are looking at the lowest \(r + 1\) left \(B\)-nodes. Considering the subtree \(t/d_i\), pruning out the subtree \(t/d_j\) rooted at \(A\) in \(t/d_i\), we get an \(A\)-derivation tree having a yield of the form \(vAy\), and we have a derivation of the form \(A \xrightarrow{+} vAy\). Finally, the subtree \(t/d_j\) is an \(A\)-derivation tree with yield \(x\), and we have a derivation \(A \xrightarrow{+} x\). This proves (1) of the lemma.

Since \(s_n\) is a marked leaf and a descendant of \(d_j\), \(x\) contains some marked occurrence, proving (2).

Since \(d_1\) is a left \(B\)-node, some left sibling of the immediate successor of \(d_1\) on the path has some distinguished leaf in \(u\) as a descendant. Similarly, since \(d_i\) is a left \(B\)-node, some left sibling of the immediate successor of \(d_i\) on the path has some distinguished leaf in \(v\) as a descendant. This proves (3).

\((d_j, \ldots, b_{2r+3})\) has at most \(2r + 1\) \(B\)-nodes, and by the claim shown earlier, \(d_j\) has at most \(p^{2r+1}\) marked leaves as descendants. Since \(p^{2r+1} < p^{2r+3} = K\), this proves (4).

Observe that condition (2) implies that \(x \neq \epsilon\), and condition (3) implies that either \(u \neq \epsilon\) and \(v \neq \epsilon\), or \(y \neq \epsilon\) and \(z \neq \epsilon\). Thus, the pumping condition (1) implies that the set \(\{uv^nxy^nz \mid n \geq 0\}\) is an infinite subset of \(L(G)\), and \(L(G)\) is indeed infinite, as we mentioned earlier. Note that \(K \geq 3\), and in fact, \(K \geq 32\). The “standard pumping lemma” due to Bar-Hillel, Perles, and Shamir, is obtained by letting all occurrences be marked in \(w \in L(G)\).

Lemma 3.13. For every context-free grammar \(G\) (without \(\epsilon\)-rules), there is some integer \(K > 1\) such that, for every string \(w \in \Sigma^*\), if \(w \in L(G)\) and \(|w| \geq K\), then there exists some decomposition of \(w\) as \(w = uwxyz\), and some \(A \in N\), such that the following properties hold:

(1) There are derivations \(S \xrightarrow{+} uAz\), \(A \xrightarrow{+} vAy\), and \(A \xrightarrow{+} x\), so that \(uv^nxy^nz \in L(G)\)

for all \(n \geq 0\) (the pumping property);
3.12. OGDEN’S LEMMA

(2) \(x \neq \varepsilon; \)

(3) Either \(v \neq \varepsilon \) or \(y \neq \varepsilon; \)

(4) \(|vxy| \leq K. \)

A stronger version could be stated, and we are just following tradition in stating this standard version of the pumping lemma.

Ogden’s lemma or the pumping lemma can be used to show that certain languages are not context-free. The method is to proceed by contradiction, i.e., to assume (contrary to what we wish to prove) that a language \(L \) is indeed context-free, and derive a contradiction of Ogden’s lemma (or of the pumping lemma). Thus, as in the case of the regular languages, it would be helpful to see what the negation of Ogden’s lemma is, and for this, we first state Ogden’s lemma as a logical formula.

For any nonnull string \(w: \{1, \ldots, n\} \rightarrow \Sigma \), for any marking \(m: \{1, \ldots, n\} \rightarrow \{0, 1\} \) of \(w \), for any substring \(y \) of \(w \), where \(w = xyz \), with \(|x| = h \) and \(k = |y| \), the number of marked occurrences in \(y \), denoted as \(|m(y)| \), is defined as

\[
|m(y)| = \sum_{i=h+1}^{i=h+k} m(i).
\]

We will also use the following abbreviations:

- \(nat = \{0, 1, 2, \ldots\} \)
- \(nat32 = \{32, 33, \ldots\} \)
- \(A \equiv w = uvxyz \)
- \(B \equiv |m(x)| \geq 1, \)
- \(C \equiv (|m(u)| \geq 1 \land |m(v)| \geq 1) \lor (|m(y)| \geq 1 \land |m(z)| \geq 1) \)
- \(D \equiv |m(vxy)| < K \)
- \(P \equiv \forall n: nat (uv^nxy^nz \in L(D)). \)

Ogden’s lemma can then be stated as

\[
\forall G: CFG \exists K: nat32 \forall w: \Sigma^* \forall m: \text{marking} \quad \left((w \in L(D) \land |m(w)| \geq K) \supset (\exists u, v, x, y, z: \Sigma^* A \land B \land C \land D \land P) \right).
\]

Recalling that

\[
\neg(A \land B \land C \land D \land P) \equiv \neg(A \land B \land C \land D) \lor \neg P \equiv (A \land B \land C \land D) \supset \neg P
\]

and

\[
\neg(P \supset Q) \equiv P \land \neg Q,
\]

we can express the negation of Ogden’s lemma in a similar way.
the negation of Ogden’s lemma can be stated as

\[\exists G : \text{CFG} \forall K : \text{nat} 32 \exists w : \Sigma^* \exists m : \text{marking} \]

\[\left((w \in L(D) \land |m(w)| \geq K) \land (\forall u, v, x, y, z : \Sigma^* (A \land B \land C \land D) \supset \neg P) \right). \]

Since

\[\neg P \equiv \exists n : \text{nat} (uv^n x y^n z \notin L(D)), \]

in order to show that Ogden’s lemma is contradicted, one needs to show that for some context-free grammar \(G \), for every \(K \geq 2 \), there is some string \(w \in L(D) \) and some marking \(m \) such that \(w \in L(D) \) and \(m \) contains at least \(K \) marked occurrences in \(w \), such that for every possible decomposition \(w = uvxyz \) satisfying the constraints \(A \land B \land C \land D \), there is some \(n \geq 0 \) such that \(uv^n x y^n z \notin L(D) \). When proceeding by contradiction, we have a language \(L \) that we are (wrongly) assuming to be context-free and we can use any CFG grammar \(G \) generating \(L \). The creative part of the argument is to pick the right \(w \in L \) and the right marking of \(w \) (not making any assumption on \(K \)).

As an illustration, we show that the language

\[L = \{ a^n b^n c^n \mid n \geq 1 \} \]

is not context-free. Since \(L \) is infinite, we will be able to use the pumping lemma.

The proof proceeds by contradiction. If \(L \) was context-free, there would be some context-free grammar \(G \) such that \(L = L(G) \), and some constant \(K > 1 \) as in Ogden’s lemma. Let \(w = a^K b^K c^K \), and choose the \(b \)'s as marked occurrences. Then by Ogden’s lemma, \(x \) contains some marked occurrence, and either both \(u, v \) or both \(y, z \) contain some marked occurrence. Assume that both \(u \) and \(v \) contain some \(b \). We have the following situation:

\[a \cdots ab \cdots b \cdots b \cdots b \cdots c \cdots c. \]

If we consider the string \(uvvxyz \), the number of \(a \)'s is still \(K \), but the number of \(b \)'s is strictly greater than \(K \) since \(v \) contains at least one \(b \), and thus \(uvvxyz \notin L \), a contradiction.

If both \(y \) and \(z \) contain some \(b \) we will also reach a contradiction because in the string \(uvvxyz \), the number of \(c \)'s is still \(K \), but the number of \(b \)'s is strictly greater than \(K \). Having reached a contradiction in all cases, we conclude that \(L \) is not context-free.

Let us now show that the language

\[L = \{ a^m b^n c^m d^n \mid m, n \geq 1 \} \]

is not context-free.

Again, we proceed by contradiction. This time, let

\[w = a^K b^K c^K d^K, \]
where the b’s and c’s are marked occurrences.

By Ogden’s lemma, either both u, v contain some marked occurrence, or both y, z contain some marked occurrence, and x contains some marked occurrence. Let us first consider the case where both u, v contain some marked occurrence.

If v contains some b, since uvxyyz ∈ L, v must contain only b’s, since otherwise we would have a bad string in L, and we have the following situation:

\[a \cdots ab\cdots bb\cdots bc\cdots cd\cdots d. \]

Since uvxyyz ∈ L, the only way to preserve an equal number of b’s and d’s is to have y ∈ d⁺. But then, vxy contains c^K, which contradicts (4) of Ogden’s lemma.

If v contains some c, since x also contains some marked occurrence, it must be some c, and v contains only c’s and we have the following situation:

\[a \cdots ab\cdots bc\cdots cc\cdots cd\cdots d. \]

Since uvxyyz ∈ L and the number of a’s is still K whereas the number of c’s is strictly more than K, this case is impossible.

Let us now consider the case where both y, z contain some marked occurrence. Reasoning as before, the only possibility is that v ∈ a⁺ and y ∈ c⁺:

\[a \cdots a a \cdots a a \cdots ab\cdots bc\cdots cc\cdots cd\cdots d. \]

But then, vxy contains b^K, which contradicts (4) of Ogden’s Lemma. Since a contradiction was obtained in all cases, L is not context-free.

Ogden’s lemma can also be used to show that the context-free language

\[\{a^m b^n c^n \mid m, n \geq 1\} \cup \{a^m b^m c^n \mid m, n \geq 1\} \]

is inherently ambiguous. The proof is quite involved.

Another corollary of the pumping lemma is that it is decidable whether a context-free grammar generates an infinite language.

Lemma 3.14. Given any context-free grammar, G, if K is the constant of Ogden’s lemma, then the following equivalence holds:

L(G) is infinite iff there is some w ∈ L(G) such that K ≤ |w| < 2K.
Proof. Let $K = p^{2r+3}$ be the constant from the proof of Lemma 3.12. If there is some $w \in L(G)$ such that $|w| \geq K$, we already observed that the pumping lemma implies that $L(G)$ contains an infinite subset of the form \{uv^nxy^nz \mid n \geq 0\}. Conversely, assume that $L(G)$ is infinite. If $|w| < K$ for all $w \in L(G)$, then $L(G)$ is finite. Thus, there is some $w \in L(G)$ such that $|w| \geq K$. Let $w \in L(G)$ be a minimal string such that $|w| \geq K$. By the pumping lemma, we can write w as $w = uvxyxz$, where $x \neq \epsilon$, $vy \neq \epsilon$, and $|vxy| \leq K$. By the pumping property, $uxz \in L(G)$. If $|w| \geq 2K$, then
\[
|uxz| = |uvxyz| - |vy| > |uvxyz| - |vxy| \geq 2K - K = K,
\]
and $|uxz| < |uvxyz|$, contradicting the minimality of w. Thus, we must have $|w| < 2K$.

In particular, if G is in Chomsky Normal Form, it can be shown that we just have to consider derivations of length at most $4K - 3$.

Chapter 4

A Survey of LR-Parsing Methods

In this chapter, we give a brief survey on LR-parsing methods. We begin with the definition of characteristic strings and the construction of Knuth’s LR(0)-characteristic automaton. Next, we describe the shift/reduce algorithm. The need for lookahead sets is motivated by the resolution of conflicts. A unified method for computing FIRST, FOLLOW and LALR(1) lookahead sets is presented. The method uses a same graph algorithm Traverse which finds all nodes reachable from a given node and computes the union of predefined sets assigned to these nodes. Hence, the only difference between the various algorithms for computing FIRST, FOLLOW and LALR(1) lookahead sets lies in the fact that the initial sets and the graphs are computed in different ways. The method can be viewed as an efficient way for solving a set of simultaneously recursive equations with set variables. The method is inspired by DeRemer and Pennello’s method for computing LALR(1) lookahead sets. However, DeRemer and Pennello use a more sophisticated graph algorithm for finding strongly connected components. We use a slightly less efficient but simpler algorithm (a depth-first search). We conclude with a brief presentation of LR(1) parsers.

4.1 LR(0)-Characteristic Automata

The purpose of LR-parsing, invented by D. Knuth in the mid sixties, is the following: Given a context-free grammar G, for any terminal string $w \in \Sigma^*$, find out whether w belongs to the language $L(G)$ generated by G, and if so, construct a rightmost derivation of w, in a deterministic fashion. Of course, this is not possible for all context-free grammars, but only for those that correspond to languages that can be recognized by a deterministic PDA (DPDA). Knuth’s major discovery was that for a certain type of grammars, the $LR(k)$-grammars, a certain kind of DPDA could be constructed from the grammar (shift/reduce parsers). The k in $LR(k)$ refers to the amount of lookahead that is necessary in order to proceed deterministically. It turns out that $k = 1$ is sufficient, but even in this case, Knuth construction produces very large DPDA’s, and his original $LR(1)$ method is not practical. Fortunately, around 1969, Frank DeRemer, in his MIT Ph.D. thesis, investigated a practical restriction of Knuth’s method, known as $SLR(k)$, and soon after, the $LALR(k)$ method was
discovered. The \textit{SLR}(k) and the \textit{LALR}(k) methods are both based on the construction of the \textit{LR}(0)-\textit{characteristic automaton} from a grammar \(G\), and we begin by explaining this construction. The additional ingredient needed to obtain an \textit{SLR}(k) or an \textit{LALR}(k) parser from an \textit{LR}(0) parser is the computation of lookahead sets. In the \textit{SLR} case, the FOLLOW sets are needed, and in the \textit{LALR} case, a more sophisticated version of the FOLLOW sets is needed. We will consider the construction of these sets in the case \(k = 1\). We will discuss the shift/reduce algorithm and consider briefly ways of building \textit{LR}(1)-parsing tables.

For simplicity of exposition, we first assume that grammars have no \(\varepsilon\)-rules. This restriction will be lifted in Section 4.10. Given a reduced context-free grammar \(G = (V, \Sigma, P, S')\) augmented with start production \(S' \rightarrow S\), where \(S'\) does not appear in any other productions, the set \(C_G\) of \textit{characteristic strings} of \(G\) is the following subset of \(V^*\) (watch out, not \(\Sigma^*\)):

\[
C_G = \{ \alpha\beta \in V^* \mid S' \xrightarrow{\ast} \alpha Bv \xrightarrow{\ast} \alpha\beta v, \\
\alpha, \beta \in V^*, v \in \Sigma^*, B \rightarrow \beta \in P \}.
\]

In words, \(C_G\) is a certain set of prefixes of sentential forms obtained in rightmost derivations: Those obtained by truncating the part of the sentential form immediately following the rightmost symbol in the right-hand side of the production applied at the last step.

The fundamental property of \textit{LR}-parsing, due to D. Knuth, is that \(C_G\) is a \textit{regular language}. Furthermore, a DFA, \(DCG\), accepting \(C_G\), can be constructed from \(G\).

Conceptually, it is simpler to construct the DFA accepting \(C_G\) in two steps:

1. First, construct a nondeterministic automaton with \(\varepsilon\)-rules, \(NCG\), accepting \(C_G\).
2. Apply the subset construction (Rabin and Scott’s method) to \(NCG\) to obtain the DFA \(DCG\).

In fact, careful inspection of the two steps of this construction reveals that it is possible to construct \(DCG\) directly in a single step, and this is the construction usually found in most textbooks on parsing.

The nondeterministic automaton \(NCG\) accepting \(C_G\) is defined as follows:

The states of \(NCG\) are “marked productions”, where a marked production is a string of the form \(A \rightarrow \alpha \dot{} \beta\), where \(A \rightarrow \alpha \beta\) is a production, and \(\dot{}\) is a symbol not in \(V\) called the “dot” and which can appear anywhere within \(\alpha \beta\).

The start state is \(S' \rightarrow \dot{} S\), and the transitions are defined as follows:

1. For every terminal \(a \in \Sigma\), if \(A \rightarrow \alpha \dot{} \beta\) is a marked production, with \(\alpha, \beta \in V^*\), then there is a transition on input \(a\) from state \(A \rightarrow \alpha \dot{} \beta\) to state \(A \rightarrow \alpha a \dot{} \beta\) obtained by “shifting the dot.” Such a transition is shown in Figure 4.1.
(b) For every nonterminal \(B \in N \), if \(A \rightarrow \alpha \cdot \cdot \cdot B\beta \) is a marked production, with \(\alpha, \beta \in V^* \), then there is a transition on input \(B \) from state \(A \rightarrow \alpha \cdot \cdot \cdot B\beta \) to state \(A \rightarrow \alpha B \cdot \cdot \cdot \beta \) (obtained by “shifting the dot”), and transitions on input \(\epsilon \) (the empty string) to all states \(B \rightarrow \cdot \cdot \cdot \gamma_i \), for all productions \(B \rightarrow \cdot \cdot \cdot \gamma_i \) with left-hand side \(B \). Such transitions are shown in Figure 4.2.

(c) A state is final if and only if it is of the form \(A \rightarrow \beta \cdot \cdot \cdot \) (that is, the dot is in the rightmost position).

The above construction is illustrated by the following example:
Example 1. Consider the grammar G_1 given by:

$$
S \rightarrow E \\
E \rightarrow aEb \\
E \rightarrow ab
$$

The NFA for C_{G_1} is shown in Figure 4.3. The result of making the NFA for C_{G_1} deterministic is shown in Figure 4.4 (where transitions to the “dead state” have been omitted). The internal structure of the states $1, \ldots, 6$ is shown below:

1: $S \rightarrow .E$
 $E \rightarrow .aEb$
 $E \rightarrow .ab$
2: $E \rightarrow a.Eb$
 $E \rightarrow a.b$
 $E \rightarrow .aEb$
 $E \rightarrow .ab$
3: $E \rightarrow aE.b$
4: $S \rightarrow E.$
5: $E \rightarrow ab.$
6: $E \rightarrow aEb.$

The next example is slightly more complicated.

Example 2. Consider the grammar G_2 given by:

$$
S \rightarrow E \\
E \rightarrow E + T \\
E \rightarrow T \\
T \rightarrow T \ast a \\
T \rightarrow a
$$

The result of making the NFA for C_{G_2} deterministic is shown in Figure 4.5 (where transitions to the “dead state” have been omitted). The internal structure of the states $1, \ldots, 8$
Figure 4.3: NFA for C_{G_1}

Figure 4.4: DFA for C_{G_1}
is shown below:

1: \(S \rightarrow .E \)
 \(E \rightarrow .E + T \)
 \(E \rightarrow .T \)
 \(T \rightarrow .T \ast a \)
 \(T \rightarrow .a \)

2: \(E \rightarrow E \ast a \)

3: \(E \rightarrow T. \)
 \(T \rightarrow T \ast a \)

4: \(T \rightarrow a. \)

5: \(E \rightarrow E + T. \)
 \(T \rightarrow .T \ast a \)
 \(T \rightarrow .a. \)

6: \(T \rightarrow T \ast a. \)

7: \(E \rightarrow E + T. \)
 \(T \rightarrow T \ast a. \)

8: \(T \rightarrow T \ast a. \)

Figure 4.5: DFA for \(C_{G_2} \)

Note that some of the marked productions are more important than others. For example, in state 5, the marked production \(E \rightarrow E + .T \) determines the state. The other two items \(T \rightarrow .T \ast a \) and \(T \rightarrow .a \) are obtained by \(\epsilon \)-closure. We call a marked production of the form \(A \rightarrow \alpha.\beta \), where \(\alpha \neq \epsilon \), a core item. If we also call \(S' \rightarrow .S \) a core item, we observe that every state is completely determined by its subset of core items. The other items in the
state are obtained via ε-closure. We can take advantage of this fact to write a more efficient algorithm to construct in a single pass the $LR(0)$-automaton. Also observe the so-called spelling property: All the transitions entering any given state have the same label.

