The Bicycle Thief

CIS 110, Spring 2013

Where to Buy a Bike

Since Trophy Bikes moved, someone has been selling used bikes on weekday afternoons out of a basement closet in SEAS.

- Who's been selling them?
- Where do they come from?
- How do they get there?

Courtesy Google Maps

The Bicycle Thief

One bike disappears from each of these spots every weekday morning!

- No time to go to each building separately
- Dangerous to go back to a building twice in one morning
- What is the shortest route to "collect" one bike from each building?

Traveling Salesman Problem (TSP)

Find shortest tour of n cities: visit each exactly once, and return to start?

- Best known algorithms pretty much test every tour to find shortest
- If a better algorithm exists, you can do a zillion other interesting things fast too (e.g. rob a bank)

Traveling Salesman Problem (TSP)

Find shortest tour of n cities: visit each exactly once, and return to start?

- Formally: TSP is an $\mathcal{N} \mathcal{P}$-complete problem
- Fast algorithm would mean $\mathcal{P}=\mathcal{N} \mathcal{P}^{*}$
- Most famous open question in computer science

[^0]
Traveling Salesman Problem (TSP)

Trying everything is hard: instead use a heuristic (guess)

- Nearest Insertion: Add point to tour after closest point in tour
- Smallest Increase: Add point where causes smallest increase in length

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- SEAS (distance: 0)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- Hill > SEAS (1.22)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- Van Pelt > SEAS (4.06)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- Annenberg $>$ Van Pelt (6.86)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- Huntsman > Annenberg (9.68)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- Steinberg-Dietrich > Annenberg (10.84)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- College $>$ Van Pelt (12.15)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- Houston > College (12.78)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- Claudia-Cohen > College (13.61)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- Fagin > Houston (16.48)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- Penn Museum > Houston (18.95)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- Education Commons/Stadium > Fagin (21.72)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- DRL > SEAS (23.11)

Courtesy Google Maps

Traveling Salesman Problem (Nearest Insertion)

Add each point after point it is closest to in tour

- Penn Park > Education Commons/Stadium (28.69)

Courtesy Google Maps

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- SEAS (distance: 0)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- Hill > SEAS (1.22)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- Van Pelt > SEAS (4.06)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- Annenberg $>$ Van Pelt (6.86)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- Huntsman > Annenberg (9.68)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- Steinberg-Dietrich $>$ Huntsman (10.18)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- College $>$ Steinberg-Dietrich (10.45)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length - Houston $>$ Steinberg-Dietrich (10.91)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- Claudia-Cohen $>$ Steinberg-Dietrich (10.93)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- Fagin > Steinberg-Dietrich (13.13)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- Penn Museum > College (16.20)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- Education Commons/Stadium > Penn Museum (17.20)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- DRL > Penn Museum (17.31)

Traveling Salesman Problem (Smallest Increase)

Add each point where it causes smallest increase in tour length

- Penn Park $>$ Education Commons/Stadium (21.74)

[^0]: *Don't worry about what this means.

