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CHAPTER

9 Hidden Markov Models

Her sister was called Tatiana.
For the first time with such a name

the tender pages of a novel,
we’ll whimsically grace.

Pushkin, Eugene Onegin, in the Nabokov translation

Alexander Pushkin’s novel in verse, Eugene Onegin, serialized in the early 19th cen-
tury, tells of the young dandy Onegin, his rejection of the love of young Tatiana, his
duel with his friend Lenski, and his later regret for both mistakes. But the novel is
mainly beloved for its style and structure rather than its plot. Among other inter-
esting structural innovations, the novel is written in a form now known as the One-
gin stanza, iambic tetrameter with an unusual rhyme scheme. These elements have
caused complications and controversy in its translation into other languages. Many
of the translations have been in verse, but Nabokov famously translated it strictly
literally into English prose. The issue of its translation and the tension between
literal and verse translations have inspired much commentary—see, for example,
Hofstadter (1997).

In 1913, A. A. Markov asked a less controversial question about Pushkin’s text:
could we use frequency counts from the text to help compute the probability that the
next letter in sequence would be a vowel? In this chapter we introduce a descendant
of Markov’s model that is a key model for language processing, the hidden Markov
model or HMM.

The HMM is a sequence model. A sequence model or sequence classifier is asequence model

model whose job is to assign a label or class to each unit in a sequence, thus mapping
a sequence of observations to a sequence of labels. An HMM is a probabilistic
sequence model: given a sequence of units (words, letters, morphemes, sentences,
whatever), they compute a probability distribution over possible sequences of labels
and choose the best label sequence.

Sequence labeling tasks come up throughout speech and language processing,
a fact that isn’t too surprising if we consider that language consists of sequences
at many representational levels. These include part-of-speech tagging (Chapter 10)
named entity tagging (Chapter 20), and speech recognition (Chapter 31) among oth-
ers.

In this chapter we present the mathematics of the HMM, beginning with the
Markov chain and then including the main three constituent algorithms: the Viterbi
algorithm, the Forward algorithm, and the Baum-Welch or EM algorithm for unsu-
pervised (or semi-supervised) learning. In the following chapter we’ll see the HMM
applied to the task of part-of-speech tagging.
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9.1 Markov Chains

The hidden Markov model is one of the most important machine learning models
in speech and language processing. To define it properly, we need to first introduce
the Markov chain, sometimes called the observed Markov model. Markov chains
and hidden Markov models are both extensions of the finite automata of Chapter 3.
Recall that a weighted finite automaton is defined by a set of states and a set of
transitions between states, with each arc associated with a weight. A Markov chainMarkov chain

is a special case of a weighted automaton in which weights are probabilities (the
probabilities on all arcs leaving a node must sum to 1) and in which the input se-
quence uniquely determines which states the automaton will go through. Because
it can’t represent inherently ambiguous problems, a Markov chain is only useful for
assigning probabilities to unambiguous sequences.
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Figure 9.1 A Markov chain for weather (a) and one for words (b). A Markov chain is specified by the
structure, the transition between states, and the start and end states.

Figure 9.1a shows a Markov chain for assigning a probability to a sequence of
weather events, for which the vocabulary consists of HOT, COLD, and WARM. Fig-
ure 9.1b shows another simple example of a Markov chain for assigning a probability
to a sequence of words w1...wn. This Markov chain should be familiar; in fact, it
represents a bigram language model. Given the two models in Fig. 9.1, we can as-
sign a probability to any sequence from our vocabulary. We go over how to do this
shortly.

First, let’s be more formal and view a Markov chain as a kind of probabilistic
graphical model: a way of representing probabilistic assumptions in a graph. A
Markov chain is specified by the following components:

Q = q1q2 . . .qN a set of N states
A = a01a02 . . .an1 . . .ann a transition probability matrix A, each ai j rep-

resenting the probability of moving from state i
to state j, s.t.

∑n
j=1 ai j = 1 ∀i

q0,qF a special start state and end (final) state that are
not associated with observations

Figure 9.1 shows that we represent the states (including start and end states) as
nodes in the graph, and the transitions as edges between nodes.

