CIS192 Python Programming
Machine Learning in Python

Robert Rand

University of Pennsylvania

October 22, 2015
Outline

1. Machine Learning Software
 - Numpy and Scipy
 - Matplotlib
 - Scikit Learn

2. Unsupervised Learning
 - K-Means

3. Supervised Learning

4. General Tips
Recommended:

```
pip install -U numpy scipy ipython scikit-learn
```

You should install pip first if you don’t have it.

Packages like Anaconda and Canopy also include the relevant libraries.
Numpy and Scipy

- Libraries for sophisticated mathematics and mathematical computing in Python.
- Include libraries for linear algebra.
- Optimized for efficient machine learning.
Matplotlib

- Library for plotting datasets.
- Use it to look at data before attempting machine learning techniques.
- Interfaces well with the IPython (an alternative shell for Python development).
- Should come bundled with scikit-learn, otherwise add `matplotlib` to the `pip` command on slide 1.
Scikit Learn

- A machine learning library for Python.
- Uses numpy and scipy.
- Comes with a broad array of built in machine learning algorithms
Outline

1. Machine Learning Software
 - Numpy and Scipy
 - Matplotlib
 - Scikit Learn

2. Unsupervised Learning
 - K-Means

3. Supervised Learning

4. General Tips
Suppose you didn’t know the meaning of “boat” or “car” but you had a stack of photographs of boats and cars.

Could you somehow sort them into two stacks, which corresponded to boats and cars?
K-Means

- `cluster.KMeans()`
 - Parameter: `n_clusters` - specifies the number of clusters desired.

- Randomly assign initial position for each cluster.

- Repeat until stable:
 - Assign every point to its closest cluster c_i.
 - Move c_i to the center of points that are assigned to it.

Every point is labeled with its cluster.
Gaussian Mixture Models general K-Means - K-means assumes clusters look like circle, where GMM can handle arbitrary elliptic clusters.

Affinity Propagation (cluster.AffinityPropagation()) identifies exemplars - points that can stand in for a given cluster. It may vary the number of clusters depending on the exemplars it finds.
Outline

1. Machine Learning Software
 - Numpy and Scipy
 - Matplotlib
 - Scikit Learn

2. Unsupervised Learning
 - K-Means

3. Supervised Learning

4. General Tips
Is that a squirrel?

Often, we *do* have labels. But learning is still a problem. Machine Learning is about *generalizing* from the example’s you’ve seen (say, 100 pictures of squirrels) to things you haven’t yet seen.
K Nearest Neighbors

- `neighbors.KNeighborsClassifier`
 - Parameter: `n_neighbors` - specifies the number of neighbors `k`.
- What it sounds like - looks for the `k` points most similar to a given point in the data and returns the most common label of those points.
- Where `k = 1` matches the closest point (high variance).
- Where `k = n` always returns the most common label (high bias).
- Slow: Compares points to every point in the training data.
Decision Trees

tree.DecisionTreeClassifier

- Parameter: max_depth - specifies the maximum tree depth (we can alternatively specify max_leaf_nodes).

- Each node splits the data according to a specific feature.
- Greater tree height -> more variance.
- Smaller tree height -> more bias.
Support Vector Machine

- **eg.** `svm.SVC`, `svm.LinearSVC`
 - Parameter: `kernel` - a function that specifies the form of the separation

- Carves up the space using *support vectors* - lines of maximum thickness that divide the space into two.

- Primarily for binary decision problems but can also be used in stages for nary classification.
Naive Bayes

- eg. `naive_bayes.GaussianNB`
 - Parameter: `max_depth` - specifies the maximum tree depth (we can alternatively specify `max_leaf_nodes`).

- A powerful and efficient algorithm that assumes *independence* between features.

- User specifies the assumed underlying distribution - Gaussian, Bernoulli etc.

- Classifies points using Bayes’ Theorem.
Outline

1. Machine Learning Software
 - Numpy and Scipy
 - Matplotlib
 - Scikit Learn

2. Unsupervised Learning
 - K-Means

3. Supervised Learning

4. General Tips
Tips and Tricks

- Visualize the data before running an algorithm on it - what kind of approach is appropriate to the problem.
- Partition your data (randomly!) into 3 sets of data:
 - Training (80%): The core training data.
 - Cross Validation (10%): Data left out, test the model with different parameters on it.
 - Test Data (10%): Also withheld, used to determine the ultimate accuracy of the model.
- You’ll generally find that your model has either too much bias or too much variance - try to find a sweet spot.
- Avoid overfitting - this is generally the point where accuracy on your training set is substantially better than on your cross-validation set.
- Don’t become too attached to one algorithm - no amount of tweaking will make the wrong algorithm into the right one.