CIS192 Python Programming
Supervised Learning

Harry Smith
University of Pennsylvania

October 25, 2017
Outline

1. ML: Concepts
2. ML: Classification
3. ML: Regression
4. ML: General Tips
Supervised vs. Unsupervised Learning

- **Unsupervised Learning** has no knowledge of the labels, and generally seeks to cluster related points.
 - Eg. K-Means

- Supervised Learning has *training data* with labels attached. We want to extrapolate from that data to new data.
 - K-NN, Decision Tree, NB, Logistic Regression, SVM
 - Linear Regression
Suppose we have a stack of photos, and we know for each one whether it’s a coat or a bar.

Can we use this information to decide whether future photographs are coats or bars?

▷ (yes)
Today’s Goals and Motivation

NHL Logo
Variance vs. Bias

- **Bias** is error that emerges from incorrect assumptions in the learning model.
- **Variance** is error that emerges from oversensitivity to small fluctuations in the training data.
- The more important the weight of a single datapoint, the higher the variance.
Variance and Bias, Graphically

Low Variance

High Variance

Low Bias

High Bias
Classification vs. Regression

- **Classification** assigns each data point to one of \(n \) distinct groups.
- **Regression** assigns each data point a real number.
 - Eg. a probability in \([0, 1]\) or an estimated height in \([0, 8]\) feet.
Precision vs. Recall

- *Precision* is the ability of the classifier to not label a negative sample as positive.
- *Recall* is the ability of a classifier to find all positive samples.
K Nearest Neighbors

- `neighbors.KNeighborsClassifier`
 - Parameter: `n_neighbors` - specifies the number of neighbors \(k \).

What it sounds like - looks for the \(k \) points most similar to a given point in the data and returns the most common label of those points.

- High variance when \(k = 1 \)
- High bias when \(k \) is proportional to the size of the dataset.
- Slow: Compares points to every point in the training data.

![Diagram of K Nearest Neighbors](image-url)
Decision Trees

- `tree.DecisionTreeClassifier`
 - Parameter: `max_depth` - specifies the maximum tree depth (we can alternatively specify `max_leaf_nodes`).
- Each node splits the data according to a specific feature.
- Greater tree height -> more variance.
- Smaller tree height -> more bias.
Naive Bayes

- **eg.** naive_bayes.GaussianNB, naive_bayes.MultinomialNB
- A powerful and efficient algorithm that assumes *independence* between features.
- User specifies the assumed underlying distribution - Gaussian, Bernoulli etc.
- Multinomial NB is used frequently in text classification (hint, hint)
- Classifies points using Maximum Likelihood Estimation (MLE) of $P(x, y)$ via $P(x|y)$ and $P(y)$.

Harry Smith (University of Pennsylvania)
CIS 192 Lecture 9
October 25, 2017 13 / 19
Logistic Regression

(Note: Generally used for classification, not regression, despite its name.)

- **eg.** `linear_model.LogisticRegression`
 - Parameter: `solver` - Specifies the mathematical method used to estimate MLE

- Tries to directly calculate \(P(y \mid x) \)

- Minimizes a cost function across all possible choices (e.g. what’s the choice that I can make for this point that’s the least likely to be wrong?)

- Primarily for binary decision problems but can also be used in stages for nary classification.
Support Vector Machines

- eg. `svm.SVC`, `svm.LinearSVC`
 - Parameter: `kernel` - a function that specifies the form of the separation

- Carves up the space using *support vectors* lines of maximum thickness that divide the space into two (or n).

- Versatile, memory efficient, and excel in high-dimensional spaces.

- Struggle for high feature to dimension ratios, relatively opaque (lack clear probability functions).
Outline

1. ML: Concepts
2. ML: Classification
3. ML: Regression
4. ML: General Tips
Linear Regression

- eg. `linear_model.LinearRegression`
- Assumes the output is a linear function of the input.
 - $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$ for some θs.
 - Note that we can handle polynomials simply by adding x_i^2, x_i^3 etc. to the prediction data.
- We penalize functions by their euclidean (L_2) distance from the line to the point.
Outline

1. ML: Concepts
2. ML: Classification
3. ML: Regression
4. ML: General Tips
Tips and Tricks

- Visualize the data before running an algorithm on it - what kind of approach is appropriate to the problem.
- Partition your data (randomly!) into 3 sets of data:
 - Training (80%): The core training data.
 - Cross Validation (10%): Data left out, test the model with different parameters on it.
 - Test Data (10%): Also withheld, used to determine the ultimate accuracy of the model.
- You’ll generally find that your model has either too much bias or too much variance - try to find a sweet spot.
- Avoid overfitting - this is generally the point where accuracy on your training set is substantially better than on your cross-validation set.
- Don’t become too attached to one algorithm - no amount of tweaking will make the wrong algorithm into the right one.