Given a state s, if s contains both a reduce item $A \rightarrow \gamma$, and a shift item $B \rightarrow \alpha.a.\beta$, where $a \in \Sigma$, we say that there is a shift/reduce conflict in state s on input a. If s contains two (distinct) reduce items $A_1 \rightarrow \gamma_1$, and $A_2 \rightarrow \gamma_2$, we say that there is a reduce/reduce conflict in state s. A grammar is said to be $LR(0)$ if the DFA DCG has no conflicts. This is the case for the grammar G_1. However, it should be emphasized that this is extremely rare in practice. The grammar G_1 is just very nice, and a toy example. In fact, G_2 is not $LR(0)$. To eliminate conflicts, one can either compute $SLR(1)$-lookahead sets, using FOLLOW sets (see Section 4.6), or sharper lookahead sets, the $LALR(1)$ sets (see Section 4.9). For example, the computation of $SLR(1)$-lookahead sets for G_2 will eliminate the conflicts. We will describe methods for computing $SLR(1)$-lookahead sets and $LALR(1)$-lookahead sets in Sections 4.6, 4.9, and 4.10. A more drastic measure is to compute the $LR(1)$-automaton, in which the states incorporate lookahead symbols (see Section 4.11). However, as we said before, this is not a practical methods for large grammars.

4.2 Shift/Reduce Parsers

A shift/reduce parser is a modified kind of DPDA. Firstly, push moves, called shift moves, are restricted so that exactly one symbol is pushed on top of the stack. Secondly, more powerful kinds of pop moves, called reduce moves, are allowed. During a reduce move, a finite number of stack symbols may be popped off the stack, and the last step of a reduce move, called a goto move, consists of pushing one symbol on top of new topmost symbol in the stack. Shift/reduce parsers use parsing tables constructed from the $LR(0)$-characteristic automaton DCG associated with the grammar. The shift and goto moves come directly from the transition table of DCG, but the determination of the reduce moves requires the computation of lookahead sets. The $SLR(1)$ lookahead sets are obtained from some sets called the FOLLOW sets (see Section 4.6), and the $LALR(1)$ lookahead sets $LA(s, A \rightarrow \gamma)$ require fancier FOLLOW sets (see Section 4.9).

The construction of shift/reduce parsers is made simpler by assuming that the end of input strings $w \in \Sigma^*$ is indicated by the presence of an endmarker, usually denoted $\$, and assumed not to belong to Σ.

Consider the grammar G_1 of Example 1, where we have numbered the productions 0, 1, 2:

\[
\begin{align*}
0 & : S \rightarrow E \\
1 & : E \rightarrow aEb \\
2 & : E \rightarrow ab
\end{align*}
\]
The parsing tables associated with the grammar G_1 are shown below:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>$$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s2</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>s2</td>
<td>s5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>s6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>acc</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td></td>
</tr>
</tbody>
</table>

Entries of the form s_i are shift actions, where i denotes one of the states, and entries of the form r_n are reduce actions, where n denotes a production number (not a state). The special action acc means accept, and signals the successful completion of the parse. Entries of the form i, in the rightmost column, are goto actions. All blank entries are error entries, and mean that the parse should be aborted.

We will use the notation $\text{action}(s, a)$ for the entry corresponding to state s and terminal $a \in \Sigma \cup \{\$\}$, and $\text{goto}(s, A)$ for the entry corresponding to state s and nonterminal $A \in N - \{S'\}$.

Assuming that the input is $w\$, we now describe in more detail how a shift/reduce parser proceeds. The parser uses a stack in which states are pushed and popped. Initially, the stack contains state 1 and the cursor pointing to the input is positioned on the leftmost symbol. There are four possibilities:

1. If $\text{action}(s, a) = s_j$, then push state j on top of the stack, and advance to the next input symbol in $w\$. This is a shift move.

2. If $\text{action}(s, a) = r_n$, then do the following: First, determine the length $k = |\gamma|$ of the righthand side of the production $n: A \rightarrow \gamma$. Then, pop the topmost k symbols off the stack (if $k = 0$, no symbols are popped). If p is the new top state on the stack (after the k pop moves), push the state $\text{goto}(p, A)$ on top of the stack, where A is the lefthand side of the “reducing production” $A \rightarrow \gamma$. Do not advance the cursor in the current input. This is a reduce move.

3. If $\text{action}(s, \$) = \text{acc}$, then accept. The input string w belongs to $L(G)$.

4. In all other cases, error, abort the parse. The input string w does not belong to $L(G)$.

Observe that no explicit state control is needed. The current state is always the current topmost state in the stack. We illustrate below a parse of the input $aaabbb\$.
4.3. COMPUTATION OF FIRST

<table>
<thead>
<tr>
<th>stack</th>
<th>remaining input</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>aaabbb$</td>
<td>s2</td>
</tr>
<tr>
<td>12</td>
<td>aabbb$</td>
<td>s2</td>
</tr>
<tr>
<td>122</td>
<td>abbb$</td>
<td>s2</td>
</tr>
<tr>
<td>1222</td>
<td>bbb$</td>
<td>s5</td>
</tr>
<tr>
<td>12225</td>
<td>bb$</td>
<td>r2</td>
</tr>
<tr>
<td>1223</td>
<td>bb$</td>
<td>s6</td>
</tr>
<tr>
<td>12236</td>
<td>b$</td>
<td>r1</td>
</tr>
<tr>
<td>123</td>
<td>b$</td>
<td>s6</td>
</tr>
<tr>
<td>1236</td>
<td>$</td>
<td>r1</td>
</tr>
<tr>
<td>14</td>
<td>$</td>
<td>acc</td>
</tr>
</tbody>
</table>

Observe that the sequence of reductions read from bottom-up yields a rightmost derivation of $aaaabbb$ from E (or from S, if we view the action acc as the reduction by the production $S \rightarrow E$). This is a general property of LR-parsers.

The $SLR(1)$ reduce entries in the parsing tables are determined as follows: For every state s containing a reduce item $B \rightarrow \gamma$, if $B \rightarrow \gamma$ is the production number n, enter the action rn for state s and every terminal $a \in FOLLOW(B)$. If the resulting shift/reduce parser has no conflicts, we say that the grammar is $SLR(1)$. For the $LALR(1)$ reduce entries, enter the action rn for state s and production n: $B \rightarrow \gamma$, for all $a \in LA(s, B \rightarrow \gamma)$. Similarly, if the shift/reduce parser obtained using $LALR(1)$-lookahead sets has no conflicts, we say that the grammar is $LALR(1)$.

4.3 Computation of FIRST

In order to compute the FOLLOW sets, we first need to to compute the FIRST sets! For simplicity of exposition, we first assume that grammars have no ϵ-rules. The general case will be treated in Section 4.10.

Given a context-free grammar $G = (V, \Sigma, P, S')$ (augmented with a start production $S' \rightarrow S$), for every nonterminal $A \in N = V - \Sigma$, let

$$FIRST(A) = \{ a \mid a \in \Sigma, A \xrightarrow{a} a\alpha, \text{ for some } \alpha \in V^* \}.$$

For a terminal $a \in \Sigma$, let $FIRST(a) = \{ a \}$. The key to the computation of $FIRST(A)$ is the following observation: a is in $FIRST(A)$ if either a is in

$$INITFIRST(A) = \{ a \mid a \in \Sigma, A \rightarrow a\alpha \in P, \text{ for some } \alpha \in V^* \},$$

or a is in

$$\{ a \mid a \in FIRST(B), A \rightarrow B\alpha \in P, \text{ for some } \alpha \in V^*, B \neq A \}.$$
CHAPTER 4. A SURVEY OF LR-PARSING METHODS

Note that the second assertion is true because, if \(B \xrightarrow{a} a\delta \), then \(A \xrightarrow{B\alpha} a\delta\alpha \), and so, \(\text{FIRST}(B) \subseteq \text{FIRST}(A) \) whenever \(A \rightarrow B\alpha \in P \), with \(A \neq B \). Hence, the FIRST sets are the least solution of the following set of recursive equations: For each nonterminal \(A \),

\[
\text{FIRST}(A) = \text{INITFIRST}(A) \cup \bigcup \{ \text{FIRST}(B) \mid A \rightarrow B\alpha \in P, A \neq B \}.
\]

In order to explain the method for solving such systems, we will formulate the problem in more general terms, but first, we describe a “naive” version of the shift/reduce algorithm that hopefully demystifies the “optimized version” described in Section 4.2.

4.4 The Intuition Behind the Shift/Reduce Algorithm

Let \(DCG = (K, V, \delta, q_0, F) \) be the DFA accepting the regular language \(C_G \), and let \(\delta^* \) be the extension of \(\delta \) to \(K \times V^* \). Let us assume that the grammar \(G \) is either SLR(1) or LALR(1), which implies that it has no shift/reduce or reduce/reduce conflicts. We can use the DFA \(DCG \) accepting \(C_G \) recursively to parse \(L(G) \). The function \(CG \) is defined as follows: Given any string \(\mu \in V^* \),

\[
CG(\mu) = \begin{cases}
\text{error} & \text{if } \delta^*(q_0, \mu) = \text{error}; \\
(\delta^*(q_0, \theta), \theta, v) & \text{if } \delta^*(q_0, \theta) \in F, \mu = \theta v \text{ and } \theta \text{ is the shortest prefix of } \mu \text{ s.t. } \delta^*(q_0, \theta) \in F.
\end{cases}
\]

The naive shift-reduce algorithm is shown below:

begin
 accept := true;
 stop := false;
 \(\mu := \text{w$\$} \) \{input string\}
 while \(\neg\text{stop} \) do
 if \(CG(\mu) = \text{error} \) then
 stop := true; accept := false
 else
 Let \((q, \theta, v) = CG(\mu) \)
 Let \(B \rightarrow \beta \) be the production so that
 \(\text{action}(q, \text{FIRST}(v)) = B \rightarrow \beta \) and let \(\theta = \alpha\beta \)
 if \(B \rightarrow \beta = S' \rightarrow S \) then
 stop := true
 else
 \(\mu := \alpha B v \) \{reduction\}
 endif
 endwhile
end

endif
endwhile
end

The idea is to recursively run the DFA \(DCG \) on the sentential form \(\mu \), until the first final state \(q \) is hit. Then, the sentential form \(\mu \) must be of the form \(\alpha \beta v \), where \(v \) is a terminal string ending in \$, and the final state \(q \) contains a reduce item of the form \(B \rightarrow \beta \), with \(\text{action}(q, \text{FIRST}(v)) = B \rightarrow \beta \). Thus, we can reduce \(\mu = \alpha \beta v \) to \(\alpha B v \), since we have found a rightmost derivation step, and repeat the process.

Note that the major inefficiency of the algorithm is that when a reduction is performed, the prefix \(\alpha \) of \(\mu \) is reparsed entirely by \(DCG \). Since \(DCG \) is deterministic, the sequence of states obtained on input \(\alpha \) is uniquely determined. If we keep the sequence of states produced on input \(\theta \) by \(DCG \) in a stack, then it is possible to avoid reparsing \(\alpha \). Indeed, all we have to do is update the stack so that just before applying \(DCG \) to \(\alpha Av \), the sequence of states in the stack is the sequence obtained after parsing \(\alpha \). This stack is obtained by popping the \(|\beta| \) topmost states and performing an update which is just a goto move. This is the standard version of the shift/reduce algorithm!

4.5 The Graph Method for Computing Fixed Points

Let \(X \) be a finite set representing the domain of the problem (in Section 4.3 above, \(X = \Sigma \)), let \(F(1), \ldots, F(N) \) be \(N \) sets to be computed and let \(I(1), \ldots, I(N) \) be \(N \) given subsets of \(X \). The sets \(I(1), \ldots, I(N) \) are the initial sets. We also have a directed graph \(G \) whose set of nodes is \(\{1, \ldots, N\} \) and which represents relationships among the sets \(F(i) \), where \(1 \leq i \leq N \). The graph \(G \) has no parallel edges and no loops, but it may have cycles. If there is an edge from \(i \) to \(j \), this is denoted by \(iGj \) (note that the absence of loops means that \(iGi \) never holds). Also, the existence of a path from \(i \) to \(j \) is denoted by \(iG^+j \). The graph \(G \) represents a relation, and \(G^+ \) is the graph of the transitive closure of this relation. The existence of a path from \(i \) to \(j \), including the null path, is denoted by \(iG^*j \). Hence, \(G^* \) is the reflexive and transitive closure of \(G \). We want to solve for the least solution of the system of recursive equations:

\[
F(i) = I(i) \cup \{F(j) \mid iGj, i \neq j\}, \quad 1 \leq i \leq N.
\]

Since \((2^X)^N \) is a complete lattice under the inclusion ordering (which means that every family of subsets has a least upper bound, namely, the union of this family), it is an \(\omega \)-complete poset, and since the function \(F: (2^X)^N \rightarrow (2^X)^N \) induced by the system of equations is easily seen to preserve least upper bounds of \(\omega \)-chains, the least solution of the system can be computed by the standard fixed point technique (as explained in Section 3.7 of the class notes). We simply compute the sequence of approximations (\(F^k(1), \ldots, F^k(N) \)), where

\[
F^0(i) = \emptyset, \quad 1 \leq i \leq N,
\]
and

\[F^{k+1}(i) = I(i) \cup \bigcup \{ F^k(j) \mid iGj, i \neq j \}, \quad 1 \leq i \leq N. \]

It is easily seen that we can stop at \(k = N - 1 \), and the least solution is given by

\[F(i) = F^1(i) \cup F^2(i) \cup \cdots \cup F^N(i), \quad 1 \leq i \leq N. \]

However, the above expression can be simplified to

\[F(i) = \bigcup \{ I(j) \mid iG^*j \}, \quad 1 \leq i \leq N. \]

This last expression shows that in order to compute \(F(i) \), it is necessary to compute the union of all the initial sets \(I(j) \) reachable from \(i \) (including \(i \)). Hence, any transitive closure algorithm or graph traversal algorithm will do. For simplicity and for pedagogical reasons, we use a depth-first search algorithm.

Going back to \textsc{FIRST}, we see that all we have to do is to compute the \textsc{INITFIRST} sets, the graph \textsc{GFIRST}, and then use the graph traversal algorithm. The graph \textsc{GFIRST} is computed as follows: The nodes are the nonterminals and there is an edge from \(A \) to \(B \) \((A \neq B)\) if and only if there is a production of the form \(A \rightarrow B\alpha \), for some \(\alpha \in V^* \).

\textit{Example 1.} Computation of the \textsc{FIRST} sets for the grammar \(G_1 \) given by the rules:

\[
\begin{align*}
S & \rightarrow \ E\$ \\
E & \rightarrow \ E + T \\
E & \rightarrow T \\
T & \rightarrow T \ast F \\
T & \rightarrow F \\
F & \rightarrow (E) \\
F & \rightarrow -T \\
F & \rightarrow a.
\end{align*}
\]

We get

\[
\text{INITFIRST}(E) = \emptyset, \quad \text{INITFIRST}(T) = \emptyset, \quad \text{INITFIRST}(F) = \{(, -, a)\}.
\]

The graph \textsc{GFIRST} is shown in Figure 4.6.

We obtain the following \textsc{FIRST} sets:

\[
\text{FIRST}(E) = \text{FIRST}(T) = \text{FIRST}(F) = \{(, -, a)\}.
\]
4.6 Computation of FOLLOW

Recall the definition of FOLLOW(A) for a nonterminal A:

$$
\text{FOLLOW}(A) = \{ a \mid a \in \Sigma, S \rightarrow^* \alpha Aa\beta, \text{ for some } \alpha, \beta \in V^* \}.
$$

Note that a is in FOLLOW(A) if either a is in

$$
\text{INITFOLLOW}(A) = \{ a \mid a \in \Sigma, B \rightarrow \alpha AX\beta \in P, a \in \text{FIRST}(X), \alpha, \beta \in V^* \}
$$
or a is in

$$
\{ a \mid a \in \text{FOLLOW}(B), B \rightarrow \alpha A \in P, \alpha \in V^*, A \neq B \}.
$$

Indeed, if $S \rightarrow^* \lambda B a \rho$, then $S \rightarrow^* \lambda B a \rho \Rightarrow \lambda a A a \rho$, and so,

$$
\text{FOLLOW}(B) \subseteq \text{FOLLOW}(A)
$$
whenever $B \rightarrow \alpha A$ is in P, with $A \neq B$. Hence, the FOLLOW sets are the least solution of the set of recursive equations: For all nonterminals A,

$$
\text{FOLLOW}(A) = \text{INITFOLLOW}(A) \cup \bigcup \{ \text{FOLLOW}(B) \mid B \rightarrow \alpha A \in P, \alpha \in V^*, A \neq B \}.
$$

According to the method explained above, we just have to compute the INITFOLLOW sets (using FIRST) and the graph GFOLLOW, which is computed as follows: The nodes are the nonterminals and there is an edge from A to B ($A \neq B$) if and only if there is a production of the form $B \rightarrow \alpha A$ in P, for some $\alpha \in V^*$. Note the duality between the construction of the graph GFIRST and the graph GFOLLOW.

Example 2. Computation of the FOLLOW sets for the grammar G_1.

INITFOLLOW(E) = \{+, \}, INITFOLLOW(T) = \{

The graph GFOLLOW is shown in Figure 4.7. We have

<table>
<thead>
<tr>
<th>FOLLOW(E) =</th>
<th>\text{INITFOLLOW(E)},</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOLLOW(T) =</td>
<td>\text{INITFOLLOW(T)} \cup \text{INITFOLLOW(E)} \cup \text{INITFOLLOW(F)},</td>
</tr>
<tr>
<td>FOLLOW(F) =</td>
<td>\text{INITFOLLOW(F)} \cup \text{INITFOLLOW(T)} \cup \text{INITFOLLOW(E)},</td>
</tr>
</tbody>
</table>

and so

| FOLLOW(E) = \{+, \}, |
| FOLLOW(T) = \{+, \}, |
| FOLLOW(F) = \{+, \}, |

Figure 4.6: Graph GFIRST for G_1
CHAPTER 4. A SURVEY OF LR-PARSING METHODS

4.7 Algorithm Traverse

The input is a directed graph Gr having N nodes, and a family of initial sets $I[i]$, $1 \leq i \leq N$. We assume that a function successors is available, which returns for each node n in the graph, the list $\text{successors}[n]$ of all immediate successors of n. The output is the list of sets $F[i]$, $1 \leq i \leq N$, solution of the system of recursive equations of Section 4.5. Hence,

$$F[i] = \bigcup \{I[j] \mid iG^* j\}, \quad 1 \leq i \leq N.$$

The procedure Reachable visits all nodes reachable from a given node. It uses a stack STACK and a boolean array VISITED to keep track of which nodes have been visited. The procedures Reachable and traverse are shown in Figure 4.8.

4.8 More on LR(0)-Characteristic Automata

Let $G = (V, \Sigma, P, S')$ be an augmented context-free grammar with augmented start production $S' \to SS$ (where S' only occurs in the augmented production). The rightmost derivation relation is denoted by \Rightarrow_{rm}.

Recall that the set C_G of characteristic strings for the grammar G is defined by

$$C_G = \{\alpha\beta \in V^* \mid S' \Rightarrow_{rm} \alpha Av \Rightarrow_{rm} \alpha\beta v, \alpha\beta \in V^*, v \in \Sigma^*\}.$$

The fundamental property of LR-parsing, due to D. Knuth, is stated in the following theorem:

Theorem 4.1. Let G be a context-free grammar and assume that every nonterminal derives some terminal string. The language C_G (over V^*) is a regular language. Furthermore, a deterministic automaton DCG accepting C_G can be constructed from G.

