2.1 Functions
2.1 Functions

\[f(x, y, z) \]
A Foundation for Programming

any program you might want to write

objects

functions and modules

graphics, sound, and image I/O

arrays

conditionals and loops

Math text I/O

primitive data types assignment statements

build bigger programs and reuse code
Functions (Static Methods)

Java function.
- Takes zero or more input arguments.
- Returns one output value.
- Side effects (e.g., output to standard draw).

Applications.
- Scientists use mathematical functions to calculate formulas.
- Programmers use functions to build modular programs.
- You use functions for both.

Examples.
- Built-in functions: Math.random(), Math.abs(), Integer.parseInt().
- Our I/O libraries: StdIn.readInt(), StdDraw.line(), StdAudio.play().
- User-defined functions: main().
Java functions. Easy to write your own.

Anatomy of a Java Function

\[f(x) = \sqrt{x} \]

2.0 \rightarrow input \rightarrow f(x) = \sqrt{x} \rightarrow output \rightarrow 1.414213...

```java
public static double sqrt ( double c ) {
    if (c < 0) return Double.NaN;
    double err = 1e-15;
    double t = c;
    while (Math.abs(t - c/t) > err * t) {
        t = (c/t + t) / 2.0;
    }
    return t;
}
```
Key point. Functions provide a **new way** to control the flow of execution.
Key point. Functions provide a new way to control the flow of execution.

What happens when a function is called:

- Control transfers to the function code.
- Argument variables are assigned the values given in the call.
- Function code is executed.
- Return value is assigned in place of the function name in calling code.
- Control transfers back to the calling code.

Note. This is known as "pass by value."
Scope (of a name). The code that can refer to that name.
Ex. A variable’s scope is code following the declaration in the block.

Best practice: declare variables to limit their scope.
Function Challenge 1a

Q. What happens when you compile and run the following code?

```java
public class Cubes1 {
    public static int cube(int i) {
        int j = i * i * i;
        return j;
    }
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        for (int i = 1; i <= N; i++)
            StdOut.println(i + " " + cube(i));
    }
}
```

% javac Cubes1.java
% java Cubes1 6
1 1
2 8
3 27
4 64
5 125
6 216
Q. What happens when you compile and run the following code?

```java
public class Cubes2 {
    public static int cube(int i) {
        int i = i * i * i;
        return i;
    }
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        for (int i = 1; i <= N; i++)
            StdOut.println(i + " " + cube(i));
    }
}
```
Q. What happens when you compile and run the following code?

```java
public class Cubes3 {
    
    public static int cube(int i) {
        i = i * i * i;
    }
    
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        for (int i = 1; i <= N; i++)
            StdOut.println(i + " " + cube(i));
    }
}
```
Function Challenge 1d

Q. What happens when you compile and run the following code?

```java
public class Cubes4 {
    public static int cube(int i) {
        i = i * i * i;
        return i;
    }

    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        for (int i = 1; i <= N; i++)
            StdOut.println(i + " " + cube(i));
    }
}
```
Q. What happens when you compile and run the following code?

```java
public class Cubes5 {
    public static int cube(int i) {
        return i * i * i;
    }
    
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        for (int i = 1; i <= N; i++)
            StdOut.println(i + " " + cube(i));
    }
}
```
Gaussian Distribution
Gaussian Distribution

Standard Gaussian distribution.

- "Bell curve."
- Basis of most statistical analysis in social and physical sciences.

Ex. 2000 SAT scores follow a Gaussian distribution with mean $\mu = 1019$, stddev $\sigma = 209$.

\[
\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}
\]

\[
\phi(x, \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2 / 2\sigma^2}
= \phi\left(\frac{x-\mu}{\sigma}\right)/\sigma
\]
Java Function for $\phi(x)$

Mathematical functions. Use built-in functions when possible; build your own when not available.

```java
public class Gaussian {
    public static double phi(double x) {
        return Math.exp(-x*x / 2) / Math.sqrt(2 * Math.PI);
    }

    public static double phi(double x, double mu, double sigma) {
        return phi((x - mu) / sigma) / sigma;
    }
}
```

\[\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \]

\[\phi(x, \mu, \sigma) = \phi\left(\frac{x - \mu}{\sigma}\right) / \sigma \]

Overloading. Functions with different signatures are different.

Multiple arguments. Functions can take any number of arguments.

Calling other functions. Functions can call other functions.

library or user-defined
Gaussian Cumulative Distribution Function

Goal. Compute Gaussian cdf $\Phi(z)$.

Challenge. No "closed form" expression and not in Java library.

\[
\Phi(z) = \int_{-\infty}^{z} \phi(x) \, dx \\
= \frac{1}{2} + \phi(z) \left(z + \frac{z^3}{3} + \frac{z^5}{3 \cdot 5} + \frac{z^7}{3 \cdot 5 \cdot 7} + \ldots \right)
\]

Bottom line. 1,000 years of mathematical formulas at your fingertips.
Java function for $\Phi(z)$

```java
public class Gaussian {

    public static double phi(double x)
    // as before

    public static double Phi(double z) {
        if (z < -8.0) return 0.0;
        if (z > 8.0) return 1.0;
        double sum = 0.0, term = z;
        for (int i = 3; sum + term != sum; i += 2) {
            sum = sum + term;
            term = term * z * z / i;
        }
        return 0.5 + sum * phi(z);  // accurate with absolute error less than $8 \times 10^{-16}$
    }

    public static double Phi(double z, double mu, double sigma) {
        return Phi((z - mu) / sigma);
    }
}
```

$\Phi(z, \mu, \sigma) = \int_{-\infty}^{z} \phi(z, \mu, \sigma) = \Phi((z-\mu) / \sigma)$
SAT Scores

Q. NCAA requires at least 820 for Division I athletes. What fraction of test takers in 2000 do not qualify?

A. \(\Phi(820, 1019, 209) \approx 0.17051. \) [approximately 17%]

double fraction = Gaussian.Phi(820.0, 1019.0, 209.0);
Gaussian Distribution

Q. Why relevant in mathematics?
A. Central limit theorem: under very general conditions, average of a set of random variables tends to the Gaussian distribution.

Q. Why relevant in the sciences?
A. Models a wide range of natural phenomena and random processes.
 • Weights of humans, heights of trees in a forest.
 • SAT scores, investment returns.

Caveat.

“Everybody believes in the exponential law of errors: the experimenters, because they think it can be proved by mathematics; and the mathematicians, because they believe it has been established by observation. ”
— M. Lippman in a letter to H. Poincaré
Building Functions

Functions enable you to build a new layer of abstraction.

- Takes you beyond pre-packaged libraries.
- You build the tools you need: \texttt{Gaussian_phi()}, \ldots

Process.

- Step 1: identify a useful feature.
- Step 2: implement it.
- Step 3: use it.

- Step 3': re-use it in any of your programs.
Extra Slides
Function Examples

absolute value of an int value	public static int abs(int x) { if (x < 0) return -x; else return x; }
absolute value of a double value	public static double abs(double x) { if (x < 0.0) return -x; else return x; }
primality test	public static boolean isPrime(int N) { if (N < 2) return false; for (int i = 2; i <= N/i; i++) if (N % i == 0) return false; return true; }
hypotenuse of a right triangle	public static double hypotenuse(double a, double b) { return Math.sqrt(a*a + b*b); }