A Markov chain embodies an important assumption about these probabilities. In
a first-order Markov chain, the probability of a particular state depends only on theFirst-order

Markov chain
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previous state:

Markov Assumption: P(qi|q1...qi−1) = P(qi|qi−1) (9.1)

Note that because each ai j expresses the probability p(q j|qi), the laws of prob-
ability require that the values of the outgoing arcs from a given state must sum to
1:

n∑
j=1

ai j = 1 ∀i (9.2)

An alternative representation that is sometimes used for Markov chains doesn’t
rely on a start or end state, instead representing the distribution over initial states and
accepting states explicitly:

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in state i. Some
states j may have π j = 0, meaning that they cannot be initial
states. Also,

∑n
i=1 πi = 1

QA = {qx,qy...} a set QA⊂ Q of legal accepting states

Thus, the probability of state 1 being the first state can be represented either as
a01 or as π1. Note that because each πi expresses the probability p(qi|START ), all
the π probabilities must sum to 1:

n∑
i=1

πi = 1 (9.3)

Before you go on, use the sample probabilities in Fig. 9.2b to compute the prob-
ability of each of the following sequences:

(9.4) hot hot hot hot
(9.5) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. 9.2b?

9.2 The Hidden Markov Model

A Markov chain is useful when we need to compute a probability for a sequence
of events that we can observe in the world. In many cases, however, the events
we are interested in may not be directly observable in the world. For example, in
Chapter 10we’ll introduce the task of part-of-speech tagging, assigning tags like
Noun and Verb to words.

we didn’t observe part-of-speech tags in the world; we saw words and had to in-
fer the correct tags from the word sequence. We call the part-of-speech tags hidden
because they are not observed. The same architecture comes up in speech recogni-
tion; in that case we see acoustic events in the world and have to infer the presence
of “hidden” words that are the underlying causal source of the acoustics. A hidden
Markov model (HMM) allows us to talk about both observed events (like wordsHidden

Markov model
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(a) (b)

Figure 9.2 Another representation of the same Markov chain for weather shown in Fig. 9.1.
Instead of using a special start state with a01 transition probabilities, we use the π vector,
which represents the distribution over starting state probabilities. The figure in (b) shows
sample probabilities.

that we see in the input) and hidden events (like part-of-speech tags) that we think
of as causal factors in our probabilistic model.

To exemplify these models, we’ll use a task conceived of by Jason Eisner (2002).
Imagine that you are a climatologist in the year 2799 studying the history of global
warming. You cannot find any records of the weather in Baltimore, Maryland, for
the summer of 2007, but you do find Jason Eisner’s diary, which lists how many ice
creams Jason ate every day that summer. Our goal is to use these observations to
estimate the temperature every day. We’ll simplify this weather task by assuming
there are only two kinds of days: cold (C) and hot (H). So the Eisner task is as
follows:

Given a sequence of observations O, each observation an integer cor-
responding to the number of ice creams eaten on a given day, figure
out the correct ‘hidden’ sequence Q of weather states (H or C) which
caused Jason to eat the ice cream.

Let’s begin with a formal definition of a hidden Markov model, focusing on how
it differs from a Markov chain. An HMM is specified by the following components:

Q = q1q2 . . .qN a set of N states
A = a11a12 . . .an1 . . .ann a transition probability matrix A, each ai j rep-

resenting the probability of moving from state i
to state j, s.t.

∑n
j=1 ai j = 1 ∀i

O = o1o2 . . .oT a sequence of T observations, each one drawn
from a vocabulary V = v1,v2, ...,vV

B = bi(ot) a sequence of observation likelihoods, also
called emission probabilities, each expressing
the probability of an observation ot being gen-
erated from a state i

q0,qF a special start state and end (final) state that are
not associated with observations, together with
transition probabilities a01a02 . . .a0n out of the
start state and a1F a2F . . .anF into the end state

As we noted for Markov chains, an alternative representation that is sometimes
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used for HMMs doesn’t rely on a start or end state, instead representing the distri-
bution over initial and accepting states explicitly. We don’t use the π notation in this
textbook, but you may see it in the literature1:

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in state i. Some
states j may have π j = 0, meaning that they cannot be initial
states. Also,

∑n
i=1 πi = 1

QA = {qx,qy...} a set QA⊂ Q of legal accepting states

A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(qi|q1...qi−1) = P(qi|qi−1) (9.6)

Second, the probability of an output observation oi depends only on the state that
produced the observation qi and not on any other states or any other observations:

Output Independence: P(oi|q1 . . .qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT ) = P(oi|qi) (9.7)

Figure 9.3 shows a sample HMM for the ice cream task. The two hidden states
(H and C) correspond to hot and cold weather, and the observations (drawn from the
alphabet O = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

start0

COLD2HOT1

B2
P(1 | COLD)          .5
P(2 | COLD)    =    .4
P(3 | COLD)          .1

.2

.8

.5.6
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.3

P(1 | HOT)          .2
P(2 | HOT)    =    .4
P(3 | HOT)          .4

B1

end3

.1

.1

Figure 9.3 A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

Notice that in the HMM in Fig. 9.3, there is a (non-zero) probability of transition-
ing between any two states. Such an HMM is called a fully connected or ergodic
HMM. Sometimes, however, we have HMMs in which many of the transitions be-Ergodic HMM

tween states have zero probability. For example, in left-to-right (also called Bakis)Bakis network

HMMs, the state transitions proceed from left to right, as shown in Fig. 9.4. In a
Bakis HMM, no transitions go from a higher-numbered state to a lower-numbered
state (or, more accurately, any transitions from a higher-numbered state to a lower-
numbered state have zero probability). Bakis HMMs are generally used to model
temporal processes like speech; we show more of them in Chapter 31.