The construction of DCG can be found in various places, including the book on Compilers by Aho, Sethi and Ullman. We explained this construction in Section 4.1. The proof that the
Procedure $\text{reachable}(Gr : graph; \text{startnode} : node; I : listof sets; \\
var F : listof sets)$;

var currentnode, succnode, i : node; STACK : stack;
$VISITED : \text{array}[1..N] \text{ of boolean}$;

begin
 for $i := 1$ to N do
 $VISITED[i] := \text{false}$;
 $STACK := \text{EMPTY}$;
 $\text{push}(STACK, \text{startnode})$;
 while $STACK \neq \text{EMPTY}$ do
 begin
 currentnode := top($STACK$); pop($STACK$);
 $VISITED[currentnode] := \text{true}$;
 for each succnode \in successors($currentnode$) do
 if $\neg VISITED[succnode]$ then
 begin
 $\text{push}(STACK, succnode)$;
 $F[startnode] := F[startnode] \cup I[succnode]$
 end
 end
 end
end

The sets $F[i], 1 \leq i \leq N$, are computed as follows:

begin
 for $i := 1$ to N do
 $F[i] := I[i]$;
 for $\text{startnode} := 1$ to N do
 $\text{reachable}(Gr, \text{startnode}, I, F)$
end

Figure 4.8: Algorithm traverse
NFA NCG constructed as indicated in Section 4.1 is correct, i.e., that it accepts precisely C_G, is nontrivial, but not really hard either. This will be the object of a homework assignment! However, note a subtle point: The construction of NCG is only correct under the assumption that every nonterminal derives some terminal string. Otherwise, the construction could yield an NFA NCG accepting strings not in C_G.

Recall that the states of the characteristic automaton CGA are sets of items (or marked productions), where an item is a production with a dot anywhere in its right-hand side. Note that in constructing CGA, it is not necessary to include the state $\{S' \rightarrow S$$.\}$ (the endmarker $\$ is only needed to compute the lookahead sets). If a state p contains a marked production of the form $A \rightarrow \beta$, where the dot is the rightmost symbol, state p is called a reduce state and $A \rightarrow \beta$ is called a reducing production for p. Given any state q, we say that a string $\beta \in V^*$ accesses q if there is a path from some state p to the state q on input β in the automaton CGA. Given any two states $p, q \in CGA$, for any $\beta \in V^*$, if there is a sequence of transitions in CGA from p to q on input β, this is denoted by

$$p \xrightarrow{\beta} q.$$

The initial state which is the closure of the item $S' \rightarrow .S$$. is denoted by 1. The LALR(1)-lookahead sets are defined in the next section.

4.9 LALR(1)-Lookahead Sets

For any reduce state q and any reducing production $A \rightarrow \beta$ for q, let

$$LA(q, A \rightarrow \beta) = \{a \mid a \in \Sigma, S' \xrightarrow{\star \text{rm}} \alpha A av \Rightarrow \alpha \beta av, \alpha, \beta \in V^*, v \in \Sigma^*, \alpha \beta \text{ accesses } q\}.$$

In words, $LA(q, A \rightarrow \beta)$ consists of the terminal symbols for which the reduction by production $A \rightarrow \beta$ in state q is the correct action (that is, for which the parse will terminate successfully). The LA sets can be computed using the FOLLOW sets defined below.

For any state p and any nonterminal A, let

$$\text{FOLLOW}(p, A) = \{a \mid a \in \Sigma, S' \xrightarrow{\star \text{rm}} \alpha A av, \alpha \in V^*, v \in \Sigma^* \text{ and } \alpha \text{ accesses } p\}.$$

Since for any derivation

$$S' \xrightarrow{\star \text{rm}} \alpha A av \Rightarrow \alpha \beta av$$

where $\alpha \beta$ accesses q, there is a state p such that $p \xrightarrow{\beta} q$ and α accesses p, it is easy to see that the following result holds:

Proposition 4.2. For every reduce state q and any reducing production $A \rightarrow \beta$ for q, we have

$$LA(q, A \rightarrow \beta) = \bigcup \{\text{FOLLOW}(p, A) \mid p \xrightarrow{\beta} q\}.$$
Also, we let
\[\text{LA}\{S' \rightarrow S., S' \rightarrow S\} = \text{FOLLOW}(1, S). \]

Intuitively, when the parser makes the reduction by production \(A \rightarrow \beta \) in state \(q \), each state \(p \) as above is a possible top of stack after the states corresponding to \(\beta \) are popped. Then the parser must read \(A \) in state \(p \), and the next input symbol will be one of the symbols in \(\text{FOLLOW}(p, A) \).

The computation of \(\text{FOLLOW}(p, A) \) is similar to that of \(\text{FOLLOW}(A) \). First, we compute \(\text{INITFOLLOW}(p, A) \), given by
\[
\text{INITFOLLOW}(p, A) = \{a \mid a \in \Sigma, \exists q, r, p \xrightarrow{A \quad \alpha} q \xrightarrow{\alpha} r\}.
\]

These are the terminals that can be read in \(CGA \) after the “goto transition” on nonterminal \(A \) has been performed from \(p \). These sets can be easily computed from \(CGA \).

Note that for the state \(p \) whose core item is \(S' \rightarrow S., \) we have
\[
\text{INITFOLLOW}(p, S) = \{\$\}.
\]

Next, observe that if \(B \rightarrow \alpha A \) is a production and if
\[
S' \xrightarrow{* \quad \lambda B a v} \lambda a v
\]
where \(\lambda \) accesses \(p' \), then
\[
S' \xrightarrow{* \quad \lambda B a v} \lambda A a v
\]
where \(\lambda \) accesses \(p' \) and \(p' \xrightarrow{\alpha} p \). Hence \(\lambda \alpha \) accesses \(p \) and
\[
\text{FOLLOW}(p', B) \subseteq \text{FOLLOW}(p, A)
\]
whenever there is a production \(B \rightarrow \alpha A \) and \(p' \xrightarrow{\alpha} p \). From this, the following recursive equations are easily obtained: For all \(p \) and all \(A \),
\[
\text{FOLLOW}(p, A) = \text{INITFOLLOW}(p, A) \cup \\
\cup \{\text{FOLLOW}(p', B) \mid B \rightarrow \alpha A \in P, \alpha \in V^* \text{ and } p' \xrightarrow{\alpha} p\}.
\]

From Section 4.5, we know that these sets can be computed by using the algorithm \text{traverse}. All we need is to compute the graph \(GLA \).

The nodes of the graph \(GLA \) are the pairs \((p, A)\), where \(p \) is a state and \(A \) is a nonterminal. There is an edge from \((p, A)\) to \((p', B)\) if and only if there is a production of the form \(B \rightarrow \alpha A \) in \(P \) for some \(\alpha \in V^* \) and \(p' \xrightarrow{\alpha} p \) in \(CGA \). Note that it is only necessary to consider nodes \((p, A)\) for which there is a nonterminal transition on \(A \) from \(p \). Such pairs can be obtained from the parsing table. Also, using the \textit{spelling property}, that is, the fact
that all transitions entering a given state have the same label, it is possible to compute the relation \textit{lookback} defined as follows:

\[(q, A) \text{ lookback } (p, A) \text{ iff } p \xrightarrow{\beta} q\]

for some reduce state \(q\) and reducing production \(A \rightarrow \beta\). The above considerations show that the FOLLOW sets of Section 4.6 are obtained by ignoring the state component from FOLLOW\((p, A)\). We now consider the changes that have to be made when \(\epsilon\)-rules are allowed.

4.10 Computing FIRST, FOLLOW, etc. in the Presence of \(\epsilon\)-Rules

[Computing FIRST, FOLLOW and LA\((q, A \rightarrow \beta)\) in the Presence of \(\epsilon\)-Rules] First, it is necessary to compute the set \(E\) of erasable nonterminals, that is, the set of nonterminals \(A\) such that \(A^+ = \epsilon\).

We let \(E\) be a boolean array and \textit{change} be a boolean flag. An algorithm for computing \(E\) is shown in Figure 4.9. Then, in order to compute FIRST, we compute

\[
\text{INITFIRST}(A) = \{ a \mid a \in \Sigma, A \rightarrow a\alpha \in P, \text{ or } A \rightarrow A_1 \cdots A_k a\alpha \in P, \text{ for some } \alpha \in V^*, \text{ and } E(A_1) = \cdots = E(A_k) = \text{true}\}.
\]

The graph \(G\text{FIRST}\) is obtained as follows: The nodes are the nonterminals, and there is an edge from \(A\) to \(B\) if and only if either there is a production \(A \rightarrow B\alpha\), or a production \(A \rightarrow A_1 \cdots A_k B\alpha\), for some \(\alpha \in V^*\), with \(E(A_1) = \cdots = E(A_k) = \text{true}\). Then, we extend FIRST to strings in \(V^+\), in the obvious way. Given any string \(\alpha \in V^+\), if \(|\alpha| = 1\), then \(\beta = X\) for some \(X \in V\), and

\[
\text{FIRST}(\beta) = \text{FIRST}(X)
\]
as before, else if \(\beta = X_1 \cdots X_n\) with \(n \geq 2\) and \(X_i \in V\), then

\[
\text{FIRST}(\beta) = \text{FIRST}(X_1) \cup \cdots \cup \text{FIRST}(X_k),
\]

where \(k, 1 \leq k \leq n\), is the largest integer so that

\[
E(X_1) = \cdots = E(X_k) = \text{true}.
\]

To compute FOLLOW, we first compute

\[
\text{INITFOLLOW}(A) = \{ a \mid a \in \Sigma, B \rightarrow \alpha A\beta \in P, \alpha \in V^*, \beta \in V^+, \text{ and } a \in \text{FIRST}(\beta)\}.
\]

The graph \(G\text{FOLLOW}\) is computed as follows: The nodes are the nonterminals. There is an edge from \(A\) to \(B\) if either there is a production of the form \(B \rightarrow \alpha A\), or \(B \rightarrow \alpha AA_1 \cdots A_k\), for some \(\alpha \in V^*\), and with \(E(A_1) = \cdots = E(A_k) = \text{true}\).
begin
 for each nonterminal A do
 $E(A) := \text{false}$;
 for each nonterminal A such that $A \rightarrow \varepsilon \in P$ do
 $E(A) := \text{true}$;
 change := \text{true};
 while change do
 begin
 change := false;
 for each $A \rightarrow A_1 \cdots A_n \in P$
 s.t. $E(A_1) = \cdots = E(A_n) = \text{true}$ do
 if $E(A) = \text{false}$ then
 begin
 $E(A) := \text{true}$;
 change := \text{true}
 end
 end
 end

Figure 4.9: Algorithm for computing E
The computation of the LALR(1) lookahead sets is also more complicated because another graph is needed in order to compute INITFOLLOW(p, A). First, the graph GLA is defined in the following way: The nodes are still the pairs (p, A), as before, but there is an edge from (p, A) to (p′, B) if and only if either there is some production \(B \rightarrow \alpha A \), for some \(\alpha \in V^* \) and \(p' \xrightarrow{\alpha} p \), or a production \(B \rightarrow \alpha A \beta \), for some \(\alpha \in V^*, \beta \in V^+, \beta \xrightarrow{+} \epsilon \), and \(p' \xrightarrow{\alpha} p \). The sets INITFOLLOW(p, A) are computed in the following way: First, let

\[
\text{DR}(p, A) = \{ a \mid a \in \Sigma, \exists q, r, p \xrightarrow{A} q \xrightarrow{a} r \}.
\]

The sets \(\text{DR}(p, A) \) are the direct read sets. Note that for the state \(p \) whose core item is \(S' \rightarrow S \), we have

\[
\text{DR}(p, S) = \{ \$ \}.
\]

Then,

\[
\text{INITFOLLOW}(p, A) = \text{DR}(p, A) \cup \bigcup \{ a \mid a \in \Sigma, S' \xrightarrow{rm} \alpha A \beta \alpha v \xrightarrow{rm} \alpha A \alpha v, \alpha \in V^*, \beta \in V^+, \beta \xrightarrow{+} \epsilon, \alpha \text{ accesses } p \}.
\]

The set INITFOLLOW(p, A) is the set of terminals that can be read before any handle containing A is reduced. The graph GREAD is defined as follows: The nodes are the pairs (p, A), and there is an edge from (p, A) to (r, C) if and only if \(p \xrightarrow{A} r \) and \(r \xrightarrow{C} s \), for some s, with \(E(C) = \text{true} \).

Then, it is not difficult to show that the INITFOLLOW sets are the least solution of the set of recursive equations:

\[
\text{INITFOLLOW}(p, A) = \text{DR}(p, A) \cup \bigcup \{ \text{INITFOLLOW}(r, C) \mid (p, A) \xrightarrow{GREAD} (r, C) \}.
\]

Hence the INITFOLLOW sets can be computed using the algorithm traverse on the graph GREAD and the sets DR(p, A), and then, the FOLLOW sets can be computed using traverse again, with the graph GLA and sets INITFOLLOW. Finally, the sets LA(q, A \rightarrow \beta) are computed from the FOLLOW sets using the graph lookback.

From section 4.5, we note that \(F(i) = F(j) \) whenever there is a path from i to j and a path from j to i, that is, whenever i and j are strongly connected. Hence, the solution of the system of recursive equations can be computed more efficiently by finding the maximal strongly connected components of the graph G, since \(F \) has a same value on each strongly connected component. This is the approach followed by DeRemer and Pennello in: Efficient Computation of LALR(1) Lookahead sets, by F. DeRemer and T. Pennello, TOPLAS, Vol. 4, No. 4, October 1982, pp. 615-649.

We now give an example of grammar which is LALR(1) but not SLR(1).
Example 3. The grammar G_2 is given by:

$$
S' \rightarrow S$
$$
S \rightarrow L = R$
$$
S \rightarrow R$
$$
L \rightarrow *R$
$$
L \rightarrow id$
$$
R \rightarrow L$

The states of the characteristic automaton CGA_2 are:

1 : $S' \rightarrow .S$
$$
S \rightarrow .L = R$
$$
S \rightarrow .R$
$$
L \rightarrow . * R$
$$
L \rightarrow .id$
$$
R \rightarrow .L$

2 : $S' \rightarrow S.$

3 : $S \rightarrow L. = R$
$$
R \rightarrow L.$

4 : $S \rightarrow R.$

5 : $L \rightarrow *R.$
$$
R \rightarrow .L$
$$
L \rightarrow . * R$
$$
L \rightarrow .id$

6 : $L \rightarrow id.$

7 : $S \rightarrow L = .R$
$$
R \rightarrow .L$
$$
L \rightarrow . * R$
$$
L \rightarrow .id$

8 : $L \rightarrow *R.$

9 : $R \rightarrow L.$

10 : $S \rightarrow L = R.$

We find that

$$
\text{INITFIRST}(S) = \emptyset$
$$
\text{INITFIRST}(L) = \{*, id\}$
$$
\text{INITFIRST}(R) = \emptyset.$$

The graph G_{FIRST} is shown in Figure 4.10. Then, we find that

\begin{align*}
\text{FIRST}(S) &= \{*, id\} \\
\text{FIRST}(L) &= \{*, id\} \\
\text{FIRST}(R) &= \{*, id\}.
\end{align*}

We also have

\begin{align*}
\text{INITFOLLOW}(S) &= \{\$\} \\
\text{INITFOLLOW}(L) &= \{=\} \\
\text{INITFOLLOW}(R) &= \emptyset.
\end{align*}

The graph G_{FOLLOW} is shown in Figure 4.11. Then, we find that

\begin{align*}
\text{FOLLOW}(S) &= \{\$\} \\
\text{FOLLOW}(L) &= \{=, \$\} \\
\text{FOLLOW}(R) &= \{=, \$\}.
\end{align*}

Note that there is a shift/reduce conflict in state 3 on input $=$, since there is a shift on input $=$ (since $S \rightarrow L. = R$ is in state 3), and a reduce for $R \rightarrow L$, since $=$ is in
4.10. COMPUTING FIRST, FOLLOW, ETC. IN THE PRESENCE OF ϵ-RULES

Figure 4.12: The graph GLA

$FOLLOW(R)$. However, as we shall see, the conflict is resolved if the LALR(1) lookahead sets are computed.

The graph GLA is shown in Figure 4.12.

We get the following INITFOLLOW and FOLLOW sets:

- INITFOLLOW(1, S) = {$\$}$
- INITFOLLOW(1, R) = \emptyset
- INITFOLLOW(1, L) = {$=$}
- INITFOLLOW(5, R) = \emptyset
- INITFOLLOW(5, L) = \emptyset
- INITFOLLOW(7, R) = \emptyset
- INITFOLLOW(7, L) = \emptyset

Thus, we get

- LA(2, $S' \rightarrow S\$) = FOLLOW(1, S) = {$\$}$
- LA(3, $R \rightarrow L$) = FOLLOW(1, R) = {$\$}$
- LA(4, $S \rightarrow R$) = FOLLOW(1, S) = {$\$}$
- LA(6, $L \rightarrow id$) = FOLLOW(1, L) \cup FOLLOW(5, L) \cup FOLLOW(7, L) = {$=$, $\$}$
- LA(8, $L \rightarrow *R$) = FOLLOW(1, L) \cup FOLLOW(5, L) \cup FOLLOW(7, L) = {$=$, $\$}$
- LA(9, $R \rightarrow L$) = FOLLOW(5, R) \cup FOLLOW(7, R) = {$=$, $\$}$
- LA(10, $S \rightarrow L = R$) = FOLLOW(1, S) = {$\$}$.

Since LA(3, $R \rightarrow L$) does not contain $=$, the conflict is resolved.
4.11 \(LR(1)\)-Characteristic Automata

We conclude this brief survey on \(LR\)-parsing by describing the construction of \(LR(1)\)-parsers. The new ingredient is that when we construct an NFA accepting \(C_G\), we incorporate lookahead symbols into the states. Thus, a state is a pair \((A \rightarrow \alpha.\beta, b)\), where \(A \rightarrow \alpha.\beta\) is a marked production, as before, and \(b \in \Sigma \cup \{\$\}\) is a lookahead symbol. The new twist in the construction of the nondeterministic characteristic automaton is the following:

The start state is \((S' \rightarrow .S, \$)\), and the transitions are defined as follows:

(a) For every terminal \(a \in \Sigma\), then there is a transition on input \(a\) from state \((A \rightarrow \alpha.a\beta, b)\) to the state \((A \rightarrow \alpha.a.\beta, b)\) obtained by “shifting the dot” (where \(a = b\) is possible). Such a transition is shown in Figure 4.13.

(b) For every nonterminal \(B \in N\), there is a transition on input \(B\) from state \((A \rightarrow \alpha.B\beta, b)\) to state \((A \rightarrow \alpha.B.\beta, b)\) (obtained by “shifting the dot”), and transitions on input \(\epsilon\) (the empty string) to all states \((B \rightarrow .\gamma, a)\), for all productions \(B \rightarrow \gamma\) with left-hand side \(B\) and all \(a \in \text{FIRST}(\beta b)\). Such transitions are shown in Figure 4.14.

(c) A state is \textit{final} if and only if it is of the form \((A \rightarrow \beta., b)\) (that is, the dot is in the rightmost position).

