
 Page 1

 CIS 1100 — Fall 2023 — Exam 2

 Full Name: ___

 Recitation #: __

 PennID (e.g. 12345678): ____________________________________

 My signature below certifies that I have complied with the University of
 Pennsylvania’s Code of Academic Integrity in completing this examination.

 ______________________________ __________________________

 Signature Date

 Instructions are below. Not complying will lead to a 0% score on the exam.

 ● Do not open this exam until told by the proctor.

 ● You will have exactly 60 minutes to take this exam.

 ● Make sure your phone is turned OFF (not on vibrate!) before the exam starts.

 ● Food and gum are not permitted—don’t be noisy or messy.

 ● You may not use your phone or open your bag for any reason, including to retrieve or put
 away pens or pencils, until you have left the exam room.

 ● This exam is closed-book, closed-notes, and closed computational devices.

 ● If you get stuck on a problem, it may be to your benefit to move on to another question
 and come back later.

 ● All code must be written in proper Java format, including all curly braces and semicolons.

 ● Do not separate the exam pages. Do not take any exam pages with you. The entire exam
 packet must be turned in as is.

 ● Only answers on the FRONT of pages will be graded. There are two blank pages at the
 end of the exam if you need extra space for any graded answers.

 ● Use a pencil, or blue or black pen to complete the exam.

 ● If you have any questions, raise your hand and a proctor will come to you.

 ● When you turn in your exam, you may be required to show your PennCard. If you forgot to
 bring your ID, talk to an exam proctor immediately.

 ● We wish you the best of luck!

 Q1 Q2 Q3 Q4 Q5 Bonus

 PennID (e.g. 12345678): _____________________ Page 2

 Q1. Records

 Q1.1 Acceptable Record Syntax

 Consider the following record definition written in ExamScore.java :

 public record ExamScore(String studentName, double score, int examNumber) {}

 In a separate file, ScoreAnalysis.java , I define a new ExamScore record like so:

 ExamScore es = new ExamScore("Goia", 95.4, 2);

 I want to analyze this and other ExamScore records in ScoreAnalysis.java. For each line, identify

 if it compiles or does not compile. There is at least one line that compiles and at least one line

 that doesn’t compile.

 Line Compiles
 Successfully?

 es.score = es.score() + 1.0; no

 es.score() = es.score() + 1.0; no

 System.out.println(es.studentName()); yes

 System.out.println(es.getExamNumber()); no

 ExamScore copy = new ExamScore(es); no

 ExamScore copy = new ExamScore(es.studentName(), es.score(),
 es.examNumber());

 yes

 PennID (e.g. 12345678): _____________________ Page 3

 Q1.2 Reading & Summarizing Functions with Records

 Here is a function called mystery that is written inside of ScoreAnalysis.java. Answer some

 questions about it.

 public static ExamScore[] mystery(ExamScore[] all, double threshold) {

 int count = 0;

 for (int i = 0; i < all.length; i++) {

 if (all[i].score() <= threshold) {

 count++;

 }

 }

 ExamScore[] out = new ExamScore[count];

 int idx = 0;

 for (int i = 0; i < all.length; i++) {

 if (all[i].score() <= threshold) {

 out[idx] = all[i];

 idx++;

 }

 }

 return out;

 }

 Does this function modify its inputs in any way?

 Yes
 No

 Describe the output of mystery in 30 words or fewer. You do not need to explain how it works,

 just describe what the output is in terms of the inputs.

 The function mystery returns…
 an array of ExamScore records that contains the ExamScore records in all with score fields
 less than or equal to the threshold

 Complete the following unit test so that it correctly passes for the specified inputs to mystery .