1 It is also possible to have HMMs without final states or explicit accepting states. Such HMMs define a
set of probability distributions, one distribution per observation sequence length, just as language models
do when they don’t have explicit end symbols. This isn’t a problem since for most tasks in speech and
language processing the lengths of the observations are fixed.
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Figure 9.4 Two 4-state hidden Markov models; a left-to-right (Bakis) HMM on the left and
a fully connected (ergodic) HMM on the right. In the Bakis model, all transitions not shown
have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for
computing things with them. An influential tutorial by Rabiner (1989), based on
tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov
models should be characterized by three fundamental problems:

Problem 1 (Likelihood): Given an HMM λ = (A,B) and an observation se-
quence O, determine the likelihood P(O|λ ).

Problem 2 (Decoding): Given an observation sequence O and an HMM λ =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 10. In the next three sec-
tions we introduce all three problems more formally.

9.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence.
For example, given the ice-cream eating HMM in Fig. 9.3, what is the probability of
the sequence 3 1 3? More formally:

Computing Likelihood: Given an HMM λ = (A,B) and an observa-
tion sequence O, determine the likelihood P(O|λ ).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 1 3 just by following the states labeled
3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model,
things are not so simple. We want to determine the probability of an ice-cream
observation sequence like 3 1 3, but we don’t know what the hidden state sequence
is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather
and wanted to predict how much ice cream Jason would eat. This is a useful part
of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can
easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state
produces only a single observation. Thus, the sequence of hidden states and the
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sequence of observations have the same length.2

Given this one-to-one mapping and the Markov assumptions expressed in Eq. 9.6,
for a particular hidden state sequence Q = q0,q1,q2, ...,qT and an observation se-
quence O = o1,o2, ...,oT , the likelihood of the observation sequence is

P(O|Q) =

T∏
i=1

P(oi|qi) (9.8)

The computation of the forward probability for our ice-cream observation 3 1 3
from one possible hidden state sequence hot hot cold is shown in Eq. 9.9. Figure 9.5
shows a graphic representation of this computation.

P(3 1 3|hot hot cold) = P(3|hot)×P(1|hot)×P(3|cold) (9.9)

coldhot

3

.4

hot

1 3

.2 .1

Figure 9.5 The computation of the observation likelihood for the ice-cream events 3 1 3
given the hidden state sequence hot hot cold.

But of course, we don’t actually know what the hidden state (weather) sequence
was. We’ll need to compute the probability of ice-cream events 3 1 3 instead by
summing over all possible weather sequences, weighted by their probability. First,
let’s compute the joint probability of being in a particular weather sequence Q and
generating a particular sequence O of ice-cream events. In general, this is

P(O,Q) = P(O|Q)×P(Q) =

T∏
i=1

P(oi|qi)×
T∏

i=1

P(qi|qi−1) (9.10)

The computation of the joint probability of our ice-cream observation 3 1 3 and
one possible hidden state sequence hot hot cold is shown in Eq. 9.11. Figure 9.6
shows a graphic representation of this computation.

P(3 1 3,hot hot cold) = P(hot|start)×P(hot|hot)×P(cold|hot)
×P(3|hot)×P(1|hot)×P(3|cold) (9.11)

Now that we know how to compute the joint probability of the observations
with a particular hidden state sequence, we can compute the total probability of the
observations just by summing over all possible hidden state sequences:

P(O) =
∑

Q

P(O,Q) =
∑

Q

P(O|Q)P(Q) (9.12)

2 In a variant of HMMs called segmental HMMs (in speech recognition) or semi-HMMs (in text pro-
cessing) this one-to-one mapping between the length of the hidden state sequence and the length of the
observation sequence does not hold.
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Figure 9.6 The computation of the joint probability of the ice-cream events 3 1 3 and the
hidden state sequence hot hot cold.

For our particular case, we would sum over the eight 3-event sequences cold cold
cold, cold cold hot, that is,

P(3 1 3) = P(3 1 3,cold cold cold)+P(3 1 3,cold cold hot)+P(3 1 3,hot hot cold)+ ...