\textit{Example 3.} Consider the grammar \(G_3\) given by:

\begin{align*}
0: S & \rightarrow E \\
1: E & \rightarrow aEb \\
2: E & \rightarrow \epsilon
\end{align*}
The result of making the NFA for C_{G_3} deterministic is shown in Figure 4.15 (where transitions to the “dead state” have been omitted). The internal structure of the states $1, \ldots, 8$ is shown below:

\[
\begin{align*}
1 : S & \rightarrow .E, \$ \\
E & \rightarrow .aEb, \$
\end{align*}
\]

\[
\begin{align*}
2 : E & \rightarrow a.Eb, \$ \\
E & \rightarrow .aEb, b \\
E & \rightarrow ., b
\end{align*}
\]

\[
\begin{align*}
3 : E & \rightarrow a.Eb, b \\
E & \rightarrow .aEb, b \\
E & \rightarrow ., b
\end{align*}
\]

\[
\begin{align*}
4 : E & \rightarrow a.Eb, \$ \\
5 : E & \rightarrow aEb, \$ \\
6 : E & \rightarrow aE.b, b \\
7 : E & \rightarrow aEb, .b \\
8 : S & \rightarrow E, .$
\end{align*}
\]

The $LR(1)$-shift/reduce parser associated with DCG is built as follows: The shift and goto entries come directly from the transitions of DCG, and for every state s, for every item
Figure 4.15: DFA for C_{G_3}

$(A \rightarrow \gamma, b)$ in s, enter an entry rn for state s and input b, where $A \rightarrow \gamma$ is production number n. If the resulting parser has no conflicts, we say that the grammar is an $LR(1)$ grammar. The $LR(1)$-shift/reduce parser for G_3 is shown below:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s2</td>
<td>b</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>s3</td>
<td>r2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>s3</td>
<td>r2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>r5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>r1</td>
<td>s7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>acc</td>
<td></td>
</tr>
</tbody>
</table>

Observe that there are three pairs of states, $(2, 3)$, $(4, 6)$, and $(5, 7)$, where both states in a common pair only differ by the lookahead symbols. We can merge the states corresponding to each pair, because the marked items are the same, but now, we have to allow lookahead sets. Thus, the merging of $(2, 3)$ yields

$$2': E \rightarrow a.Eb, \{b, \$\}$$

$$E \rightarrow .aEb, \{b\}$$

$$E \rightarrow ., \{b\},$$

the merging of $(4, 6)$ yields

$$3': E \rightarrow aE.b, \{b, \$\},$$

the merging of $(5, 7)$ yields

$$4': E \rightarrow aEb., \{b, \$\}.$$
We obtain a merged DFA with only five states, and the corresponding shift/reduce parser is given below:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s2'</td>
<td>r2</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2'</td>
<td>s2'</td>
<td>r2</td>
<td></td>
<td>3'</td>
</tr>
<tr>
<td>3'</td>
<td></td>
<td>s4'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4'</td>
<td></td>
<td>r1</td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>acc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The reader should verify that this is the $LALR(1)$-parser. The reader should also check that the $SLR(1)$-parser is given below:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s2</td>
<td>r2</td>
<td>r2</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>s2</td>
<td>r2</td>
<td>r2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>s4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>r1</td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>acc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The difference between the two parsing tables is that the $LALR(1)$-lookahead sets are sharper than the $SLR(1)$-lookahead sets. This is because the computation of the $LALR(1)$-lookahead sets uses a sharper version of FOLLOW sets. It can also be shown that if a grammar is $LALR(1)$, then the merging of states of an $LR(1)$-parser always succeeds and yields the $LALR(1)$ parser. Of course, this is a very inefficient way of producing $LALR(1)$ parsers, and much better methods exist, such as the graph method described in these notes. However, there are cases where the merging fails. Sufficient conditions for successful merging have been investigated, but there is still room for research in this area.
Chapter 5

RAM Programs, Turing Machines, and the Partial Recursive Functions

See the scanned version of this chapter found in the web page for CIS511:

Chapter 6

Universal RAM Programs and
Undecidability of the Halting Problem

6.1 Pairing Functions

Pairing functions are used to encode pairs of integers into single integers, or more generally, finite sequences of integers into single integers. We begin by exhibiting a bijective pairing function $J : \mathbb{N}^2 \to \mathbb{N}$. The function J has the graph partially showed below:

<table>
<thead>
<tr>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

The function J corresponds to a certain way of enumerating pairs of integers. Note that the value of $x + y$ is constant along each diagonal, and consequently, we have

\[
J(x, y) = 1 + 2 + \cdots + (x + y) + x, \\
= ((x + y)(x + y + 1) + 2x)/2, \\
= ((x + y)^2 + 3x + y)/2,
\]

that is,

\[
J(x, y) = ((x + y)^2 + 3x + y)/2.
\]

Let $K : \mathbb{N} \to \mathbb{N}$ and $L : \mathbb{N} \to \mathbb{N}$ be the projection functions onto the axes, that is, the unique functions such that

\[
K(J(a, b)) = a \quad \text{and} \quad L(J(a, b)) = b,
\]
for all $a, b \in \mathbb{N}$. Clearly, J is primitive recursive, since it is given by a polynomial. It is not hard to prove that J is injective and surjective, and that it is strictly monotonic in each argument, which means that for all $x, x', y, y' \in \mathbb{N}$, if $x < x'$ then $J(x, y) < J(x', y)$, and if $y < y'$ then $J(x, y) < J(x, y')$.

The projection functions can be computed explicitly, although this is a bit tricky. We only need to observe that by monotonicity of J,

$$x \leq J(x, y) \quad \text{and} \quad y \leq J(x, y),$$

and thus,

$$K(z) = \min(x \leq z)(\exists y \leq z)[J(x, y) = z],$$

and

$$L(z) = \min(y \leq z)(\exists x \leq z)[J(x, y) = z].$$

It can be verified that $J(K(z), L(z)) = z$, for all $z \in \mathbb{N}$. The pairing function $J(x, y)$ is also denoted as (x, y), and K and L are also denoted as Π_1 and Π_2.

By induction, we can define bijections between \mathbb{N}^n and \mathbb{N} for all $n \geq 1$. We let $(z)_1 = z$,

$$(x_1, x_2)_2 = (x_1, x_2),$$

and

$$(x_1, \ldots, x_n, x_{n+1})_{n+1} = (x_1, \ldots, (x_n, x_{n+1})_n).$$

Note that

$$(x_1, \ldots, x_n, x_{n+1})_{n+1} = (x_1, (x_2, \ldots, x_{n+1})_n).$$

We can define a uniform projection function Π with the following property: if $z = (x_1, \ldots, x_n)$, with $n \geq 2$, then

$$\Pi(i, n, z) = x_i$$

for all i, where $1 \leq i \leq n$. The idea is to view z as a n-tuple, and $\Pi(i, n, z)$ as the i-th component of that n-tuple. The function Π is defined by cases as follows:

$$\Pi(i, 0, z) = 0, \quad \text{for all } i \geq 0,$$

$$\Pi(i, 1, z) = z, \quad \text{for all } i \geq 0,$$

$$\Pi(i, 2, z) = \Pi_1(z), \quad \text{if } 0 \leq i \leq 1,$$

$$\Pi(i, 2, z) = \Pi_2(z), \quad \text{for all } i \geq 2,$$

and for all $n \geq 2$,

$$\Pi(i, n + 1, z) = \begin{cases}
\Pi(i, n, z) & \text{if } 0 \leq i < n, \\
\Pi_1(\Pi(n, n, z)) & \text{if } i = n, \\
\Pi_2(\Pi(n, n, z)) & \text{if } i > n.
\end{cases}$$
By a previous exercise, this is a legitimate primitive recursive definition. Some basic properties of Π are given as exercises. In particular, the following properties are easily shown:

(a) $\langle 0, \ldots, 0 \rangle_n = 0$, $\langle x, 0 \rangle = \langle x, 0, \ldots, 0 \rangle_n$;
(b) $\Pi(0, n, z) = \Pi(1, n, z)$ and $\Pi(i, n, z) = \Pi(n, n, z)$, for all $i \geq n$ and all $n, z \in \mathbb{N}$;
(c) $\langle \Pi(1, n, z), \ldots, \Pi(n, n, z) \rangle_n = z$, for all $n \geq 1$ and all $z \in \mathbb{N}$;
(d) $\Pi(i, n, z) \leq z$, for all $i, n, z \in \mathbb{N}$;
(e) There is a primitive recursive function Large, such that, $\Pi(i, n + 1, \text{Large}(n + 1, z)) = z$, for $i, n, z \in \mathbb{N}$.

As a first application, we observe that we need only consider partial recursive functions of a single argument. Indeed, let $\varphi : \mathbb{N}^n \to \mathbb{N}$ be a partial recursive function of $n \geq 2$ arguments. Let

$$\overline{\varphi}(z) = \varphi(\Pi(1, n, z), \ldots, \Pi(n, n, z)),$$

for all $z \in \mathbb{N}$. Then, $\overline{\varphi}$ is a partial recursive function of a single argument, and φ can be recovered from $\overline{\varphi}$, since

$$\varphi(x_1, \ldots, x_n) = \overline{\varphi}(\langle x_1, \ldots, x_n \rangle).$$

Thus, using $\langle -, - \rangle$ and Π as coding and decoding functions, we can restrict our attention to functions of a single argument.

Next, we show that there exist coding and decoding functions between Σ^* and $\{a_1\}^*$, and that partial recursive functions over Σ^* can be recoded as partial recursive functions over $\{a_1\}^*$. Since $\{a_1\}^*$ is isomorphic to \mathbb{N}, this shows that we can restrict out attention to functions defined over \mathbb{N}.

6.2 Equivalence of Alphabets

Given an alphabet $\Sigma = \{a_1, \ldots, a_k\}$, strings over Σ can be ordered by viewing strings as numbers in a number system where the digits are a_1, \ldots, a_k. In this number system, which is almost the number system with base k, the string a_1 corresponds to zero, and a_k to $k - 1$. Hence, we have a kind of shifted number system in base k. For example, if $\Sigma = \{a, b, c\}$, a listing of Σ^* in the ordering corresponding to the number system begins with

$$a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc,$$

$$aaa, aab,aac,aba,abb,abc, \ldots .$$

Clearly, there is an ordering function from Σ^* to \mathbb{N} which is a bijection. Indeed, if $u = a_{i_1} \cdots a_{i_n}$, this function $f : \Sigma^* \to \mathbb{N}$ is given by

$$f(u) = i_1 k^{n-1} + i_2 k^{n-2} + \cdots + i_{n-1} k + i_n.$$

Since we also want a decoding function, we define the coding function \(C_k : \Sigma^* \rightarrow \Sigma^* \) as follows:

\[
C_k(\epsilon) = \epsilon, \quad \text{and if } u = a_{i_1} \cdots a_{i_n}, \text{ then } \quad C_k(u) = a_{i_1}^{i_n+i_{n-1}k+1}a_{i_2}^{i_n+i_{n-2}+k+1} \cdots a_{i_n}^{i_1}.
\]

The function \(C_k \) is primitive recursive, because

\[
C_k(\epsilon) = \epsilon, \quad C_k(xa_i) = C_k(x)a_i^n.
\]

The inverse of \(C_k \) is a function \(D_k : \{a_1\}^* \rightarrow \Sigma^* \). However, primitive recursive functions are total, and we need to extend \(D_k \) to \(\Sigma^* \). This is easily done by letting

\[
D_k(x) = D_k(a_1^{[x]})
\]

for all \(x \in \Sigma^* \). It remains to define \(D_k \) by primitive recursion over \(\{a_1\}^* \). For this, we introduce three auxiliary functions \(p, q, r \), defined as follows. Let

\[
p(\epsilon) = \epsilon, \quad \text{if } i \neq k, \quad p(xa_k) = p(x).
\]

Note that \(p(x) \) is the result of deleting consecutive \(a_k \)'s in the tail of \(x \). Let

\[
q(\epsilon) = \epsilon, \quad \text{if } i \neq k, \quad q(xa_i) = q(x)a_i.
\]

Note that \(q(x) = a_1^{[x]} \). Finally, let

\[
r(\epsilon) = a_1, \quad \text{if } i \neq k, \quad r(xa_k) = xa_k.
\]

The function \(r \) is almost the successor function, for the ordering. Then, the trick is that \(D_k(xa_i) \) is the successor of \(D_k(x) \) in the ordering, and if

\[
D_k(x) = ya_ja_k^n
\]

with \(j \neq k \), since the successor of \(ya_ja_k^n \) is \(ya_{j+1}a_k^n \), we can use \(r \). Thus, we have

\[
D_k(\epsilon) = \epsilon, \quad D_k(xa_i) = r(p(D_k(x)))q(D_k(x) - p(D_k(x))).
\]
Then, both C_k and D_k are primitive recursive, and $C_k \circ D_k = D_k \circ C_k = \text{id}$.

Let $\varphi : \Sigma^* \to \Sigma^*$ be a partial function over Σ^*, and let

$$\varphi^+(x_1, \ldots, x_n) = C_k(\varphi(D_k(x_1), \ldots, D_k(x_n))).$$

The function φ^+ is defined over $\{a_1\}^*$. Also, for any partial function ψ over $\{a_1\}^*$, let

$$\psi^\sharp(x_1, \ldots, x_n) = D_k(\psi(C_k(x_1), \ldots, C_k(x_n))).$$

We claim that if ψ is a partial recursive function over $\{a_1\}^*$, then ψ^\sharp is partial recursive over Σ^*, and that if φ is a partial recursive function over Σ^*, then φ^+ is partial recursive over $\{a_1\}^*$.

First, ψ can be extended to Σ^* by letting

$$\psi(x) = \psi(a_1^{[x]})$$

for all $x \in \Sigma^*$, and so, if ψ is partial recursive, then so is ψ^\sharp by composition. This seems equally obvious for φ and φ^+, but there is a difficulty. The problem is that φ^+ is defined as a composition of functions over Σ^*. We have to show how φ^+ can be defined directly over $\{a_1\}^*$ without using any additional alphabet symbols. This is done in Machtey and Young [1], see Section 2.2, Proposition 2.2.3.

Pairing functions can also be used to prove that certain functions are primitive recursive, even though their definition is not a legal primitive recursive definition. For example, consider the Fibonacci function defined as follows:

$$f(0) = 1,$$
$$f(1) = 2,$$
$$f(n + 2) = f(n + 1) + f(n),$$

for all $n \in \mathbb{N}$. This is not a legal primitive recursive definition, since $f(n + 2)$ depends both on $f(n + 1)$ and $f(n)$. In a primitive recursive definition, $g(y + 1, \overline{x})$ is only allowed to depend upon $g(y, \overline{x})$.

Definition 6.1. Given any function $f : \mathbb{N}^n \to \mathbb{N}$, the function $\overline{f} : \mathbb{N}^{n+1} \to \mathbb{N}$ defined such that

$$\overline{f}(y, \overline{x}) = (f(0, \overline{x}), \ldots, f(y, \overline{x}))_{y+1}$$

is called the course-of-value function for f.

The following lemma holds.

Lemma 6.1. Given any function $f : \mathbb{N}^n \to \mathbb{N}$, if f is primitive recursive, then so is \overline{f}.

Proof. First, it is necessary to define a function con such that if $x = \langle x_1, \ldots, x_m \rangle$ and $y = \langle y_1, \ldots, y_n \rangle$, where $m, n \geq 1$, then
\[
\text{con}(m, x, y) = \langle x_1, \ldots, x_m, y_1, \ldots, y_n \rangle.
\]
This fact is left as an exercise. Now, if f is primitive recursive, let
\[
\begin{align*}
\overline{f}(0, \overline{x}) &= f(0, \overline{x}), \\
\overline{f}(y + 1, \overline{x}) &= \text{con}(y + 1, \overline{f}(y, \overline{x}), f(y + 1, \overline{x})),
\end{align*}
\]
showing that \overline{f} is primitive recursive. Conversely, if \overline{f} is primitive recursive, then
\[
f(y, \overline{x}) = \Pi(y + 1, y + 1, \overline{f}(y, \overline{x})),
\]
and so, f is primitive recursive. \qed

Remark: Why is it that
\[
\overline{f}(y + 1, \overline{x}) = \langle \overline{f}(y, \overline{x}), f(y + 1, \overline{x}) \rangle
\]
does not work?

We define *course-of-value recursion* as follows.

Definition 6.2. Given any two functions $g : \mathbb{N}^n \to \mathbb{N}$ and $h : \mathbb{N}^{n+2} \to \mathbb{N}$, the function $f : \mathbb{N}^{n+1} \to \mathbb{N}$ is defined by *course-of-value recursion* from g and h if
\[
\begin{align*}
f(0, \overline{x}) &= g(\overline{x}), \\
f(y + 1, \overline{x}) &= h(y, \overline{f}(y, \overline{x}), \overline{x}).
\end{align*}
\]

The following lemma holds.

Lemma 6.2. If $\overline{f} : \mathbb{N}^{n+1} \to \mathbb{N}$ is defined by course-of-value recursion from g and h and g, h are primitive recursive, then f is primitive recursive.

Proof. We prove that \overline{f} is primitive recursive. Then, by Lemma 6.1, f is also primitive recursive. To prove that \overline{f} is primitive recursive, observe that
\[
\begin{align*}
\overline{f}(0, \overline{x}) &= g(\overline{x}), \\
\overline{f}(y + 1, \overline{x}) &= \text{con}(y + 1, \overline{f}(y, \overline{x}), h(y, \overline{f}(y, \overline{x}), \overline{x})).
\end{align*}
\]
\qed

When we use Lemma 6.2 to prove that a function is primitive recursive, we rarely bother to construct a formal course-of-value recursion. Instead, we simply indicate how the value of $f(y + 1, \overline{x})$ can be obtained in a primitive recursive manner from $f(0, \overline{x})$ through $f(y, \overline{x})$. Thus, an informal use of Lemma 6.2 shows that the Fibonacci function is primitive recursive. A rigorous proof of this fact is left as an exercise.
6.3 Coding of RAM Programs

In this Section, we present a specific encoding of RAM programs which allows us to treat programs as integers. Encoding programs as integers also allows us to have programs that take other programs as input, and we obtain a universal program. Universal programs have the property that given two inputs, the first one being the code of a program and the second one an input data, the universal program simulates the actions of the encoded program on the input data. A coding scheme is also called an indexing or a Gödel numbering, in honor to Gödel, who invented this technique.

From results of the previous Chapter, without loss of generality, we can restrict our attention to RAM programs computing partial functions of one argument over \(\mathbb{N} \). Furthermore, we only need the following kinds of instructions, each instruction being coded as shown below. Since we are considering functions over the natural numbers, which corresponds to a one-letter alphabet, there is only one kind of instruction of the form \texttt{add} and \texttt{jmp} (and \texttt{add} increments by 1 the contents of the specified register \(R_j \)).

\[
\begin{align*}
N_i \text{add} R_j & \quad \text{code} = \langle 1, i, j, 0 \rangle \\
N_i \text{tail} R_j & \quad \text{code} = \langle 2, i, j, 0 \rangle \\
N_i \text{continue} & \quad \text{code} = \langle 3, i, 1, 0 \rangle \\
N_i R_j \text{jmp} N_k a & \quad \text{code} = \langle 4, i, j, k \rangle \\
N_i R_j \text{jmp} N_k b & \quad \text{code} = \langle 5, i, j, k \rangle
\end{align*}
\]

Recall that a conditional jump causes a jump to the closest address \(N_k \) above or below iff \(R_j \) is nonzero, and if \(R_j \) is null, the next instruction is executed. We assume that all lines in a RAM program are numbered. This is always feasible, by labeling unnamed instructions with a new and unused line number.

The code of an instruction \(I \) is denoted as \(\#I \). To simplify the notation, we introduce the following decoding primitive recursive functions \(\text{Typ}, \text{Nam}, \text{Reg}, \) and \(\text{Jmp} \), defined as follows:

\[
\begin{align*}
\text{Typ}(x) &= \Pi(1, 4, x), \\
\text{Nam}(x) &= \Pi(2, 4, x), \\
\text{Reg}(x) &= \Pi(3, 4, x), \\
\text{Jmp}(x) &= \Pi(4, 4, x).
\end{align*}
\]

The functions yield the type, line number, register name, and line number jumped to, if any, for an instruction coded by \(x \). Note that we have no need to interpret the values of these functions if \(x \) does not code an instruction.