 @Test // todo: complete rest of test & fill in assertion statement

 public void testMystery() {

 ExamScore one = new ExamScore("Harry", 88, 1);

 ExamScore two = new ExamScore("Harry", 74, 2);

 ExamScore finalExam = new ExamScore("Harry", 30.1, 3);

 ExamScore[] inputs = {one, two, finalExam};

 double inputThreshold = 74.0;

 ExamScore[] output = ScoreAnalysis.mystery(inputs, inputThreshold) ;

 ExamScore[] expected = { two, finalExam };

 assertArrayEquals(expected, output);

 }

 PennID (e.g. 12345678): _____________________ Page 4

 Q1.3 Replacing Arrays with Lists

 Rewrite mystery() so that it returns an ArrayList of ExamScore records instead of an array. The

 updated signature is written here for you. You can do this without being able to answer Q1.2. An

 overview of List methods can be found at the end of the exam in the Appendix. Assume that all

 correct import statements have been made at the top of the file.

 public static ArrayList<ExamScore> mysteryRewrite(ArrayList<ExamScore> all, double threshold) {
 ArrayList<ExamScore> out = new ArrayList<ExamScore>();

 for (ExamScore es : all) {
 if (es.score() <= threshold) {

 out.add(es);
 }

 }

 return out;
 }

 Q2. Unit Tests & Debugging

 Q2.1
 Here is a buggy implementation of a function inside the file Exam.java that is supposed to find

 and return the longest String in an array. If the array is null or empty, then the function should

 return the empty string (“”). If there are multiple Strings that share the longest length, the

 function should return the one with the lowest index in the array.

 1 public static String findLongest(String[] arr) {

 2 if (arr == null || arr.length <= 1) {

 3 return "";

 4 }

 5 String longest = arr[0];

 6 for (int i = 1; i < arr.length; i++) {

 7 if (arr[i].length() > longest.length()) {

 8 longest = arr[i];

 9 }

 PennID (e.g. 12345678): _____________________ Page 5

 10 }

 11 return longest;

 12 }

 Consider the following four unit tests and mark the names of the ones that fail.

 testOne testTwo testThree testFour

 @Test
 public void testOne() {

 String[] inputs = {"int", "double", "char"};
 String expected = "double";
 String actual = Exam.findLongest(inputs);
 assertEquals(expected, actual);

 }

 @Test
 public void testThree() {

 String[] inputs = {"one", "two", "three"};
 String expected = "one";
 String actual = Exam.findLongest(inputs);
 assertEquals(expected, actual);

 }

 @Test
 public void testTwo() {

 String[] inputs = {"int"};
 String expected = "int";
 String actual = Exam.findLongest(inputs);
 assertEquals(expected, actual);

 }

 @Test
 public void testFour() {

 String[] inputs = {""};
 String expected = "";
 String actual = Exam.findLongest(inputs);
 assertEquals(expected, actual);

 }

 Q2.2 Finally, fix the implementation of findLongest. Write the number of the single line that

 needs to be fixed and then write the fixed version below.

 Line Number Fixed Line

 2 if (arr == null || arr.length < 1) {

 PennID (e.g. 12345678): _____________________ Page 6

 Q3. Writing Objects

 The following is an implementation of the class Stitches.java , which is written to be part

 of an app to help a person keep track of their progress while knitting. Knitting patterns require a

 person to track the number of stitches they have completed in a row and the number of rows

 they have completed in the project. The stitch counter will know that a finished row consists of a

 fixed number of stitches, represented by the instance variable stitchesPerRow .
 By calling addStitch() , the number of stitches in a row will be incremented. If this last

 stitch added means that the row is complete, then the number of stitches is set to 0 and the

 number of rows is incremented by 1.

 Provided below are a few unit tests that formalize the expected behavior of the object’s

 constructor and addStitch method. Your job will be to implement both of these methods

 matching the behavior laid out in the writing above & the unit tests.