For an HMM with N hidden states and an observation sequence of T observa-
tions, there are NT possible hidden sequences. For real tasks, where N and T are
both large, NT is a very large number, so we cannot compute the total observation
likelihood by computing a separate observation likelihood for each hidden state se-
quence and then summing them.

Instead of using such an extremely exponential algorithm, we use an efficient
O(N2T ) algorithm called the forward algorithm. The forward algorithm is a kindForward

algorithm
of dynamic programming algorithm, that is, an algorithm that uses a table to store
intermediate values as it builds up the probability of the observation sequence. The
forward algorithm computes the observation probability by summing over the prob-
abilities of all possible hidden state paths that could generate the observation se-
quence, but it does so efficiently by implicitly folding each of these paths into a
single forward trellis.

Figure 9.7 shows an example of the forward trellis for computing the likelihood
of 3 1 3 given the hidden state sequence hot hot cold.

Each cell of the forward algorithm trellis αt( j) represents the probability of be-
ing in state j after seeing the first t observations, given the automaton λ . The value
of each cell αt( j) is computed by summing over the probabilities of every path that
could lead us to this cell. Formally, each cell expresses the following probability:

αt( j) = P(o1,o2 . . .ot ,qt = j|λ ) (9.13)

Here, qt = j means “the tth state in the sequence of states is state j”. We compute
this probability αt( j) by summing over the extensions of all the paths that lead to
the current cell. For a given state q j at time t, the value αt( j) is computed as

αt( j) =
N∑

i=1

αt−1(i)ai jb j(ot) (9.14)

The three factors that are multiplied in Eq. 9.14 in extending the previous paths
to compute the forward probability at time t are

αt−1(i) the previous forward path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j
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Figure 9.7 The forward trellis for computing the total observation likelihood for the ice-cream events 3 1
3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions.
The figure shows the computation of αt( j) for two states at two time steps. The computation in each cell
follows Eq. 9.14: αt( j) =

∑N
i=1 αt−1(i)ai jb j(ot). The resulting probability expressed in each cell is Eq. 9.13:

αt( j) = P(o1,o2 . . .ot ,qt = j|λ ).

Consider the computation in Fig. 9.7 of α2(2), the forward probability of being at
time step 2 in state 2 having generated the partial observation 3 1. We compute by ex-
tending the α probabilities from time step 1, via two paths, each extension consisting
of the three factors above: α1(1)×P(H|H)×P(1|H) and α1(2)×P(H|C)×P(1|H).

Figure 9.8 shows another visualization of this induction step for computing the
value in one new cell of the trellis.

We give two formal definitions of the forward algorithm: the pseudocode in
Fig. 9.9 and a statement of the definitional recursion here.

1. Initialization:

α1( j) = a0 jb j(o1) 1≤ j ≤ N (9.15)

2. Recursion (since states 0 and F are non-emitting):

αt( j) =
N∑

i=1

αt−1(i)ai jb j(ot); 1≤ j ≤ N,1 < t ≤ T (9.16)

3. Termination:

P(O|λ ) = αT (qF) =

N∑
i=1

αT (i)aiF (9.17)
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Figure 9.8 Visualizing the computation of a single element αt(i) in the trellis by summing
all the previous values αt−1, weighted by their transition probabilities a, and multiplying by
the observation probability bi(ot+1). For many applications of HMMs, many of the transition
probabilities are 0, so not all previous states will contribute to the forward probability of the
current state. Hidden states are in circles, observations in squares. Shaded nodes are included
in the probability computation for αt(i). Start and end states are not shown.

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]
for each state s from 1 to N do ; initialization step

forward[s,1]←a0,s ∗ bs(o1)
for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

forward[s, t]←
N∑

s′=1

forward[s′, t−1] ∗ as′,s ∗ bs(ot)

forward[qF ,T]←
N∑

s=1

forward[s,T ] ∗ as,qF ; termination step

return forward[qF ,T ]

Figure 9.9 The forward algorithm. We’ve used the notation forward[s, t] to represent
αt(s).

9.4 Decoding: The Viterbi Algorithm

For any model, such as an HMM, that contains hidden variables, the task of deter-
mining which sequence of variables is the underlying source of some sequence of
observations is called the decoding task. In the ice-cream domain, given a sequenceDecoding

of ice-cream observations 3 1 3 and an HMM, the task of the decoder is to find theDecoder

best hidden weather sequence (H H H). More formally,

Decoding: Given as input an HMM λ = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .
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We might propose to find the best sequence as follows: For each possible hid-
den state sequence (HHH, HHC, HCH, etc.), we could run the forward algorithm
and compute the likelihood of the observation sequence given that hidden state se-
quence. Then we could choose the hidden state sequence with the maximum obser-
vation likelihood. It should be clear from the previous section that we cannot do this
because there are an exponentially large number of state sequences.