We can define the primitive recursive predicate \(\text{INST} \), such that \(\text{INST}(x) \) holds iff \(x \) codes an instruction. First, we need the connective \(\supset \) (implies), defined such that

\[
P \supset Q \quad \text{iff} \quad \neg P \lor Q.
\]
Then, INST(x) holds iff:

\[1 \leq \text{Typ}(x) \leq 5 \land [1 \leq \text{Reg}(x)] \land \\
[\text{Typ}(x) \leq 3 \lor \text{Jmp}(x) = 0] \land \\
[\text{Typ}(x) = 3 \lor \text{Reg}(x) = 1]. \]

Program are coded as follows. If \(P \) is a RAM program composed of the \(n \) instructions \(I_1, \ldots, I_n \), the code of \(P \), denoted as \(\#P \), is

\[\#P = \langle n, \#I_1, \ldots, \#I_n \rangle. \]

Recall from a previous exercise that

\[\langle n, \#I_1, \ldots, \#I_n \rangle = \langle n, \langle \#I_1, \ldots, \#I_n \rangle \rangle. \]

We define the primitive recursive functions \(\text{Ln}, \text{Pg}, \) and \(\text{Line} \), such that:

\[\text{Ln}(x) = \Pi(1, 2, x), \]
\[\text{Pg}(x) = \Pi(2, 2, x), \]
\[\text{Line}(i, x) = \Pi(i, \text{Ln}(x), \text{Pg}(x)). \]

The function \(\text{Ln} \) yields the length of the program (the number of instructions), \(\text{Pg} \) yields the sequence of instructions in the program (really, a code for the sequence), and \(\text{Line}(i, x) \) yields the code of the \(i \)th instruction in the program. Again, if \(x \) does not code a program, there is no need to interpret these functions. However, note that by a previous exercise, it happens that

\[\text{Line}(0, x) = \text{Line}(1, x), \quad \text{and} \]
\[\text{Line}(\text{Ln}(x), x) = \text{Line}(i, x), \quad \text{for all} \ i \geq x. \]

The primitive recursive predicate \(\text{PROG} \) is defined such that \(\text{PROG}(x) \) holds iff \(x \) codes a program. Thus, \(\text{PROG}(x) \) holds if each line codes an instruction, each jump has an instruction to jump to, and the last instruction is a continue. Thus, \(\text{PROG}(x) \) holds iff

\[\forall i \leq \text{Ln}(x)[i \geq 1 \lor \\
[\text{INST} \langle \text{Line}(i, x) \rangle \land \text{Typ} \langle \text{Line} \langle \text{Ln}(x), x \rangle \rangle = 3 \\
\land [\text{Typ} \langle \text{Line}(i, x) \rangle = 4 \lor \\
\exists j \leq i - 1[j \geq 1 \land \text{Nam} \langle \text{Line}(j, x) \rangle = \text{Jmp} \langle \text{Line}(i, x) \rangle] \]
\land \\
[\text{Typ} \langle \text{Line}(i, x) \rangle = 5 \lor \\
\exists j \leq \text{Ln}(x)[j > i \land \text{Nam} \langle \text{Line}(j, x) \rangle = \text{Jmp} \langle \text{Line}(i, x) \rangle]].] \]

Note that we have used the fact proved as an exercise that if \(f \) is a primitive recursive function and \(P \) is a primitive recursive predicate, then \(\exists x \leq f(y)P(x) \) is primitive recursive.

We are now ready to prove a fundamental result in the theory of algorithms. This result points out some of the limitations of the notion of algorithm.
Theorem 6.3. (Undecidability of the halting problem) There is no RAM program \(P \) which halts for all inputs and has the following property when started with input \(x \) in register \(R_1 \) and with input \(i \) in register \(R_2 \) (the other registers being set to zero):

1. \(P \) halts with output 1 iff \(i \) codes a program that eventually halts when started on input \(x \) (all other registers set to zero).

2. \(P \) halts with output 0 in \(R_1 \) iff \(i \) codes a program that runs forever when started on input \(x \) in \(R_1 \) (all other registers set to zero).

3. If \(i \) does not code a program, then \(P \) halts with output 2 in \(R_2 \).

Proof. Assume that \(P \) is such a RAM program, and let \(Q \) be the following program:

\[
\begin{align*}
R_2 & \leftarrow R_1 \\
P & \text{continue} \\
N_1 & \text{jmp} \\
R_1 & \text{continue} \\
N_1a & \\
\end{align*}
\]

The program \(Q \) can be translated into a program using only instructions of type 1, 2, 3, 4, 5, described previously, and let \(q \) be the code of the program \(Q \).

Let us see what happens if we run the program \(Q \) on input \(q \) in \(R_1 \) (all other registers set to zero).

Just after execution of the assignment \(R_2 \leftarrow R_1 \), the program \(P \) is started with \(q \) in both \(R_1 \) and \(R_2 \). Since \(P \) is supposed to halt for all inputs, it eventually halts with output 0 or 1 in \(R_1 \). If \(P \) halts with output 1 in \(R_1 \), then \(Q \) goes into an infinite loop, while if \(P \) halts with output 0 in \(R_1 \), then \(Q \) halts. But then, because of the definition of \(P \), we see that \(P \) says that \(Q \) halts when started on input \(q \) iff \(Q \) loops forever on input \(q \), and that \(Q \) loops forever on input \(q \) iff \(Q \) halts on input \(q \), a contradiction. Therefore, \(P \) cannot exist.

If we identify the notion of algorithm with that of a RAM program which halts for all inputs, the above theorem says that there is no algorithm for deciding whether a RAM program eventually halts for a given input. We say that the halting problem for RAM programs is undecidable (or unsolvable). The above theorem also implies that the halting problem for Turing machines is undecidable. Indeed, if we had an algorithm for solving the halting problem for Turing machines, we could solve the halting problem for RAM programs as follows: first, apply the algorithm for translating a RAM program into an equivalent Turing machine, and then apply the algorithm solving the halting problem for Turing machines. The argument is typical in computability theory and is called a “reducibility argument”.

Our next goal is to define a primitive recursive function that describes the computation of RAM programs. Assume that we have a RAM program \(P \) using \(n \) registers \(R_1, \ldots, R_n \),
whose contents are denoted as \(r_1, \ldots, r_n \). We can code \(r_1, \ldots, r_n \) into a single integer \(\langle r_1, \ldots, r_n \rangle \). Conversely, every integer \(x \) can be viewed as coding the contents of \(R_1, \ldots, R_n \), by taking the sequence \(\Pi(1, n, x), \ldots, \Pi(n, n, x) \). Actually, it is not necessary to know \(n \), the number of registers, if we make the following observation:

\[
\text{Reg(Line}(i, x)) \leq \text{Line}(i, x) \leq \text{Pg}(x)
\]

for all \(i, x \in \mathbb{N} \). Then, if \(x \) codes a program, then \(R_1, \ldots, R_x \) certainly include all the registers in the program. Also note that from a previous exercise,

\[
\langle r_1, \ldots, r_n, 0, \ldots, 0 \rangle = \langle r_1, \ldots, r_n, 0 \rangle.
\]

We now define the primitive recursive functions Nextline, Nextcont, and Comp, describing the computation of RAM programs.

Definition 6.3. Let \(x \) code a program and let \(i \) be such that \(1 \leq i \leq \text{Ln}(x) \). The following functions are defined:

1. Nextline \((i, x, y)\) is the number of the next instruction to be executed after executing the \(i \)th instruction in the program coded by \(x \), where the contents of the registers is coded by \(y \).

2. Nextcont \((i, x, y)\) is the code of the contents of the registers after executing the \(i \)th instruction in the program coded by \(x \), where the contents of the registers is coded by \(y \).

3. Comp \((x, y, m)\) = \(\langle i, z \rangle \), where \(i \) and \(z \) are defined such that after running the program coded by \(x \) for \(m \) steps, where the initial contents of the program registers are coded by \(y \), the next instruction to be executed has line number \(i \), and \(z \) is the code of the current contents of the registers.

Lemma 6.4. The functions Nextline, Nextcont, and Comp, are primitive recursive.

Proof. (1) Nextline \((i, x, y)\) = \(i + 1 \), unless the \(i \)th instruction is a jump and the contents of the register being tested is nonzero:

\[
\text{Nextline}(i, x, y) = \begin{cases}
\text{max } j \leq \text{Ln}(x) [j < i \land \text{Nam(Line}(j, x)) = \text{Jmp(Line}(i, x))] \\
\text{if Typ(Line}(i, x)) = 4 \land \Pi(\text{Reg(Line}(i, x)), x, y) \neq 0 \\
\text{min } j \leq \text{Ln}(x) [j > i \land \text{Nam(Line}(j, x)) = \text{Jmp(Line}(i, x))] \\
\text{if Typ(Line}(i, x)) = 5 \land \Pi(\text{Reg(Line}(i, x)), x, y) \neq 0 \\
i + 1 \quad \text{otherwise.}
\end{cases}
\]

Note that according to this definition, if the \(i \)th line is the final continue, then Nextline signals that the program has halted by yielding

\[
\text{Nextline}(i, x, y) > \text{Ln}(x).
\]
6.3. CODING OF RAM PROGRAMS

(2) We need two auxiliary functions Add and Sub defined as follows.

Add\((j, x, y)\) is the number coding the contents of the registers used by the program coded by \(x\) after register \(R_j\) coded by \(\Pi(j, x, y)\) has been increased by 1, and

Sub\((j, x, y)\) codes the contents of the registers after register \(R_j\) has been decremented by 1 (\(y\) codes the previous contents of the registers). It is easy to see that

\[
\text{Sub}(j, x, y) = \min z \leq y [\Pi(j, x, z) = \Pi(j, x, y) - 1 \land \forall k \leq x [0 < k \neq j \supset \Pi(k, x, z) = \Pi(k, x, y)]].
\]

The definition of Add is slightly more tricky. We leave as an exercise to the reader to prove that:

\[
\text{Add}(j, x, y) = \min z \leq \text{Large}(x, y + 1) [\Pi(j, x, z) = \Pi(j, x, y) + 1 \land \forall k \leq x [0 < k \neq j \supset \Pi(k, x, z) = \Pi(k, x, y)]],
\]

where the function \(\text{Large}\) is the function defined in an earlier exercise. Then

\[
\text{Nextcont}(i, x, y) =
\begin{align*}
\text{Add}(\text{Reg}(\text{Line}(i, x), x, y)) & \text{ if } \text{Typ}(\text{Line}(i, x)) = 1 \\
\text{Sub}(\text{Reg}(\text{Line}(i, x), x, y)) & \text{ if } \text{Typ}(\text{Line}(i, x)) = 2 \\
y & \text{ if } \text{Typ}(\text{Line}(i, x)) \geq 3.
\end{align*}
\]

(3) Recall that \(\Pi_1(z) = \Pi(1, 2, z)\) and \(\Pi_2(z) = \Pi(2, 2, z)\). The function \(\text{Comp}\) is defined by primitive recursion as follows:

\[
\text{Comp}(x, y, 0) = \langle 1, y \rangle
\]

\[
\text{Comp}(x, y, m + 1) = \langle \text{Nextline}(\Pi_1(\text{Comp}(x, y, m)), x, \Pi_2(\text{Comp}(x, y, m))), \\
\text{Nextcont}(\Pi_1(\text{Comp}(x, y, m)), x, \Pi_2(\text{Comp}(x, y, m))) \rangle.
\]

Recall that \(\Pi_1(\text{Comp}(x, y, m))\) is the number of the next instruction to be executed and that \(\Pi_2(\text{Comp}(x, y, m))\) codes the current contents of the registers.

We can now reprove that every RAM computable function is partial recursive. Indeed, assume that \(x\) codes a program \(P\). We define the partial function \(\text{End}\) so that for all \(x, y\), where \(x\) codes a program and \(y\) codes the contents of its registers, \(\text{End}(x, y)\) is the number of steps for which the computation runs before halting, if it halts. If the program does not halt, then \(\text{End}(x, y)\) is undefined. Since

\[
\text{End}(x, y) = \min m [\Pi_1(\text{Comp}(x, y, m)) = \text{Ln}(x)],
\]

\(\text{End}\) is a partial recursive function. However, in general, \(\text{End}\) is not a total function.
If \(y \) is the value of the register \(R1 \) before the program \(P \) coded by \(x \) is started, recall that the contents of the registers is coded by \(\langle y, 0 \rangle \). Noticing that 0 and 1 do not code programs, we note that if \(x \) codes a program, then \(x \geq 2 \), and \(\Pi_1(z) = \Pi(1, x, z) \) is the contents of \(R1 \) as coded by \(z \). If \(\varphi \) is the partial recursive function computed by the program \(P \) coded by \(x \), then we have

\[
\varphi(y) = \Pi_1(\Pi_2(\text{Comp}(x, \langle y, 0 \rangle, \text{End}(x, \langle y, 0 \rangle)))).
\]

Observe that \(\varphi \) is written in the form \(\varphi = g \circ \min f \), for some primitive recursive functions \(f \) and \(g \).

We can also exhibit a partial recursive function which enumerates all the unary partial recursive functions. It is a universal function.

Abusing the notation slightly, we will write \(\varphi(x, y) \) for \(\varphi(\langle x, y \rangle) \), viewing \(\varphi \) as a function of two arguments (however, \(\varphi \) is really a function of a single argument). We define the function \(\varphi_{univ} \) as follows:

\[
\varphi_{univ}(x, y) = \begin{cases}
\Pi_1(\Pi_2(\text{Comp}(x, \langle y, 0 \rangle, \text{End}(x, \langle y, 0 \rangle)))) & \text{if PROG}(x), \\
\text{undefined} & \text{otherwise}.
\end{cases}
\]

The function \(\varphi_{univ} \) is a partial recursive function with the following property: for every \(x \) coding a RAM program \(P \), for every input \(y \),

\[
\varphi_{univ}(x, y) = \varphi_x(y),
\]

the value of the partial recursive function \(\varphi_x \) computed by the RAM program \(P \) coded by \(x \). If \(x \) does not code a program, then \(\varphi_{univ}(x, y) \) is undefined for all \(y \).

By Lemma 1.4.1 (in Chapter 4), \(\varphi_{univ} \) is not recursive. Indeed, being an enumerating function for the partial recursive functions, it is an enumerating function for the total recursive functions, and thus, it cannot be recursive. Being a partial function saves us from a contradiction.

The existence of the function \(\varphi_{univ} \) leads us to the notion of an indexing of the RAM programs. We can define a listing of the RAM programs as follows. If \(x \) codes a program (that is, if \(\text{PROG}(x) \) holds) and \(P \) is the program that \(x \) codes, we call this program \(P \) the \(x \)th RAM program and denote it as \(P_x \). If \(x \) does not code a program, we let \(P_x \) be the program that diverges for every input:

\[
\begin{array}{c}
N1 \\
N1 & \text{add} & R1 \\
N1 & R1 & \text{jmp} & N1a \\
N1 & \text{continue}
\end{array}
\]

Therefore, in all cases, \(P_x \) stands for the \(x \)th RAM program. Thus, we have a listing of RAM programs, \(P_0, P_1, P_2, P_3, \ldots \), such that every RAM program (of the restricted type considered here) appears in the list exactly once, except for the “infinite loop” program. In
particular, note that \(\varphi_{\text{univ}} \) being a partial recursive function, it is computed by some RAM program UNIV that has a code \(\text{univ} \) and is the program \(P_{\text{univ}} \) in the list.

Having an indexing of the RAM programs, we also have an indexing of the partial recursive functions.

Definition 6.4. For every integer \(x \geq 0 \), we let \(P_x \) be the RAM program coded by \(x \) as defined earlier, and \(\varphi_x \) be the partial recursive function computed by \(P_x \).

Remark: Kleene used the notation \(\{x\} \) for the partial recursive function coded by \(x \). Due to the potential confusion with singleton sets, we follow Rogers, and use the notation \(\varphi_x \).

The existence of the universal function \(\varphi_{\text{univ}} \) is sufficiently important to be recorded in the following Lemma.

Lemma 6.5. For the indexing of RAM programs defined earlier, there is a universal partial recursive function \(\varphi_{\text{univ}} \) such that, for all \(x, y \in \mathbb{N} \), if \(\varphi_x \) is the partial recursive function computed by \(P_x \), then

\[
\varphi_x(y) = \varphi_{\text{univ}}(\langle x, y \rangle).
\]

The program UNIV computing \(\varphi_{\text{univ}} \) can be viewed as an interpreter for RAM programs. By giving the universal program UNIV the “program” \(x \) and the “data” \(y \), we get the result of executing program \(P_x \) on input \(y \). We can view the RAM model as a stored program computer.

By Theorem 6.3 and Lemma 6.5, the halting problem for the single program UNIV is undecidable. Otherwise, the halting problem for RAM programs would be decidable, a contradiction. It should be noted that the program UNIV can actually be written (with a certain amount of pain).

The object of the next Section is to show the existence of Kleene’s \(T \)-predicate. This will yield another important normal form. In addition, the \(T \)-predicate is a basic tool in recursion theory.

6.4 Kleene’s \(T \)-Predicate

In Section 6.3, we have encoded programs. The idea of this Section is to also encode computations of RAM programs. Assume that \(x \) codes a program, that \(y \) is some input (not a code), and that \(z \) codes a computation of \(P_x \) on input \(y \). The predicate \(T(x, y, z) \) is defined as follows:

\(T(x, y, z) \) holds iff \(x \) codes a RAM program, \(y \) is an input, and \(z \) codes a halting computation of \(P_x \) on input \(y \).

We will show that \(T \) is primitive recursive. First, we need to encode computations. We say that \(z \) codes a computation of length \(n \geq 1 \) if

\[
z = \langle n + 2, \langle 1, y_0 \rangle, \langle i_1, y_1 \rangle, \ldots, \langle i_n, y_n \rangle \rangle,
\]
where each i_j is the physical location of the next instruction to be executed and each y_j codes the contents of the registers just before execution of the instruction at the location i_j. Also, y_0 codes the initial contents of the registers, that is, $y_0 = \langle y, 0 \rangle$, for some input y. We let $\text{Ln}(z) = \Pi_1(z)$. Note that i_j denotes the physical location of the next instruction to be executed in the sequence of instructions constituting the program coded by x, and not the line number (label) of this instruction. Thus, the first instruction to be executed is in location 1, $1 \leq i_j \leq \text{Ln}(x)$, and $i_{n-1} = \text{Ln}(x)$. Since the last instruction which is executed is the last physical instruction in the program, namely, a continue, there is no next instruction to be executed after that, and i_n is irrelevant. Writing the definition of T is a little simpler if we let $i_n = \text{Ln}(x) + 1$.

Definition 6.5. The T-predicate is the primitive recursive predicate defined as follows:

\[T(x, y, z) \text{ iff PROG}(x) \text{ and } (\text{Ln}(z) \geq 3) \text{ and } \forall j \leq \text{Ln}(z) - 3 [0 \leq j \supset \text{Nextline}(\Pi_1(\Pi(j + 2, \text{Ln}(z), z)), x, \Pi_2(\Pi(j + 2, \text{Ln}(z), z))) = \Pi_1(\Pi(j + 3, \text{Ln}(z), z)) \text{ and } \text{Nextcont}(\Pi_1(\Pi(j + 2, \text{Ln}(z), z)), x, \Pi_2(\Pi(j + 2, \text{Ln}(z), z))) = \Pi_2(\Pi(j + 3, \text{Ln}(z), z)) \text{ and } \Pi_1(\Pi(\text{Ln}(z) - 1, \text{Ln}(z), z)) = \text{Ln}(x) \text{ and } \Pi_1(\Pi(2, \text{Ln}(z), z)) = 1 \text{ and } y = \Pi_1(\Pi(2, \text{Ln}(z), z))) \text{ and } \Pi_2(\Pi(2, \text{Ln}(z), z))) = 0] \]

The reader can verify that $T(x, y, z)$ holds iff x codes a RAM program, y is an input, and z codes a halting computation of P_x on input y. In order to extract the output of P_x from z, we define the primitive recursive function Res as follows:

\[\text{Res}(z) = \Pi_1(\Pi_2(\Pi(\text{Ln}(z), z))) \text{ and } \Pi_2(\Pi(2, \text{Ln}(z), z))) = 0] \]

The explanation for this formula is that $\text{Res}(z)$ are the contents of register $R1$ when P_x halts, that is, $\Pi_1(y_{\text{Ln}(z)})$. Using the T-predicate, we get the so-called Kleene normal form.

Theorem 6.6. (Kleene Normal Form) Using the indexing of the partial recursive functions defined earlier, we have

\[\varphi_x(y) = \text{Res}[\min z(T(x, y, z))], \]

where $T(x, y, z)$ and Res are primitive recursive.