 @Test

 public void testConstructSPR() {

 Stitches sc = new Stitches(12);

 int expected = 12;

 int actual = sc.getSPR();

 assertEquals(expected, actual);

 }

 @Test

 public void testConstructStart() {

 Stitches sc = new Stitches(4);

 String expected = "Row 0, Stitch 0";

 String actual = sc.toString();

 assertEquals(expected, actual);

 }

 @Test

 public void testFirstStitch() {

 Stitches sc = new Stitches(4);

 sc.addStitch();

 String expected = "Row 0, Stitch 1";

 String actual = sc.toString();

 assertEquals(expected, actual);

 }

 @Test

 public void testFirstRow() {

 Stitches sc = new Stitches(3);

 sc.addStitch();

 sc.addStitch();

 sc.addStitch();

 String expected = "Row 1, Stitch 0";

 String actual = sc.toString();

 assertEquals(expected, actual);

 }

 @Test

 public void testFirstRowFirstStitch() {

 Stitches sc = new Stitches(2);

 sc.addStitch();

 sc.addStitch();

 sc.addStitch();

 String expected = "Row 1, Stitch 1";

 String actual = sc.toString();

 assertEquals(expected, actual);

 }

 @Test

 public void testSecondRow() {

 Stitches sc = new Stitches(2);

 sc.addStitch();

 sc.addStitch();

 sc.addStitch();

 sc.addStitch();

 String expected = "Row 2, Stitch 0";

 String actual = sc.toString();

 assertEquals(expected, actual);

 }

 PennID (e.g. 12345678): _____________________ Page 7

 Finish the class implementation below by completing the constructor and addStitch() . The

 instance variables have been declared for you and toString() and getSPR() are completed for

 you.

 public class Stitches {

 private int rows, stitches;

 private String projectSize;

 private int stitchesPerRow;

 public Stitches(int spr) { } \\TODO

 public void addStitch() { } \\TODO

 public String toString() {

 return "Row " + rows + ", Stitch " + stitches;

 }

 public int getSPR() {

 return stitchesPerRow;

 }

 }

 3.1 Constructor

 // spr is short for “Stitches Per Row” and should be used to initialize
 // the stitchesPerRow variable of the object. If the project has more than 10
 // stitches per row, the variable projectSize should be initialized to “large”;
 // otherwise, it should be initialized to “small”.
 public Stitches(int spr) {

 stitchesPerRow = spr;
 rows = 0;
 stitches = 0;
 if (spr > 10) {

 projectSize = “large”;
 } else {

 projectSize = “small”;
 }

 }

 3.2 addStitch()

 // Increment stitches by one. If this would complete the row, then reset
 // stitches and increment row by one instead.
 public void addStitch() {

 stitches++;
 if (stitches == stitchesPerRow) {

 stitches = 0;
 rows++;

 }

 PennID (e.g. 12345678): _____________________ Page 8

 }

 Q4. Recursion

 In this section, you will write a function isSorted() that calls a recursive helper

 isSortedHelper() that returns true if an array of doubles is in ascending sorted order, meaning

 that each element is less than or equal to all elements at a higher index. Otherwise, return false.

 Q4.1 Before writing code, complete/evaluate these statements:

 An array containing one element or no
 elements is always in ascending sorted order.

 true false

 An array A is definitely not in ascending
 sorted order if there is any index i such that
 __________.

 A[i] > A[i + 1] A[i] <= A[i + 1]

 Q4.2 Now, complete the implementation of the function isSortedHelper(), which takes in a

 double[] arr and an index representing the current position of the array to be inspected.

 private static boolean isSortedHelper(int[] arr, int index) {

 // Base case: If the array has one or zero elements left to inspect

 // based on the value of index and the length of arr

 if (arr.length - index <= 1) {

 return true;

 }

 // Base case: Case when the array is not sorted because the current

 // element and the following one are in the wrong order.

 if (arr[i] > arr[i+1]) {

 return false;

 }

 // Recursive case for the remaining elements

 return isSortedHelper(arr, index + 1) ;

 }

 Q4.3 Finally, complete isSorted() by providing the values for the initial call to the recursive

 helper. You should not need any additional space to write this; it can be done in one line.