Instead, the most common decoding algorithms for HMMs is the Viterbi algo-
rithm. Like the forward algorithm, Viterbi is a kind of dynamic programmingViterbi

algorithm
that makes uses of a dynamic programming trellis. Viterbi also strongly resembles
another dynamic programming variant, the minimum edit distance algorithm of
Chapter 3.
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v1(1) = .02

v2(2)= max(.32*.12, .02*.08) = .038

v2(1) = max(.32*.15, .02*.25) = .048
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t

C

H

end end endqF

q2

q1

q0

o1 o2 o3

3 1 3

Figure 9.10 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation of vt( j) for two states at two time steps. The computation in each
cell follows Eq. 9.19: vt( j) = max1≤i≤N−1 vt−1(i) ai j b j(ot). The resulting probability expressed in each cell is
Eq. 9.18: vt( j) = P(q0,q1, . . . ,qt−1,o1,o2, . . . ,ot ,qt = j|λ ).

Figure 9.10 shows an example of the Viterbi trellis for computing the best hid-
den state sequence for the observation sequence 3 1 3. The idea is to process the
observation sequence left to right, filling out the trellis. Each cell of the trellis, vt( j),
represents the probability that the HMM is in state j after seeing the first t obser-
vations and passing through the most probable state sequence q0,q1, ...,qt−1, given
the automaton λ . The value of each cell vt( j) is computed by recursively taking the
most probable path that could lead us to this cell. Formally, each cell expresses the
probability

vt( j) = max
q0,q1,...,qt−1

P(q0,q1...qt−1,o1,o2 . . .ot ,qt = j|λ ) (9.18)
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Note that we represent the most probable path by taking the maximum over all
possible previous state sequences max

q0,q1,...,qt−1
. Like other dynamic programming al-

gorithms, Viterbi fills each cell recursively. Given that we had already computed the
probability of being in every state at time t−1, we compute the Viterbi probability
by taking the most probable of the extensions of the paths that lead to the current
cell. For a given state q j at time t, the value vt( j) is computed as

vt( j) =
N

max
i=1

vt−1(i) ai j b j(ot) (9.19)

The three factors that are multiplied in Eq. 9.19 for extending the previous paths
to compute the Viterbi probability at time t are

vt−1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

function VITERBI(observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi[N+2,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1]←a0,s ∗ bs(o1)
backpointer[s,1]←0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t]← N
max

s′=1
viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

backpointer[s,t]← N
argmax

s′=1

viterbi[s′, t−1] ∗ as′,s

viterbi[qF ,T ]← N
max

s=1
viterbi[s,T ] ∗ as,qF ; termination step

backpointer[qF ,T ]← N
argmax

s=1

viterbi[s,T ] ∗ as,qF ; termination step

return the backtrace path by following backpointers to states back in
time from backpointer[qF ,T ]

Figure 9.11 Viterbi algorithm for finding optimal sequence of hidden states. Given an
observation sequence and an HMM λ = (A,B), the algorithm returns the state path through
the HMM that assigns maximum likelihood to the observation sequence. Note that states 0
and qF are non-emitting.

Figure 9.11 shows pseudocode for the Viterbi algorithm. Note that the Viterbi
algorithm is identical to the forward algorithm except that it takes the max over the
previous path probabilities whereas the forward algorithm takes the sum. Note also
that the Viterbi algorithm has one component that the forward algorithm doesn’t
have: backpointers. The reason is that while the forward algorithm needs to pro-
duce an observation likelihood, the Viterbi algorithm must produce a probability and
also the most likely state sequence. We compute this best state sequence by keeping
track of the path of hidden states that led to each state, as suggested in Fig. 9.12, and
then at the end backtracing the best path to the beginning (the Viterbi backtrace).Viterbi

backtrace
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Figure 9.12 The Viterbi backtrace. As we extend each path to a new state account for the next observation,
we keep a backpointer (shown with broken lines) to the best path that led us to this state.

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

v1( j) = a0 jb j(o1) 1≤ j ≤ N (9.20)

bt1( j) = 0 (9.21)

2. Recursion (recall that states 0 and qF are non-emitting):

vt( j) =
N

max
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T (9.22)

btt( j) =
N

argmax
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T (9.23)

3. Termination:

The best score: P∗= vT (qF) =
N

max
i=1

vT (i)∗aiF (9.24)

The start of backtrace: qT∗= btT (qF) =
N

argmax
i=1

vT (i)∗aiF (9.25)

9.5 HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learning the parameters of an HMM, that
is, the A and B matrices. Formally,
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Learning: Given an observation sequence O and the set of possible
states in the HMM, learn the HMM parameters A and B.