Note that the universal function φ_{univ} can be defined as

\[\varphi_{\text{univ}}(x, y) = \text{Res}[\min z(T(x, y, z))]. \]

There is another important property of the partial recursive functions, namely, that composition is effective. We need two auxiliary primitive recursive functions. The function Conprogs creates the code of the program obtained by concatenating the programs P_x and
6.4. KLEENE'S T-PREDICATE

P_y, and for $i \geq 2$, Cumclr(i) is the code of the program which clears registers R_2, \ldots, R_i. To get Cumclr, we can use the function clr(i) such that clr(i) is the code of the program

\[
\text{N1 \ tail \ Ri} \\
\text{N1 \ Ri \ jmp \ N1a} \\
\text{N \ continue}
\]

We leave it as an exercise to prove that clr, Conprogs, and Cumclr, are primitive recursive.

Theorem 6.7. There is a primitive recursive function c such that

\[\varphi_{c(x,y)} = \varphi_x \circ \varphi_y.\]

Proof. If both x and y code programs, then $\varphi_x \circ \varphi_y$ can be computed as follows: Run P_y, clear all registers but R_1, then run P_x. Otherwise, let loop be the index of the infinite loop program:

\[c(x, y) = \begin{cases}
\text{Conprogs}(y, \text{Conprogs}(\text{Cumclr}(y), x)) & \text{if PROG}(x) \text{ and PROG}(y) \\
\text{loop} & \text{otherwise.}
\end{cases}\]

\[\square\]
Chapter 7

Elementary Recursive Function Theory

7.1 Acceptable Indexings

In Chapter 6, we have exhibited a specific indexing of the partial recursive functions by encoding the RAM programs. Using this indexing, we showed the existence of a universal function φ_{univ} and of a recursive function c, with the property that for all $x, y \in \mathbb{N}$,

$$\varphi_{c(x,y)} = \varphi_x \circ \varphi_y.$$

It is natural to wonder whether the same results hold if a different coding scheme is used or if a different model of computation is used, for example, Turing machines. In other words, we would like to know if our results depend on a specific coding scheme or not. Our previous results showing the characterization of the partial recursive functions being independent of the specific model used, suggests that it might be possible to pinpoint certain properties of coding schemes which would allow an axiomatic development of recursive function theory. What we are aiming at is to find some simple properties of “nice” coding schemes that allow one to proceed without using explicit coding schemes, as long as the above properties hold.

Remarkably, such properties exist. Furthermore, any two coding schemes having these properties are equivalent in a strong sense (effectively equivalent), and so, one can pick any such coding scheme without any risk of losing anything else because the wrong coding scheme was chosen. Such coding schemes, also called indexings, or Gödel numberings, or even programming systems, are called acceptable indexings.

Definition 7.1. An indexing of the partial recursive functions is an infinite sequence $\varphi_0, \varphi_1, \ldots$, of partial recursive functions that includes all the partial recursive functions of one argument (there might be repetitions, this is why we are not using the term enumeration). An indexing is universal if it contains the partial recursive function φ_{univ} such that

$$\varphi_{\text{univ}}(i, x) = \varphi_i(x).$$
for all $i, x \in \mathbb{N}$. An indexing is \textit{acceptable} if it is universal and if there is a total recursive function c for composition, such that

$$
\varphi_{c(i,j)} = \varphi_i \circ \varphi_j
$$

for all $i, j \in \mathbb{N}$.

From Chapter 6, we know that the specific indexing of the partial recursive functions given for RAM programs is acceptable. Another characterization of acceptable indexings left as an exercise is the following: an indexing $\psi_0, \psi_1, \psi_2, \ldots$ of the partial recursive functions is acceptable iff there exists a total recursive function f translating the RAM indexing of Section 6.3 into the indexing $\psi_0, \psi_1, \psi_2, \ldots$, that is,

$$
\varphi_i = \psi_{f(i)}
$$

for all $i \in \mathbb{N}$.

A very useful property of acceptable indexings is the so-called “s-m-n Theorem”. Using the slightly loose notation $\varphi(x_1, \ldots, x_n)$ for $\varphi(\langle x_1, \ldots, x_n \rangle)$, the s-m-n theorem says the following. Given a function φ considered as having $m + n$ arguments, if we fix the values of the first m arguments and we let the other n arguments vary, we obtain a function ψ of n arguments. Then, the index of ψ depends in a recursive fashion upon the index of φ and the first m arguments x_1, \ldots, x_m. We can “pull” the first m arguments of φ into the index of ψ.

Theorem 7.1. (The “s-m-n Theorem”) For any acceptable indexing $\varphi_0, \varphi_1, \ldots$, there is a total recursive function s, such that, for all $i, m, n \geq 1$, for all x_1, \ldots, x_m and all y_1, \ldots, y_n, we have

$$
\varphi_{s(i,m,x_1,\ldots,x_m)}(y_1, \ldots, y_n) = \varphi_i(x_1, \ldots, x_m, y_1, \ldots, y_n).
$$

Proof. First, note that the above identity is really

$$
\varphi_{s(i,m,(x_1,\ldots,x_m))}((y_1, \ldots, y_n)) = \varphi_i((x_1, \ldots, x_m, y_1, \ldots, y_n)).
$$

Recall that there is a primitive recursive function Con such that

$$
\text{Con}(m, (x_1, \ldots, x_m), (y_1, \ldots, y_n)) = (x_1, \ldots, x_m, y_1, \ldots, y_n)
$$

for all $x_1, \ldots, x_m, y_1, \ldots, y_n \in \mathbb{N}$. Hence, a recursive function s such that

$$
\varphi_{s(i,m,x)}(y) = \varphi_i(\text{Con}(m, x, y))
$$

will do. We define some auxiliary primitive recursive functions as follows:

$$
P(y) = (0, y) \quad \text{and} \quad Q((x, y)) = (x + 1, y).
$$
Since we have an indexing of the partial recursive functions, there are indices p and q such that $P = \varphi_p$ and $Q = \varphi_q$. Let R be defined such that

$$
R(0) = p, \\
R(x + 1) = c(q, R(x)),
$$

where c is the recursive function for composition given by the indexing. We leave as an exercise to prove that

$$
\varphi_{R(x)}(y) = \langle x, y \rangle
$$

for all $x, y \in \mathbb{N}$. Also, recall that $\langle x, y, z \rangle = \langle x, \langle y, z \rangle \rangle$, by definition of pairing. Then, we have

$$
\varphi_{R(x)} \circ \varphi_{R(y)}(z) = \varphi_{R(x)}(\langle y, z \rangle) = \langle x, y, z \rangle.
$$

Finally, let k be an index for the function Con, that is, let

$$
\varphi_k(\langle m, x, y \rangle) = \text{Con}(m, x, y).
$$

Define s by

$$
s(i, m, x) = c(i, c(k, c(R(m), R(x)))).
$$

Then, we have

$$
\varphi_{s(i, m, x)}(y) = \varphi_i \circ \varphi_k \circ \varphi_{R(m)} \circ \varphi_{R(x)}(y) = \varphi_i(\text{Con}(m, x, y)),
$$

as desired. Notice that if the composition function c is primitive recursive, then s is also primitive recursive. In particular, for the specific indexing of the RAM programs given in Section 6.3, the function s is primitive recursive. \qed

As a first application of the s-m-n Theorem, we show that any two acceptable indexings are effectively inter-translatable.

Theorem 7.2. Let $\varphi_0, \varphi_1, \dotsc$, be a universal indexing, and let ψ_0, ψ_1, \dotsc, be any indexing with a total recursive s-1-1 function, that is, a function s such that

$$
\psi_{s(i, 1, x)}(y) = \psi_i(x, y)
$$

for all $i, x, y \in \mathbb{N}$. Then, there is a total recursive function t such that $\varphi_i = \psi_{t(i)}$.

Proof. Let φ_{univ} be a universal partial recursive function for the indexing $\varphi_0, \varphi_1, \dotsc$. Since ψ_0, ψ_1, \dotsc, is also an indexing, φ_{univ} occurs somewhere in the second list, and thus, there is some k such that $\varphi_{\text{univ}} = \psi_k$. Then, we have

$$
\psi_{s(k, 1, i)}(x) = \psi_k(i, x) = \varphi_{\text{univ}}(i, x) = \varphi_i(x),
$$

for all $i, x \in \mathbb{N}$. Therefore, we can take the function t to be the function defined such that

$$
t(i) = s(k, 1, i)
$$

for all $i \in \mathbb{N}$. \qed
Using Theorem 7.2, if we have two acceptable indexings $\varphi_0, \varphi_1, \ldots$, and ψ_0, ψ_1, \ldots, there exist total recursive functions t and u such that

$$\varphi_i = \psi_{t(i)} \quad \text{and} \quad \psi_i = \varphi_{u(i)}$$

for all $i \in \mathbb{N}$. Also note that if the composition function c is primitive recursive, then any s-m-n function is primitive recursive, and the translation functions are primitive recursive. Actually, a stronger result can be shown. It can be shown that for any two acceptable indexings, there exist total recursive injective and surjective translation functions. In other words, any two acceptable indexings are recursively isomorphic (Roger’s isomorphism theorem). Next, we turn to algorithmically unsolvable, or undecidable, problems.

7.2 Undecidable Problems

We saw in Section 6.3 that the halting problem for RAM programs is undecidable. In this section, we take a slightly more general approach to study the undecidability of problems, and give some tools for resolving decidability questions.

First, we prove again the undecidability of the halting problem, but this time, for any indexing of the partial recursive functions.

Theorem 7.3. (Halting Problem, Abstract Version) Let ψ_0, ψ_1, \ldots, be any indexing of the partial recursive functions. Then, the function f defined such that

$$f(x, y) = \begin{cases} 1 & \text{if } \psi_x(y) \text{ is defined}, \\ 0 & \text{if } \psi_x(y) \text{ is undefined}, \end{cases}$$

is not recursive.

Proof. Assume that f is recursive, and let g be the function defined such that

$$g(x) = f(x, x)$$

for all $x \in \mathbb{N}$. Then g is also recursive. Let θ be the function defined such that

$$\theta(x) = \begin{cases} 0 & \text{if } g(x) = 0, \\ \text{undefined} & \text{if } g(x) = 1. \end{cases}$$

We claim that θ is not even partial recursive. Observe that θ is such that

$$\theta(x) = \begin{cases} 0 & \text{if } \psi_x(x) \text{ is undefined}, \\ \text{undefined} & \text{if } \psi_x(x) \text{ is defined}. \end{cases}$$

If θ was partial recursive, it would occur in the list as some ψ_i, and we would have

$$\theta(i) = \psi_i(i) = 0 \quad \text{iff} \quad \psi_i(i) \text{ is undefined},$$

a contradiction. Therefore, f and g can’t be recursive. \qed
Observe that the proof of Theorem 7.3 does not use the fact that the indexing is universal or acceptable, and thus, the theorem holds for any indexing of the partial recursive functions. The function g defined in the proof of Theorem 7.3 is the characteristic function of a set denoted as K, where

$$K = \{ x \mid \psi_x(x) \text{ is defined} \}.$$

Given any set, X, for any subset, $A \subseteq X$, of X, recall that the characteristic function, C_A (or χ_A), of A is the function, $C_A: X \rightarrow \{0, 1\}$, defined so that, for all $x \in X$,

$$C_A(x) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{if } x \notin A.
\end{cases}$$

The set K is an example of a set which is not recursive. Since this fact is quite important, we give the following definition:

Definition 7.2. A subset, A, of Σ^* (or a subset, A, of \mathbb{N}) is *recursive* iff its characteristic function, C_A, is a total recursive function.

Using Definition 7.2, Theorem 7.3 can be restated as follows.

Lemma 7.4. For any indexing ϕ_0, ϕ_1, \ldots of the partial recursive functions (over Σ^* or \mathbb{N}), the set $K = \{ x \mid \phi_x(x) \text{ is defined} \}$ is not recursive.

Recursive sets allow us to define the concept of a decidable (or undecidable) problem. The idea is to generalize the situation described in Section 6.3 and Section 6.4, where a set of objects, the RAM programs, is encoded into a set of natural numbers, using a coding scheme.

Definition 7.3. Let C be a countable set of objects, and let P be a property of objects in C. We view P as the set

$$\{ a \in C \mid P(a) \}.$$

A *coding-scheme* is an injective function $\# : C \rightarrow \mathbb{N}$ that assigns a unique code to each object in C. The property P is *decidable (relative to $\#$)* iff the set $\{ \#(a) \mid a \in C \text{ and } P(a) \}$ is recursive. The property P is *undecidable (relative to $\#$)* iff the set $\{ \#(a) \mid a \in C \text{ and } P(a) \}$ is not recursive.

Observe that the decidability of a property P of objects in C depends upon the coding scheme $\#$. Thus, if we are cheating in using a non-effective coding scheme, we may declare that a property is decidable even though it is not decidable in some reasonable coding scheme. Consequently, we require a coding scheme $\#$ to be *effective* in the following sense. Given any object $a \in C$, we can effectively (i.e., algorithmically) determine its code $\#(a)$. Conversely, given any integer $n \in \mathbb{N}$, we should be able to tell effectively if n is the code of some object in C, and if so, to find this object. In practice, it is always possible to describe the objects
in C as strings over some (possibly complex) alphabet Σ (sets of trees, graphs, etc). In such cases, the coding schemes are recursive functions from $\Sigma^* \to \mathbb{N} = \{a_1\}^*$.

For example, let $C = \mathbb{N} \times \mathbb{N}$, where the property P is the equality of the partial functions φ_x and φ_y. We can use the pairing function $\langle -, - \rangle$ as a coding function, and the problem is formally encoded as the recursiveness of the set

$$\{\langle x, y \rangle \mid x, y \in \mathbb{N}, \varphi_x = \varphi_y\}.$$

In most cases, we don’t even bother to describe the coding scheme explicitly, knowing that such a description is routine, although perhaps tedious.

We now show that most properties about programs (except the trivial ones) are undecidable. First, we show that it is undecidable whether a RAM program halts for every input. In other words, it is undecidable whether a procedure is an algorithm. We actually prove a more general fact.

Lemma 7.5. For any acceptable indexing $\varphi_0, \varphi_1, \ldots$ of the partial recursive functions, the set

$$\text{TOTAL} = \{x \mid \varphi_x \text{ is a total function}\}$$

is not recursive.

Proof. The proof uses a technique known as reducibility. We try to reduce a set A known to be nonrecursive to TOTAL via a recursive function $f: A \to \text{TOTAL}$, so that

$$x \in A \iff f(x) \in \text{TOTAL}.$$

If TOTAL were recursive, its characteristic function g would be recursive, and thus, the function $g \circ f$ would be recursive, a contradiction, since A is assumed to be nonrecursive. In the present case, we pick $A = K$. To find the recursive function $f: K \to \text{TOTAL}$, we use the s-m-n Theorem. Let θ be the function defined below: for all $x, y \in \mathbb{N}$,

$$\theta(x, y) = \begin{cases} \varphi_x(x) & \text{if } x \in K, \\ \text{undefined} & \text{if } x \notin K. \end{cases}$$

Note that θ does not depend on y. The function θ is partial recursive. Indeed, we have

$$\theta(x, y) = \varphi_x(x) = \varphi_{\text{univ}}(x, x).$$

Thus, θ has some index j, so that $\theta = \varphi_j$, and by the s-m-n Theorem, we have

$$\varphi_{s(j, 1, x)}(y) = \varphi_j(x, y) = \theta(x, y).$$

Let f be the recursive function defined such that

$$f(x) = s(j, 1, x)$$
for all $x \in \mathbb{N}$. Then, we have
\[
\varphi_{f(x)}(y) = \begin{cases}
\varphi_x(x) & \text{if } x \in K, \\
\text{undefined} & \text{if } x \notin K
\end{cases}
\]
for all $y \in \mathbb{N}$. Thus, observe that $\varphi_{f(x)}$ is a total function iff $x \in K$, that is,
\[
x \in K \quad \text{iff} \quad f(x) \in \text{TOTAL},
\]
where f is recursive. As we explained earlier, this shows that TOTAL is not recursive. □

The above argument can be generalized to yield a result known as Rice’s Theorem. Let
\[
\varphi_0, \varphi_1, \ldots
\]
be any indexing of the partial recursive functions, and let C be any set of partial recursive functions. We define the set P_C as
\[
P_C = \{ x \in \mathbb{N} | \varphi_x \in C \}.
\]
We can view C as a property of some of the partial recursive functions. For example
\[
C = \{ \text{all total recursive functions} \}.
\]
We say that C is nontrivial if C is neither empty nor the set of all partial recursive functions. Equivalently C is nontrivial iff $P_C \neq \emptyset$ and $P_C \neq \mathbb{N}$. We may think of P_C as the set of programs computing the functions in C.

Theorem 7.6. (Rice’s Theorem) For any acceptable indexing $\varphi_0, \varphi_1, \ldots$ of the partial recursive functions, for any set C of partial recursive functions, the set
\[
P_C = \{ x \in \mathbb{N} | \varphi_x \in C \}
\]
is nonrecursive unless C is trivial.

Proof. Assume that C is nontrivial. A set is recursive iff its complement is recursive (the proof is trivial). Hence, we may assume that the totally undefined function is not in C, and since $C \neq \emptyset$, let ψ be some other function in C. We produce a recursive function f such that
\[
\varphi_{f(x)}(y) = \begin{cases}
\psi(y) & \text{if } x \in K, \\
\text{undefined} & \text{if } x \notin K
\end{cases}
\]
for all $y \in \mathbb{N}$. We get f by using the s-m-n Theorem. Let $\psi = \varphi_i$, and define θ as follows:
\[
\theta(x, y) = \varphi_{\text{univ}}(i, y) + (\varphi_{\text{univ}}(x, x) - \varphi_{\text{univ}}(x, x)),
\]
where $-$ is the primitive recursive function for truncated subtraction. Clearly, θ is partial recursive, and let $\theta = \varphi_j$. By the s-m-n Theorem, we have
\[
\varphi_{s(j,1,x)}(y) = \varphi_j(x, y) = \theta(x, y)
\]
for all \(x, y \in \mathbb{N}\). Letting \(f\) be the recursive function such that
\[
f(x) = s(j, 1, x),
\]
by definition of \(\theta\), we get
\[
\varphi_{f(x)}(y) = \theta(x, y) = \begin{cases}
\psi(y) & \text{if } x \in K, \\
\text{undefined} & \text{if } x \notin K.
\end{cases}
\]
Thus, \(f\) is the desired reduction function. Now, we have
\[
x \in K \iff f(x) \in P,
\]
and thus, the characteristic function \(C_K\) of \(K\) is equal to \(C_P \circ f\), where \(C_P\) is the characteristic function of \(P\). Therefore, \(P\) is not recursive, since otherwise, \(K\) would be recursive, a contradiction. \(\square\)

Rice’s Theorem shows that all nontrivial properties of the input/output behavior of programs are undecidable! In particular, the following properties are undecidable.

Lemma 7.7. The following properties of partial recursive functions are undecidable.

(a) A partial recursive function is a constant function.

(b) Given any integer \(y \in \mathbb{N}\), is \(y\) in the range of some partial recursive function.

(c) Two partial recursive functions \(\varphi_x\) and \(\varphi_y\) are identical.

(d) A partial recursive function \(\varphi_x\) is equal to a given partial recursive function \(\varphi_a\).

(e) A partial recursive function yields output \(z\) on input \(y\), for any given \(y, z \in \mathbb{N}\).

(f) A partial recursive function diverges for some input.

(g) A partial recursive function diverges for all input.

The above Lemma is left as an easy exercise.