 PennID (e.g. 12345678): _____________________ Page 9

 private static boolean isSorted(int[] arr) {

 return isSortedHelper(arr, 0);

 }

 Q5. Nodes

 For Question 5, assume we have the following Node class:

 /**

 * This node class will store String values.

 */

 public class Node {

 // public instance variables

 public String data;

 public Node next;

 public Node(String data, Node next) {

 this.data = data;

 this.next = next;

 }

 }

 Question 5.1:

 Given the following state of nodes:

 rearrange the references so that the variables & nodes look like:

 PennID (e.g. 12345678): _____________________ Page 10

 To be clear, you do not have to generalize this to work on any sequence of Nodes. You are given

 the chains drawn in the first image and you have to transform it into the chain drawn in the

 second image.

 NOTE : you are not allowed to access or modify the value in any node’s data instance variable,

 and you are not allowed to allocate a new node (e.g. the code you write should not contain new

 Node(..., ...) in it.)

 You are allowed to create Node reference variables with something like: Node temp = a;

 public static void main(String[] args) {

 Node a = new Node(“0”, null);

 a.next = new Node(“4”, null);

 Node b = new Node(“1”, null);

 b.next = new Node(“5", null);

 // your solution here

 Node four = a.next; // 4

 Node five = b.next; // 5

 a.next = b; // 0 points to 1

 a.next.next = four; // 1 points to 4

 four.next = five; // 4 points to 5

 b = a; // b points to 0

 a = b.next.next.next; // a points to 5 this can also be a = five;

 a.next = null; // a should be tail

 }

 PennID (e.g. 12345678): _____________________ Page 11

 Question 5.2:

 Complete the following function countNulls() :

 /**
 * Given a reference to the start of a chain of linked nodes.
 * Iterate or recurse through each node reachable from head and check
 * if the data in each node is null. (Can use next page to define recursive
 * helper function if using.)
 * Return the number of nodes visited where the data instance
 * variable is null.
 */

 public static int countNulls(Node head) {
 // TODO

 ITERATIVE SOLUTION

 int numNulls = 0;
 for (Node curr = head; curr != null; curr = curr.next) {

 if (curr.data == null) {
 numNulls++;

 }
 }
 return numNulls;

 RECURSIVE SOLUTION

 NO HELPER
 if (head == null) {

 return 0;
 }
 if (head.data != null) {

 return countNulls(head.next);
 }
 if (head.data == null) {

 return 1 + countNulls(head.next);
 }

 YES HELPER
 return countNullsHelper(head, 0);

 }

 HELPER

 private static int countNullsHelper(Node curr, int numNulls) {
 if (curr == null) {

 return numNulls;
 }
 if (curr.data != null) {

 return countNullsHelper(curr.next, numNulls);

 PennID (e.g. 12345678): _____________________ Page 12

 }
 if (curr.data == null) {

 return countNullsHelper(curr.next, numNulls + 1);
 }

 }

 Bonus:

 What is one piece of advice you'd give to a new student just starting out CIS 1100?

 All exams will get full credit for this question, answer as seriously as you would like!

 PennID (e.g. 12345678): _____________________ Page 13

 Room for Extra Answers
 You may use this page for additional space for answers; keep it attached to this exam. Clearly

 note on the original question page that your answer is on this extra page, and clearly note on

 this page what question you are answering .

 PennID (e.g. 12345678): _____________________ Page 14

 Appendix

 Lists

 method signature purpose

 get(int i) return the value at position i in the List.

 set(int i, E e) set the value at position i in the List to be e.

 size() return the number of values stored in the List.

 remove(int i) remove and return the value stored at position i in the List.

 add(E e) insert the value e at the end of the List.

 add(int i, E e) insert the value e at position i in the List. i must be between 0 and

 size().