The input to such a learning algorithm would be an unlabeled sequence of ob-
servations O and a vocabulary of potential hidden states Q. Thus, for the ice cream
task, we would start with a sequence of observations O = {1,3,2, ...,} and the set of
hidden states H and C. For the part-of-speech tagging task we introduce in the next
chapter, we would start with a sequence of word observations O = {w1,w2,w3 . . .}
and a set of hidden states corresponding to parts of speech Noun, Verb, Adjective,...
and so on.

The standard algorithm for HMM training is the forward-backward, or Baum-Forward-
backward

Welch algorithm (Baum, 1972), a special case of the Expectation-MaximizationBaum-Welch

or EM algorithm (Dempster et al., 1977). The algorithm will let us train both theEM

transition probabilities A and the emission probabilities B of the HMM. Crucially,
EM is an iterative algorithm. It works by computing an initial estimate for the
probabilities, then using those estimates to computing a better estimate, and so on,
iteratively improving the probabilities that it learns.

Let us begin by considering the much simpler case of training a Markov chain
rather than a hidden Markov model. Since the states in a Markov chain are ob-
served, we can run the model on the observation sequence and directly see which
path we took through the model and which state generated each observation symbol.
A Markov chain of course has no emission probabilities B (alternatively, we could
view a Markov chain as a degenerate hidden Markov model where all the b proba-
bilities are 1.0 for the observed symbol and 0 for all other symbols). Thus, the only
probabilities we need to train are the transition probability matrix A.

We get the maximum likelihood estimate of the probability ai j of a particular
transition between states i and j by counting the number of times the transition was
taken, which we could call C(i→ j), and then normalizing by the total count of all
times we took any transition from state i:

ai j =
C(i→ j)∑

q∈Q C(i→ q)
(9.26)

We can directly compute this probability in a Markov chain because we know
which states we were in. For an HMM, we cannot compute these counts directly
from an observation sequence since we don’t know which path of states was taken
through the machine for a given input. The Baum-Welch algorithm uses two neat
intuitions to solve this problem. The first idea is to iteratively estimate the counts.
We will start with an estimate for the transition and observation probabilities and
then use these estimated probabilities to derive better and better probabilities. The
second idea is that we get our estimated probabilities by computing the forward
probability for an observation and then dividing that probability mass among all the
different paths that contributed to this forward probability.

To understand the algorithm, we need to define a useful probability related to the
forward probability and called the backward probability.Backward

probability
The backward probability β is the probability of seeing the observations from

time t +1 to the end, given that we are in state i at time t (and given the automaton
λ ):

βt(i) = P(ot+1,ot+2 . . .oT |qt = i,λ ) (9.27)

It is computed inductively in a similar manner to the forward algorithm.
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1. Initialization:

βT (i) = aiF , 1≤ i≤ N (9.28)

2. Recursion (again since states 0 and qF are non-emitting):

βt(i) =
N∑

j=1

ai j b j(ot+1) βt+1( j), 1≤ i≤ N,1≤ t < T (9.29)

3. Termination:

P(O|λ ) = αT (qF) = β1(q0) =

N∑
j=1

a0 j b j(o1) β1( j) (9.30)

Figure 9.13 illustrates the backward induction step.

ot+1
ot

ai1

ai2

aiN

ai3

b1(ot+1)

βt(i)= Σj βt+1(j) aij  bj(ot+1) 

q1

q2

q3

qN

q1

qi

q2

q1

q2

ot-1

q3

qN

βt+1(N)

βt+1(3)

βt+1(2)

βt+1(1)

b2(ot+1)
b3(ot+1)

bN(ot+1)

Figure 9.13 The computation of βt(i) by summing all the successive values βt+1( j)
weighted by their transition probabilities ai j and their observation probabilities b j(ot+1). Start
and end states not shown.

We are now ready to understand how the forward and backward probabilities can
help us compute the transition probability ai j and observation probability bi(ot) from
an observation sequence, even though the actual path taken through the machine is
hidden.

Let’s begin by seeing how to estimate âi j by a variant of Eq. 9.26:

âi j =
expected number of transitions from state i to state j

expected number of transitions from state i
(9.31)

How do we compute the numerator? Here’s the intuition. Assume we had some
estimate of the probability that a given transition i→ j was taken at a particular point
in time t in the observation sequence. If we knew this probability for each particular
time t, we could sum over all times t to estimate the total count for the transition
i→ j.