A property may be undecidable although it is partially decidable. By partially decidable, we mean that there exists a recursive function \(g\) that enumerates the set \(P_C = \{x \mid \varphi_x \in C\}\). This means that there is a recursive function \(g\) whose range is \(P\). We say that \(P\) is recursively enumerable. Indeed, \(g\) provides a recursive enumeration of \(P\), with possible repetitions. Recursively enumerable sets are the object of the next Section.
7.3 Recursively Enumerable Sets

Consider the set

\[A = \{ x \in \mathbb{N} \mid \varphi_x(a) \text{ is defined} \} , \]

where \(a \in \mathbb{N} \) is any fixed natural number. By Rice’s Theorem, \(A \) is not recursive (check this). We claim that \(A \) is the range of a recursive function \(g \). For this, we use the \(T \)-predicate. We produce a function which is actually primitive recursive. First, note that \(A \) is nonempty (why?), and let \(x_0 \) be any index in \(A \). We define \(g \) by primitive recursion as follows:

\[
g(0) = x_0,
\]

\[
g(x + 1) = \begin{cases}
 \Pi_1(x) & \text{if } T(\Pi_1(x), a, \Pi_2(x)) , \\
 x_0 & \text{otherwise}.
\end{cases}
\]

Since this type of argument is new, it is helpful to explain informally what \(g \) does. For every input \(x \), the function \(g \) tries finitely many steps of a computation on input \(a \) of some partial recursive function. The computation is given by \(\Pi_2(x) \), and the partial function is given by \(\Pi_1(x) \). Since \(\Pi_1 \) and \(\Pi_2 \) are projection functions, when \(x \) ranges over \(\mathbb{N} \), both \(\Pi_1(x) \) and \(\Pi_2(x) \) also range over \(\mathbb{N} \). Such a process is called a dovetailing computation. Therefore all computations on input \(a \) for all partial recursive functions will be tried, and the indices of the partial recursive functions converging on input \(a \) will be selected. This type of argument will be used over and over again.

Definition 7.4. A subset \(X \) of \(\mathbb{N} \) is recursively enumerable iff either \(X = \emptyset \), or \(X \) is the range of some total recursive function. Similarly, a subset \(X \) of \(\Sigma^* \) is recursively enumerable iff either \(X = \emptyset \), or \(X \) is the range of some total recursive function.

We will often abbreviate recursively enumerable as r.e.

Remark: It should be noted that the definition of an r.e set given in Definition 7.4 is different from an earlier definition given in terms of acceptance by a Turing machine and it is by no means obvious that these two definitions are equivalent. This equivalence will be proved in Lemma 7.9 \((1) \iff (4) \).

The following Lemma relates recursive sets and recursively enumerable sets.

Lemma 7.8. A set \(A \) is recursive iff both \(A \) and its complement \(\overline{A} \) are recursively enumerable.

Proof. Assume that \(A \) is recursive. Then, it is trivial that its complement is also recursive. Hence, we only have to show that a recursive set is recursively enumerable. The empty set is recursively enumerable by definition. Otherwise, let \(y \in A \) be any element. Then, the function \(f \) defined such that

\[
f(x) = \begin{cases}
 x & \text{iff } C_A(x) = 1 , \\
 y & \text{iff } C_A(x) = 0 ,
\end{cases}
\]

...
for all \(x \in \mathbb{N} \) is recursive and has range \(A \).

Conversely, assume that both \(A \) and \(\overline{A} \) are recursively enumerable. If either \(A \) or \(\overline{A} \) is empty, then \(A \) is recursive. Otherwise, let \(A = f(\mathbb{N}) \) and \(\overline{A} = g(\mathbb{N}) \), for some recursive functions \(f \) and \(g \). We define the function \(C_A \) as follows:

\[
C_A(x) = \begin{cases}
1 & \text{if } f(\min y [f(y) = x \lor g(y) = x]) = x, \\
0 & \text{otherwise.}
\end{cases}
\]

The function \(C_A \) lists \(A \) and \(\overline{A} \) in parallel, waiting to see whether \(x \) turns up in \(A \) or in \(\overline{A} \). Note that \(x \) must eventually turn up either in \(A \) or in \(\overline{A} \), so that \(C_A \) is a total recursive function. \(\square \)

Our next goal is to show that the recursively enumerable sets can be given several equivalent definitions.

Lemma 7.9. For any subset \(A \) of \(\mathbb{N} \), the following properties are equivalent:

1. \(A \) is empty or \(A \) is the range of a primitive recursive function (Rosser, 1936).
2. \(A \) is recursively enumerable.
3. \(A \) is the range of a partial recursive function.
4. \(A \) is the domain of a partial recursive function.

Proof. The implication (1) \(\Rightarrow \) (2) is trivial, since \(A \) is r.e. iff either it is empty or it is the range of a (total) recursive function.

To prove the implication (2) \(\Rightarrow \) (3), it suffices to observe that the empty set is the range of the totally undefined function (computed by an infinite loop program), and that a recursive function is a partial recursive function.

The implication (3) \(\Rightarrow \) (4) is shown as follows. Assume that \(A \) is the range of \(\varphi_i \). Define the function \(f \) such that

\[
f(x) = \min y [T(i, \Pi_1(y), \Pi_2(y)) \land \text{Res}(\Pi_2(y)) = x]
\]

for all \(x \in \mathbb{N} \). Clearly, \(f \) is partial recursive and has domain \(A \).

The implication (4) \(\Rightarrow \) (1) is shown as follows. The only nontrivial case is when \(A \) is nonempty. Assume that \(A \) is the domain of \(\varphi_i \). Since \(A \neq \emptyset \), there is some \(a \in \mathbb{N} \) such that \(a \in A \), so the quantity

\[
\min y [T(i, \Pi_1(y), \Pi_2(y))]
\]

is defined and we can pick \(a \) to be

\[
a = \Pi_1(\min y [T(i, \Pi_1(y), \Pi_2(y))]).
\]
We define the primitive recursive function f as follows:

$$f(0) = a,$$

$$f(x + 1) = \begin{cases}
\Pi_1(x) & \text{if } T(i, \Pi_1(x), \Pi_2(x)), \\
 a & \text{if } \neg T(i, \Pi_1(x), \Pi_2(x)).
\end{cases}$$

Clearly, A is the range of f and f is primitive recursive.

More intuitive proofs of the implications (3) \Rightarrow (4) and (4) \Rightarrow (1) can be given. Assume that $A \neq \emptyset$ and that $A = \text{range}(g)$, where g is a partial recursive function. Assume that g is computed by a RAM program P. To compute $f(x)$, we start computing the sequence

$$g(0), g(1), \ldots$$

looking for x. If x turns up as say $g(n)$, then we output n. Otherwise the computation diverges. Hence, the domain of f is the range of g.

Assume now that A is the domain of some partial recursive function g, and that g is computed by some Turing machine M. Since the case where $A = \emptyset$ is trivial, we may assume that $A \neq \emptyset$, and let $n_0 \in A$ be some chosen element in A. We construct another Turing machine performing the following steps: On input n,

(0) Do one step of the computation of $g(0)$

\[\ldots \]

(n) Do $n + 1$ steps of the computation of $g(0)$

\[\text{Do } n \text{ steps of the computation of } g(1) \]

\[\ldots \]

\[\text{Do 2 steps of the computation of } g(n - 1) \]

\[\text{Do 1 step of the computation of } g(n) \]

During this process, whenever the computation of $g(m)$ halts for some $m \leq n$, we output m. Otherwise, we output n_0.

In this fashion, we will enumerate the domain of g, and since we have constructed a Turing machine that halts for every input, we have a total recursive function.

The following Lemma can easily be shown using the proof technique of Lemma 7.9.

Lemma 7.10. (1) There is a recursive function h such that

$$\text{range}(\varphi_x) = \text{dom}(\varphi_{h(x)})$$

for all $x \in \mathbb{N}$.

(2) There is a recursive function k such that

$$\text{dom}(\varphi_x) = \text{range}(\varphi_{k(x)})$$

and $\varphi_{k(x)}$ is total recursive, for all $x \in \mathbb{N}$ such that $\text{dom}(\varphi_x) \neq \emptyset$.
The proof of Lemma 7.10 is left as an exercise. Using Lemma 7.9, we can prove that K is an r.e. set. Indeed, we have $K = \text{dom}(f)$, where

$$f(x) = \varphi_{\text{univ}}(x, x)$$

for all $x \in \mathbb{N}$. The set

$$K_0 = \{ (x, y) \mid \varphi_x(y) \text{ converges} \}$$

is also an r.e. set, since $K_0 = \text{dom}(g)$, where

$$g(z) = \varphi_{\text{univ}}(\Pi_1(z), \Pi_2(z)),$$

which is partial recursive. The sets K and K_0 are examples of r.e. sets that are not recursive.

We can now prove that there are sets that are not r.e.

Lemma 7.11. For any indexing of the partial recursive functions, the complement \overline{K} of the set

$$K = \{ x \in \mathbb{N} \mid \varphi_x(x) \text{ converges} \}$$

is not recursively enumerable.

Proof. If \overline{K} was recursively enumerable, since K is also recursively enumerable, by Lemma 7.8, the set K would be recursive, a contradiction. \qed

The sets \overline{K} and \overline{K}_0 are examples of sets that are not r.e. This shows that the r.e. sets are not closed under complementation. However, we leave it as an exercise to prove that the r.e. sets are closed under union and intersection.

We will prove later on that TOTAL is not r.e. This is rather unpleasant. Indeed, this means that there is no way of effectively listing all algorithms (all total recursive functions). Hence, in a certain sense, the concept of partial recursive function (procedure) is more natural than the concept of a (total) recursive function (algorithm).

The next two Lemmas give other characterizations of the r.e. sets and of the recursive sets. The proofs are left as an exercise.

Lemma 7.12. (1) A set A is r.e. iff either it is finite or it is the range of an injective recursive function.

(2) A set A is r.e. if either it is empty or it is the range of a monotonic partial recursive function.

(3) A set A is r.e. iff there is a Turing machine M such that, for all $x \in \mathbb{N}$, M halts on x iff $x \in A$.

Lemma 7.13. A set A is recursive iff either it is finite or it is the range of a strictly increasing recursive function.
Another important result relating the concept of partial recursive function and that of an r.e. set is given below.

Theorem 7.14. For every unary partial function f, the following properties are equivalent:

1. f is partial recursive.
2. The set $\{(x, f(x)) \mid x \in \text{dom}(f)\}$ is r.e.

Proof. Let $g(x) = (x, f(x))$. Clearly, g is partial recursive, and

$$\text{range}(g) = \{(x, f(x)) \mid x \in \text{dom}(f)\}.$$

Conversely, assume that

$$\text{range}(g) = \{(x, f(x)) \mid x \in \text{dom}(f)\}$$

for some recursive function g. Then, we have

$$f(x) = \Pi_2(g(\min y[\Pi_1(g(y)) = x]))$$

for all $x \in \mathbb{N}$, so that f is partial recursive. \hfill \Box

Using our indexing of the partial recursive functions and Lemma 7.9, we obtain an indexing of the r.e. sets.

Definition 7.5. For any acceptable indexing $\varphi_0, \varphi_1, \ldots$ of the partial recursive functions, we define the enumeration W_0, W_1, \ldots of the r.e. sets by setting

$$W_x = \text{dom}(\varphi_x).$$

We now describe a technique for showing that certain sets are r.e. but not recursive, or complements of r.e. sets that are not recursive, or not r.e., or neither r.e. nor the complement of an r.e. set. This technique is known as reducibility.

7.4 Reducibility and Complete Sets

We already used the notion of reducibility in the proof of Lemma 7.5 to show that TOTAL is not recursive.

Definition 7.6. A set A is many-one reducible to a set B if there is a total recursive function f such that

$$x \in A \iff f(x) \in B$$

for all $x \in A$. We write $A \leq B$, and for short, we say that A is reducible to B.

The following simple Lemma is left as an exercise to the reader.

Lemma 7.15. Let A, B, C be subsets of \mathbb{N} (or Σ^*). The following properties hold:

1. If $A \leq B$ and $B \leq C$, then $A \leq C$.
2. If $A \leq B$ then $\overline{A} \leq \overline{B}$.
3. If $A \leq B$ and B is r.e., then A is r.e.
4. If $A \leq B$ and A is not r.e., then B is not r.e.
5. If $A \leq B$ and B is recursive, then A is recursive.
6. If $A \leq B$ and A is not recursive, then B is not recursive.

Another important concept is the concept of a complete set.

Definition 7.7. An r.e. set A is complete w.r.t. many-one reducibility iff every r.e. set B is reducible to A, i.e., $B \leq A$.

For simplicity, we will often say complete for complete w.r.t. many-one reducibility.

Theorem 7.16. The following properties hold:

1. If A is complete, B is r.e., and $A \leq B$, then B is complete.
2. K_0 is complete.
3. K_0 is reducible to K.

Proof.

1. This is left as a simple exercise.

2. Let W_x be any r.e. set. Then

$$y \in W_x \iff \langle x, y \rangle \in K_0,$$

and the reduction function is the recursive function f such that

$$f(y) = \langle x, y \rangle$$

for all $y \in \mathbb{N}$.

3. We use the s-m-n Theorem. First, we leave it as an exercise to prove that there is a recursive function f such that

$$\varphi_{f(x)}(y) = \begin{cases} 1 & \text{if } \varphi_{\Pi_1(x)}(\Pi_2(x)) \text{ converges}, \\ \text{undefined} & \text{otherwise}, \end{cases}$$

for all $x, y \in \mathbb{N}$. Then, for every $z \in \mathbb{N}$,

$$z \in K_0 \iff \varphi_{\Pi_1(z)}(\Pi_2(z)) \text{ converges},$$
iff $\varphi_{f(z)}(y) = 1$ for all $y \in \mathbb{N}$. However,

$$
\varphi_{f(z)}(y) = 1 \text{ iff } \varphi_{f(z)}(f(z)) = 1,
$$

since $\varphi_{f(z)}$ is a constant function. This means that

$$
z \in K_0 \text{ iff } f(z) \in K,
$$

and f is the desired function. \qed

As a corollary of Theorem 7.16, the set K is also complete.

Definition 7.8. Two sets A and B have the same degree of unsolvability or are equivalent iff $A \leq B$ and $B \leq A$.

Since K and K_0 are both complete, they have the same degree of unsolvability. We will now investigate the reducibility and equivalence of various sets. Recall that

$$
\text{TOTAL} = \{ x \in \mathbb{N} \mid \varphi_x \text{ is total} \}.
$$

We define EMPTY and FINITE, as follows:

$$
\text{EMPTY} = \{ x \in \mathbb{N} \mid \varphi_x \text{ is undefined for all input} \},
\text{FINITE} = \{ x \in \mathbb{N} \mid \varphi_x \text{ is defined only for finitely many input} \}.
$$

Obviously, $\text{EMPTY} \subset \text{FINITE}$, and since

$$
\text{FINITE} = \{ x \in \mathbb{N} \mid \varphi_x \text{ has a finite domain} \},
$$

we have

$$
\text{FINITE} = \{ x \in \mathbb{N} \mid \varphi_x \text{ has an infinite domain} \},
$$

and thus, $\text{TOTAL} \subset \text{FINITE}$.

Lemma 7.17. We have $K_0 \leq \text{EMPTY}$.

The proof of Lemma 7.17 follows from the proof of Theorem 7.16. We also have the following Lemma.

Lemma 7.18. The following properties hold:

(1) EMPTY is not r.e.
(2) EMPTY is r.e.
(3) K and EMPTY are equivalent.
(4) EMPTY is complete.
Proof. We prove (1) and (3), leaving (2) and (4) as an exercise (Actually, (2) and (4) follow easily from (3)). First, we show that \(K \leq \text{EMPTY} \). By the s-m-n Theorem, there exists a recursive function \(f \) such that
\[
\varphi_{f(x)}(y) = \begin{cases}
\varphi_x(x) & \text{if } \varphi_x(x) \text{ converges}, \\
\text{undefined} & \text{if } \varphi_x(x) \text{ diverges},
\end{cases}
\]
for all \(x, y \in \mathbb{N} \). Note that for all \(x \in \mathbb{N} \),
\[
x \in K \iff f(x) \in \text{EMPTY},
\]
and thus, \(K \leq \text{EMPTY} \). Since \(K \) is not r.e., \(\text{EMPTY} \) is not r.e.

By the s-m-n Theorem, there is a recursive function \(g \) such that
\[
\varphi_{g(x)}(y) = \min z[T(x, \Pi_1(z), \Pi_2(z))],
\]
for all \(x, y \in \mathbb{N} \). Note that
\[
x \in \text{EMPTY} \iff g(x) \in K
\]
for all \(x \in \mathbb{N} \). Therefore, \(\text{EMPTY} \leq K \), and since we just showed that \(K \leq \text{EMPTY} \), the sets \(K \) and \(\text{EMPTY} \) are equivalent. \(\square \)

Lemma 7.19. The following properties hold:

(1) \(\text{TOTAL} \) and \(\text{TOTAL} \) are not r.e.

(2) \(\text{FINITE} \) and \(\text{FINITE} \) are not r.e.

Proof. Checking the proof of Theorem 7.16, we note that \(K_0 \leq \text{TOTAL} \) and \(K_0 \leq \text{FINITE} \). Hence, we get \(K_0 \leq \text{TOTAL} \) and \(K_0 \leq \text{FINITE} \), and neither \(\text{TOTAL} \) nor \(\text{FINITE} \) is r.e. If \(\text{TOTAL} \) was r.e., then there would be a recursive function \(f \) such that \(\text{TOTAL} = \text{range}(f) \). Define \(g \) as follows:
\[
g(x) = \varphi_{f(x)}(x) + 1 = \varphi_{\text{univ}}(f(x), x) + 1
\]
for all \(x \in \mathbb{N} \). Since \(f \) is total and \(\varphi_{f(x)} \) is total for all \(x \in \mathbb{N} \), the function \(g \) is total recursive. Let \(e \) be an index such that
\[
g = \varphi_{f(e)}.
\]
Since \(g \) is total, \(g(e) \) is defined. Then, we have
\[
g(e) = \varphi_{f(e)}(e) + 1 = g(e) + 1,
\]
a contradiction. Hence, \(\text{TOTAL} \) is not r.e. Finally, we show that \(\text{TOTAL} \leq \text{FINITE} \). This also shows that \(\text{FINITE} \) is not r.e. By the s-m-n Theorem, there is a recursive function \(f \) such that
\[
\varphi_{f(x)}(y) = \begin{cases}
1 & \text{if } \forall z \leq y(\varphi_x(z) \downarrow), \\
\text{undefined} & \text{otherwise},
\end{cases}
\]
for all \(x, y \in \mathbb{N} \). It is easily seen that
\[
x \in \text{TOTAL} \iff f(x) \in \text{FINITE}
\]
for all \(x \in \mathbb{N} \). \(\square \)
From Lemma 7.19, we have \(\text{TOTAL} \leq \text{FINITE} \). It turns out that \(\text{FINITE} \leq \text{TOTAL} \), and \(\text{TOTAL} \) and \(\text{FINITE} \) are equivalent.

Lemma 7.20. The sets \(\text{TOTAL} \) and \(\text{FINITE} \) are equivalent.

Proof. We show that \(\text{FINITE} \leq \text{TOTAL} \). By the s-m-n Theorem, there is a recursive function \(f \) such that
\[
\varphi_f(x)(y) = \begin{cases}
1 & \text{if } \exists z \geq y (\varphi_x(z) \downarrow), \\
\text{undefined} & \text{if } \forall z \geq y (\varphi_x(z) \uparrow),
\end{cases}
\]
for all \(x, y \in \mathbb{N} \). It is easily seen that
\[
x \in \text{FINITE} \iff f(x) \in \text{TOTAL}
\]
for all \(x \in \mathbb{N} \).

We now turn to the recursion Theorem.