More formally, let’s define the probability ξt as the probability of being in state
i at time t and state j at time t +1, given the observation sequence and of course the
model:
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ξt(i, j) = P(qt = i,qt+1 = j|O,λ ) (9.32)

To compute ξt , we first compute a probability which is similar to ξt , but differs
in including the probability of the observation; note the different conditioning of O
from Eq. 9.32:

not-quite-ξt(i, j) = P(qt = i,qt+1 = j,O|λ ) (9.33)

ot+2ot+1

αt(i)

ot-1 ot

aijbj(ot+1) 

si sj

βt+1(j)

Figure 9.14 Computation of the joint probability of being in state i at time t and state j at
time t + 1. The figure shows the various probabilities that need to be combined to produce
P(qt = i,qt+1 = j,O|λ ): the α and β probabilities, the transition probability ai j and the
observation probability b j(ot+1). After Rabiner (1989) which is c©1989 IEEE.

Figure 9.14 shows the various probabilities that go into computing not-quite-ξt :
the transition probability for the arc in question, the α probability before the arc, the
β probability after the arc, and the observation probability for the symbol just after
the arc. These four are multiplied together to produce not-quite-ξt as follows:

not-quite-ξt(i, j) = αt(i)ai jb j(ot+1)βt+1( j) (9.34)

To compute ξt from not-quite-ξt , we follow the laws of probability and divide
by P(O|λ ), since

P(X |Y,Z) = P(X ,Y |Z)
P(Y |Z)

(9.35)

The probability of the observation given the model is simply the forward proba-
bility of the whole utterance (or alternatively, the backward probability of the whole
utterance), which can thus be computed in a number of ways:

P(O|λ ) = αT (qF) = βT (q0) =

N∑
j=1

αt( j)βt( j) (9.36)

So, the final equation for ξt is

ξt(i, j) =
αt(i)ai jb j(ot+1)βt+1( j)

αT (qF)
(9.37)
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The expected number of transitions from state i to state j is then the sum over
all t of ξ . For our estimate of ai j in Eq. 9.31, we just need one more thing: the total
expected number of transitions from state i. We can get this by summing over all
transitions out of state i. Here’s the final formula for âi j:

âi j =

∑T−1
t=1 ξt(i, j)∑T−1

t=1
∑N

k=1 ξt(i,k)
(9.38)

We also need a formula for recomputing the observation probability. This is the
probability of a given symbol vk from the observation vocabulary V , given a state j:
b̂ j(vk). We will do this by trying to compute

b̂ j(vk) =
expected number of times in state j and observing symbol vk

expected number of times in state j
(9.39)

For this, we will need to know the probability of being in state j at time t, which
we will call γt( j):

γt( j) = P(qt = j|O,λ ) (9.40)

Once again, we will compute this by including the observation sequence in the
probability:

γt( j) =
P(qt = j,O|λ )

P(O|λ )
(9.41)

ot+1

αt(j)

ot-1 ot

sj

βt(j)

Figure 9.15 The computation of γt( j), the probability of being in state j at time t. Note
that γ is really a degenerate case of ξ and hence this figure is like a version of Fig. 9.14 with
state i collapsed with state j. After Rabiner (1989) which is c©1989 IEEE.

As Fig. 9.15 shows, the numerator of Eq. 9.41 is just the product of the forward
probability and the backward probability:

γt( j) =
αt( j)βt( j)

P(O|λ )
(9.42)

We are ready to compute b. For the numerator, we sum γt( j) for all time steps
t in which the observation ot is the symbol vk that we are interested in. For the
denominator, we sum γt( j) over all time steps t. The result is the percentage of the
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times that we were in state j and saw symbol vk (the notation
∑T

t=1s.t.Ot=vk
means

“sum over all t for which the observation at time t was vk”):

b̂ j(vk) =

∑T
t=1s.t.Ot=vk

γt( j)∑T
t=1 γt( j)

(9.43)

We now have ways in Eq. 9.38 and Eq. 9.43 to re-estimate the transition A and
observation B probabilities from an observation sequence O, assuming that we al-
ready have a previous estimate of A and B.

These re-estimations form the core of the iterative forward-backward algorithm.
The forward-backward algorithm (Fig. 9.16) starts with some initial estimate of the
HMM parameters λ = (A,B). We then iteratively run two steps. Like other cases of
the EM (expectation-maximization) algorithm, the forward-backward algorithm has
two steps: the expectation step, or E-step, and the maximization step, or M-step.E-step

M-step In the E-step, we compute the expected state occupancy count γ and the expected
state transition count ξ from the earlier A and B probabilities. In the M-step, we use
γ and ξ to recompute new A and B probabilities.

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A and B
iterate until convergence

E-step

γt( j) =
αt( j)βt( j)

αT (qF )
∀ t and j

ξt(i, j) =
αt(i)ai jb j(ot+1)βt+1( j)

αT (qF )
∀ t, i, and j

M-step

âi j =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

N∑
k=1

ξt(i,k)

b̂ j(vk) =

T∑
t=1s.t. Ot=vk

γt( j)

T∑
t=1

γt( j)

return A, B

Figure 9.16 The forward-backward algorithm.

Although in principle the forward-backward algorithm can do completely unsu-
pervised learning of the A and B parameters, in practice the initial conditions are
very important. For this reason the algorithm is often given extra information. For
example, for speech recognition, in practice the HMM structure is often set by hand,
and only the emission (B) and (non-zero) A transition probabilities are trained from a
set of observation sequences O. Section ?? in Chapter 31 also discusses how initial A
and B estimates are derived in speech recognition. We also show that for speech the
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forward-backward algorithm can be extended to inputs that are non-discrete (“con-
tinuous observation densities”).

9.6 Summary

This chapter introduced the hidden Markov model for probabilistic sequence clas-
sification.

• Hidden Markov models (HMMs) are a way of relating a sequence of obser-
vations to a sequence of hidden classes or hidden states that explain the
observations.

• The process of discovering the sequence of hidden states, given the sequence
of observations, is known as decoding or inference. The Viterbi algorithm is
commonly used for decoding.

• The parameters of an HMM are the A transition probability matrix and the B
observation likelihood matrix. Both can be trained with the Baum-Welch or
forward-backward algorithm.

Bibliographical and Historical Notes
As we discussed at the end of Chapter 4, Markov chains were first used by Markov
(1913, 2006), to predict whether an upcoming letter in Pushkin’s Eugene Onegin
would be a vowel or a consonant.

The hidden Markov model was developed by Baum and colleagues at the Insti-
tute for Defense Analyses in Princeton (Baum and Petrie, 1966; Baum and Eagon,
1967).

The Viterbi algorithm was first applied to speech and language processing in
the context of speech recognition by Vintsyuk (1968) but has what Kruskal (1983)
calls a “remarkable history of multiple independent discovery and publication”.3

Kruskal and others give at least the following independently-discovered variants of
the algorithm published in four separate fields:

Citation Field
Viterbi (1967) information theory
Vintsyuk (1968) speech processing
Needleman and Wunsch (1970) molecular biology
Sakoe and Chiba (1971) speech processing
Sankoff (1972) molecular biology
Reichert et al. (1973) molecular biology
Wagner and Fischer (1974) computer science

The use of the term Viterbi is now standard for the application of dynamic pro-
gramming to any kind of probabilistic maximization problem in speech and language
processing. For non-probabilistic problems (such as for minimum edit distance), the
plain term dynamic programming is often used. Forney, Jr. (1973) wrote an early
survey paper that explores the origin of the Viterbi algorithm in the context of infor-
mation and communications theory.

3 Seven is pretty remarkable, but see page ?? for a discussion of the prevalence of multiple discovery.
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Our presentation of the idea that hidden Markov models should be characterized
by three fundamental problems was modeled after an influential tutorial by Rabiner
(1989), which was itself based on tutorials by Jack Ferguson of IDA in the 1960s.
Jelinek (1997) and Rabiner and Juang (1993) give very complete descriptions of the
forward-backward algorithm as applied to the speech recognition problem. Jelinek
(1997) also shows the relationship between forward-backward and EM. See also the
description of HMMs in other textbooks such as Manning and Schütze (1999).

Exercises
9.1 Implement the Forward algorithm and run it with the HMM in Fig. 9.3 to com-

pute the probability of the observation sequences 331122313 and 331123312.
Which is more likely?

9.2 Implement the Viterbi algorithm and run it with the HMM in Fig. 9.3 to com-
pute the most likely weather sequences for each of the two observation se-
quences above, 331122313 and 331123312.

9.3 Extend the HMM tagger you built in Exercise 10.?? by adding the ability to
make use of some unlabeled data in addition to your labeled training corpus.
First acquire a large unlabeled (i.e., no part-of-speech tags) corpus. Next, im-
plement the forward-backward training algorithm. Now start with the HMM
parameters you trained on the training corpus in Exercise 10.??; call this
model M0. Run the forward-backward algorithm with these HMM parame-
ters to label the unsupervised corpus. Now you have a new model M1. Test
the performance of M1 on some held-out labeled data.

9.4 As a generalization of the previous homework, implement Jason Eisner’s HMM
tagging homework available from his webpage. His homework includes a
corpus of weather and ice-cream observations, a corpus of English part-of-
speech tags, and a very hand spreadsheet with exact numbers for the forward-
backward algorithm that you can compare against.
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