7.5 The Recursion Theorem

The recursion Theorem, due to Kleene, is a fundamental result in recursion theory. Let \(f \) be a total recursive function. Then, it turns out that there is some \(n \) such that
\[
\varphi_n = \varphi_f(n).
\]

Theorem 7.21. (Recursion Theorem, Version 1) Let \(\varphi_0, \varphi_1, \ldots \) be any acceptable indexing of the partial recursive functions. For every total recursive function \(f \), there is some \(n \) such that
\[
\varphi_n = \varphi_f(n).
\]

Proof. Consider the function \(\theta \) defined such that
\[
\theta(x, y) = \varphi_{\text{univ}}(\varphi_{\text{univ}}(x, x), y)
\]
for all \(x, y \in \mathbb{N} \). The function \(\theta \) is partial recursive, and there is some index \(j \) such that \(\varphi_j = \theta \). By the s-m-n Theorem, there is a recursive function \(g \) such that
\[
\varphi_{g(x)}(y) = \theta(x, y).
\]
Consider the function \(f \circ g \). Since it is recursive, there is some index \(m \) such that \(\varphi_m = f \circ g \). Let
\[
n = g(m).
\]
Since \(\varphi_m \) is total, \(\varphi_m(m) \) is defined, and we have
\[
\varphi_n(y) = \varphi_{g(m)}(y) = \theta(m, y) = \varphi_{\text{univ}}(\varphi_{\text{univ}}(m, m), y) = \varphi_{\varphi_{\text{univ}}(m, m)}(y) = \varphi_{\varphi_m(m)}(y) = \varphi_{f \circ g}(m)(y) = \varphi_{f(g(m))}(y) = \varphi_f(n)(y),
\]
for all \(y \in \mathbb{N} \). Therefore, \(\varphi_n = \varphi_f(n) \), as desired.
The recursion Theorem can be strengthened as follows.

Theorem 7.22. (Recursion Theorem, Version 2) Let \(\varphi_0, \varphi_1, \ldots \) be any acceptable indexing of the partial recursive functions. There is a total recursive function \(h \) such that for all \(x \in \mathbb{N} \), if \(\varphi_x \) is total, then
\[
\varphi_{\varphi_x}(h(x)) = \varphi h(x).
\]

Proof. The recursive function \(g \) obtained in the proof of Theorem 7.21 satisfies the condition
\[
\varphi_g(x) = \varphi_{\varphi_x}(x),
\]
and it has some index \(i \) such that \(\varphi_i = g \). Recall that \(c \) is a recursive composition function such that
\[
\varphi_c(x,y) = \varphi_x \circ \varphi_y.
\]
It is easily verified that the function \(h \) defined such that
\[
h(x) = g(c(x,i))
\]
for all \(x \in \mathbb{N} \) does the job.

A third version of the recursion Theorem is given below.

Theorem 7.23. (Recursion Theorem, Version 3) For all \(n \geq 1 \), there is a total recursive function \(h \) of \(n+1 \) arguments, such that for all \(x \in \mathbb{N} \), if \(\varphi_x \) is a total recursive function of \(n+1 \) arguments, then
\[
\varphi_{\varphi_x}(h(x_1, \ldots, x_n), x_1, \ldots, x_n) = \varphi h(x_1, \ldots, x_n),
\]
for all \(x_1, \ldots, x_n \in \mathbb{N} \).

Proof. Let \(\theta \) be the function defined such that
\[
\theta(x, x_1, \ldots, x_n, y) = \varphi_{\varphi_x}(x_1, \ldots, x_n)(y) = \varphi_{\text{univ}}(\varphi_{\text{univ}}(x, x_1, \ldots, x_n), y)
\]
for all \(x, x_1, \ldots, x_n, y \in \mathbb{N} \). By the s-m-n Theorem, there is a recursive function \(g \) such that
\[
\varphi_g(x_1, \ldots, x_n) = \varphi_{\varphi_x}(x_1, \ldots, x_n).
\]
It is easily shown that there is a recursive function \(\varphi_{\varphi_x} \) such that
\[
\varphi_{\varphi_{\varphi_x}}(x, x_1, \ldots, x_n) = \varphi_x(\varphi_{\varphi_x}(x_1, \ldots, x_n), x_1, \ldots, x_n)
\]
for any two partial recursive functions \(\varphi_x \) and \(\varphi_j \) (viewed as functions of \(n+1 \) arguments) and all \(x, x_1, \ldots, x_n \in \mathbb{N} \). Let \(\varphi_i = g \), and define \(h \) such that
\[
h(x, x_1, \ldots, x_n) = g(c(x, i), x_1, \ldots, x_n),
\]
for all \(x, x_1, \ldots, x_n \in \mathbb{N} \). We have

\[
\varphi_h(x, x_1, \ldots, x_n) = \varphi_g(c(x, i), x_1, \ldots, x_n) = \varphi_{\varphi_{c(x, i)}}(c(x, i), x_1, \ldots, x_n),
\]

and

\[
\varphi_{\varphi_{c(x, i)}}(c(x, i), x_1, \ldots, x_n) = \varphi_{\varphi_x}(c(x, i), x_1, \ldots, x_n),
\]

\[
= \varphi_{\varphi_x}(g(c(x, i), x_1, \ldots, x_n), x_1, \ldots, x_n),
\]

\[
= \varphi_{\varphi_x}(h(x, x_1, \ldots, x_n), x_1, \ldots, x_n).
\]

As a first application of the recursion theorem, we can show that there is an index \(n \) such that \(\varphi_n \) is the constant function with output \(n \). Loosely speaking, \(\varphi_n \) prints its own name. Let \(f \) be the recursive function such that

\[
f(x, y) = x
\]

for all \(x, y \in \mathbb{N} \). By the s-m-n Theorem, there is a recursive function \(g \) such that

\[
\varphi_{g(x)}(y) = f(x, y) = x
\]

for all \(x, y \in \mathbb{N} \). By the recursion Theorem 7.21, there is some \(n \) such that

\[
\varphi_{f(n)} = \varphi_n,
\]

the constant function with value \(n \).

As a second application, we get a very short proof of Rice’s Theorem. Let \(C \) be such that \(P_C \neq \emptyset \) and \(P_C \neq \mathbb{N} \), and let \(j \in P_C \) and \(k \in \mathbb{N} - P_C \). Define the function \(f \) as follows:

\[
f(x) = \begin{cases}
 j & \text{if } x \notin P_C, \\
 k & \text{if } x \in P_C,
\end{cases}
\]

If \(P_C \) is recursive, then \(f \) is recursive. By the recursion Theorem 7.21, there is some \(n \) such that

\[
\varphi_{f(n)} = \varphi_n.
\]

But then, we have

\[
n \in P_C \text{ iff } f(n) \notin P_C
\]

by definition of \(f \), and thus,

\[
\varphi_{f(n)} \neq \varphi_n,
\]

a contradiction. Hence, \(P_C \) is not recursive.

As a third application, we prove the following Lemma.
Lemma 7.24. Let C be a set of partial recursive functions and let

$$A = \{ x \in \mathbb{N} \mid \varphi_x \in C \}.$$

The set A is not reducible to its complement \overline{A}.

Proof. Assume that $A \leq \overline{A}$. Then, there is a recursive function f such that

$$x \in A \iff f(x) \in \overline{A}$$

for all $x \in \mathbb{N}$. By the recursion Theorem, there is some n such that

$$\varphi_{f(n)} = \varphi_n.$$

But then,

$$\varphi_n \in C \iff n \in A \iff f(n) \in \overline{A} \iff \varphi_{f(n)} \in \overline{C},$$

contradicting the fact that $\varphi_{f(n)} = \varphi_n$.

The recursion Theorem can also be used to show that functions defined by recursive definitions other than primitive recursion are partial recursive. This is the case for the function known as Ackermann’s function, defined recursively as follows:

$$f(0, y) = y + 1,$$
$$f(x + 1, 0) = f(x, 1),$$
$$f(x + 1, y + 1) = f(x, f(x + 1, y)).$$

It can be shown that this function is not primitive recursive. Intuitively, it outgrows all primitive recursive functions. However, f is recursive, but this is not so obvious. We can use the recursion Theorem to prove that f is recursive. Consider the following definition by cases:

$$g(n, 0, y) = y + 1,$$
$$g(n, x + 1, 0) = \varphi_{\text{univ}}(n, x, 1),$$
$$g(n, x + 1, y + 1) = \varphi_{\text{univ}}(n, x, \varphi_{\text{univ}}(n, x + 1, y)).$$

Clearly, g is partial recursive. By the s-m-n Theorem, there is a recursive function h such that

$$\varphi_{h(n)}(x, y) = g(n, x, y).$$

By the recursion Theorem, there is an m such that

$$\varphi_{h(m)} = \varphi_m.$$
Therefore, the partial recursive function $\varphi_m(x, y)$ satisfies the definition of Ackermann’s function. We showed in a previous Section that $\varphi_m(x, y)$ is a total function, and thus, Ackermann’s function is a total recursive function.

Hence, the recursion Theorem justifies the use of certain recursive definitions. However, note that there are some recursive definitions that are only satisfied by the completely undefined function.

In the next Section, we prove the extended Rice Theorem.

7.6 Extended Rice Theorem

The extended Rice Theorem characterizes the sets of partial recursive functions C such that P_C is r.e. First, we need to discuss a way of indexing the partial recursive functions that have a finite domain. Using the uniform projection function Π, we define the primitive recursive function F such that

$$F(x, y) = \Pi(y + 1, \Pi_1(x) + 1, \Pi_2(x)).$$

We also define the sequence of partial functions P_0, P_1, \ldots as follows:

$$P_x(y) = \begin{cases} F(x, y) - 1 & \text{if } 0 < F(x, y) \text{ and } y < \Pi_1(x) + 1, \\ \text{undefined} & \text{otherwise.} \end{cases}$$

Lemma 7.25. Every P_x is a partial recursive function with finite domain, and every partial recursive function with finite domain is equal to some P_x.

The proof is left as an exercise. The easy part of the extended Rice Theorem is the following lemma. Recall that given any two partial functions $f: A \rightarrow B$ and $g: A \rightarrow B$, we say that g extends f iff $f \subseteq g$, which means that $g(x)$ is defined whenever $f(x)$ is defined, and if so, $g(x) = f(x)$.

Lemma 7.26. Let C be a set of partial recursive functions. If there is an r.e. set A such that, $\varphi_x \in C$ iff there is some $y \in A$ such that φ_x extends P_y, then $P_C = \{ x \mid \varphi_x \in C \}$ is r.e.

Proof. Lemma 7.26 can be restated as

$$P_C = \{ x \mid \exists y \in A, P_y \subseteq \varphi_x \}$$

is r.e. If A is empty, so is P_C, and P_C is r.e. Otherwise, let f be a recursive function such that

$$A = \text{range}(f).$$

Let ψ be the following partial recursive function:

$$\psi(z) = \begin{cases} \Pi_1(z) & \text{if } P_{f(\Pi_2(z))} \subseteq \varphi_{\Pi_1(z)}, \\ \text{undefined} & \text{otherwise.} \end{cases}$$
It is clear that

$$P_C = \text{range}(\psi).$$

To see that ψ is partial recursive, write $\psi(z)$ as follows:

$$\psi(z) = \begin{cases} \Pi_1(z) & \text{if } \forall w \leq \Pi_1(f(\Pi_2(z)))[F(f(\Pi_2(z)), w) > 0] \\
\varphi_{\Pi_1(z)}(w) = F(f(\Pi_2(z)), w) - 1, & \text{otherwise.} \\
\text{undefined} & \text{otherwise.} \end{cases}$$

To establish the converse of Lemma 7.26, we need two Lemmas.

Lemma 7.27. If P_C is r.e. and $\varphi \in C$, then there is some $P_y \subseteq \varphi$ such that $P_y \in C$.

Proof. Assume that P_C is r.e. and that $\varphi \in C$. By an s-m-n construction, there is a recursive function g such that

$$\varphi_g(x)(y) = \begin{cases} \varphi(y) & \text{if } \forall z \leq y[\neg T(x, x, z)], \\
\text{undefined} & \text{if } \exists z \leq y[T(x, x, z)], \end{cases}$$

for all $x, y \in \mathbb{N}$. Observe that if $x \in K$, then $\varphi_g(x)$ is a finite subfunction of φ, and if $x \in \overline{K}$, then $\varphi_g(x) = \varphi$. Assume that no finite subfunction of φ is in C. Then,

$$x \in K \iff g(x) \in P_C$$

for all $x \in \mathbb{N}$, that is, $\overline{K} \leq P_C$. Since P_C is r.e., \overline{K} would also be r.e., a contradiction.

As a corollary of Lemma 7.27, we note that TOTAL is not r.e.

Lemma 7.28. If P_C is r.e., $\varphi \in C$, and $\varphi \subseteq \psi$, where ψ is a partial recursive function, then $\psi \in C$.

Proof. Assume that P_C is r.e. We claim that there is a recursive function h such that

$$\varphi_h(x)(y) = \begin{cases} \psi(y) & \text{if } x \in K, \\
\varphi(y) & \text{if } x \in \overline{K}, \end{cases}$$

for all $x, y \in \mathbb{N}$. Assume that $\psi \notin C$. Then

$$x \in \overline{K} \iff h(x) \in P_C$$

for all $x \in \mathbb{N}$, that is, $\overline{K} \leq P_C$, a contradiction, since P_C is r.e. Therefore, $\psi \in C$. To find the function h we proceed as follows: Let $\varphi = \varphi_j$ and define Θ such that

$$\Theta(x, y, z) = \begin{cases} \varphi(y) & \text{if } T(j, y, z) \land \neg T(x, y, w), \text{ for } 0 \leq w < z \\
\psi(y) & \text{if } T(x, x, z) \land \neg T(j, y, w), \text{ for } 0 \leq w < z \\
\text{undefined} & \text{otherwise.} \end{cases}$$
Observe that if \(x = y = j \), then \(\Theta(j,j,z) \) is multiply defined, but since \(\psi \) extends \(\varphi \), we get the same value \(\psi(y) = \varphi(y) \), so \(\Theta \) is a well defined partial function. Clearly, for all \((m,n) \in \mathbb{N}^2\), there is at most one \(z \in \mathbb{N} \) so that \(\Theta(x,y,z) \) is defined, so the function \(\sigma \) defined by

\[
\sigma(x,y) = \begin{cases}
 z & \text{if } (x,y,z) \in \text{dom}(\Theta) \\
 \text{undefined} & \text{otherwise}
\end{cases}
\]

is a partial recursive function. Finally, let

\[
\theta(x,y) = \Theta(x,y,\sigma(x,y)),
\]

a partial recursive function. It is easy to check that

\[
\theta(x,y) = \begin{cases}
 \psi(y) & \text{if } x \in K, \\
 \varphi(y) & \text{if } x \in \overline{K},
\end{cases}
\]

for all \(x, y \in \mathbb{N} \). By the s-m-n Theorem, there is a recursive function \(h \) such that

\[
\varphi_{h(x)}(y) = \theta(x,y)
\]

for all \(x, y \in \mathbb{N} \). □

Observe that Lemma 7.28 yields a new proof that \(\overline{\text{TOTAL}} \) is not r.e. Finally, we can prove the extended Rice Theorem.

Theorem 7.29. (Extended Rice Theorem) The set \(P_C \) is r.e. iff there is an r.e. set \(A \) such that

\[
\varphi_x \in C \iff \exists y \in A (P_y \subseteq \varphi_x).
\]

Proof. Let \(P_C = \text{dom}(\varphi_i) \). Using the s-m-n Theorem, there is a recursive function \(k \) such that

\[
\varphi_{k(y)} = P_y
\]

for all \(y \in \mathbb{N} \). Define the r.e. set \(A \) such that

\[
A = \text{dom}(\varphi_i \circ k).
\]

Then,

\[
y \in A \iff \varphi_i(k(y)) \downarrow \iff P_y \in C.
\]

Next, using Lemma 7.27 and Lemma 7.28, it is easy to see that

\[
\varphi_x \in C \iff \exists y \in A (P_y \subseteq \varphi_x).
\]

Indeed, if \(\varphi_x \in C \), by Lemma 7.27, there is a finite subfunction \(P_y \subseteq \varphi_x \) such that \(P_y \in C \), but

\[
P_y \in C \iff y \in A,
\]
as desired. On the other hand, if
\[P_y \subseteq \varphi_x \]
for some \(y \in A \), then
\[P_y \in C, \]
and by Lemma 7.28, since \(\varphi_x \) extends \(P_y \), we get
\[\varphi_x \in C. \]

7.7 Creative and Productive Sets

In this section, we discuss some special sets that have important applications in logic: creative and productive sets. The concepts to be described are illustrated by the following situation. Assume that
\[W_x \subseteq \overline{K} \]
for some \(x \in \mathbb{N} \). We claim that
\[x \in \overline{K} - W_x. \]

Indeed, if \(x \in W_x \), then \(\varphi_x(x) \) is defined, and by definition of \(K \), we get \(x \notin \overline{K} \), a contradiction. Therefore, \(\varphi_x(x) \) must be undefined, that is,
\[x = \overline{K} - W_x. \]

The above situation can be generalized as follows.

Definition 7.9. A set \(A \) is **productive** iff there is a total recursive function \(f \) such that
\[
\text{if } W_x \subseteq A \text{ then } f(x) \in A - W_x
\]
for all \(x \in \mathbb{N} \). The function \(f \) is called the **productive function of** \(A \). A set \(A \) is **creative** if it is r.e. and if its complement \(\overline{A} \) is productive.

As we just showed, \(K \) is creative and \(\overline{K} \) is productive. The following facts are immediate consequences of the definition.

1. A productive set is not r.e.
2. A creative set is not recursive.

Creative and productive sets arise in logic. The set of theorems of a logical theory is often creative. For example, the set of theorems in Peano’s arithmetic is creative. This yields incompleteness results.

Lemma 7.30. If a set \(A \) is productive, then it has an infinite r.e. subset.
7.7. CREATIVE AND PRODUCTIVE SETS

Proof. We first give an informal proof. Let f be the recursive productive function of A. We define a recursive function g as follows: Let x_0 be an index for the empty set, and let

$$g(0) = f(x_0).$$

Assuming that

$$\{g(0), g(1), \ldots, g(y)\}$$

is known, let x_{y+1} be an index for this finite set, and let

$$g(y + 1) = f(x_{y+1}).$$

Since $W_{x_{y+1}} \subseteq A$, we have $f(x_{y+1}) \in A$.

For the formal proof, we use the following facts whose proof is left as an exercise:

1. There is a recursive function u such that
 $$W_{u(x,y)} = W_x \cup W_y.$$

2. There is a recursive function t such that
 $$W_{t(x)} = \{x\}.$$

Letting x_0 be an index for the empty set, we define the function h as follows:

$$h(0) = x_0,$$

$$h(y + 1) = u(t(f(y)), h(y)).$$

We define g such that

$$g = f \circ h.$$

It is easily seen that g does the job. \qed

Another important property of productive sets is the following.

Lemma 7.31. If a set A is productive, then $\overline{K} \leq A$.

Proof. Let f be a productive function for A. Using the s-m-n Theorem, we can find a recursive function h such that

$$W_{h(y,x)} = \begin{cases} \{f(y)\} & \text{if } x \in K, \\ \emptyset & \text{if } x \in \overline{K}. \end{cases}$$

The above can be restated as follows:

$$\varphi_{h(y,x)}(z) = \begin{cases} 1 & \text{if } x \in K \text{ and } z = f(y), \\ \text{undefined} & \text{if } x \in \overline{K}, \end{cases}$$
for all $x, y, z \in \mathbb{N}$. By the third version of the recursion Theorem (Theorem 7.23), there is a recursive function g such that

$$W_{g(x)} = W_{h(g(x), x)}$$

for all $x \in \mathbb{N}$. Let

$$k = f \circ g.$$

We claim that

$$x \in \overline{K} \text{ iff } k(x) \in A$$

for all $x \in \mathbb{N}$. The verification of this fact is left as an exercise. Thus, $\overline{K} \leq A$.

Using Lemma 7.31, the following results can be shown.

Lemma 7.32. The following facts hold.

1. If A is productive and $A \leq B$, then B is productive.
2. A is creative iff A is equivalent to K.
3. A is creative iff A is complete,
Bibliography