CIS 110 — Introduction to Computer Programming

7 May 2012 — Practice Final

Name:

Recitation # (e.g. 201):

Pennkey (e.g. bjbrown):

My signature below certifies that I have complied with the University of Pennsylvania’s Code
of Academic Integrity in completing this examination.

Signature Date

Scores:

|00 | W |~

15
10

15
34
Total: 100

O |0 | N[O | O | k=W | N |~

CIS 110 Final Instructions

This practice final is designed to give a range of questions that cover material
since the midterm. You should review the midterm and practice midterm as well,
since questions similar to those may appear on the final as well. However you
can expect the questions on the final to focus more heavily on the second half of
the semester.

You have 110 minutes to finish this exam. Time will begin when called by a proctor and end
precisely 110 minutes after that time. If you continue writing after the time is called, you
will receive a zero for the exam.

This exam is closed-book, closed-notes, and closed-computational devices. Except where noted,
you can assume that code included in the question is correct and use it as a reference for Java
syntax.

This exam is long. If you get stuck part way through a problem, it may be to your advantage
to go on to another problem and come back later if you have time.

When writing code, the only abbreviations you may use are for System.out.println, System.out.print,
and System.out.printf as follows:

System.out.printin — S.O.PLN
System.out.print — S.O.P
System.out.printf — S.O.PF

Otherwise all code must be written out as normal, including all curly braces and semicolons.

Please do not separate the pages of the exam. If a page becomes loose, write your name on
it and use the provided staplers to reattach the sheet when you turn in your exam so that we
don’t lose it.

If you require extra paper, please use the backs of the exam pages or the extra sheet(s) of
paper provided at the end of the exam. Clearly indicate on the question page where the
graders can find the remainder of your work (e.g. ”back of page” or ”on extra sheet”). Staple
an extra sheets you use to the back of your exam when you turn it in using the provided
staplers.

If you have any questions, please raise your hand and an exam proctor will come to answer
them.

When you turn in your exam, you will be required to show ID. If you forgot to bring your
ID, please talk to an exam proctor immediately.

Good luck, have fun!

INSTRUCTION FORMATS

Format 1: | opcode
Format 2: | opcode

TOY Reference Card

ARITHMETIC and LOGICAL operations

1:

o O W N

TRANSFER between registers and memory
R[d] <- addr

T:
8
9
A:
B
CONTROL

0:

C
D
E:
F

add

: subtract

: and

: Xor

: shift left
: shift right

load address

. load
: store

load indirect

: store indirect

halt

: branch zero
: branch positive

jump register

: jump and link

R[d]
R[d]
R[d]
R[d]
R[d]
R[d]

R[s]
R([s]

Rls] &

R[s]
R[s]
R[s]

+ RI[t]
- RI[t]
R[t]
-~ RI[t]
<< R[t]
>> R[t]

R[d] <- mem[addr]
mem[addr] <- R[d]
R[d] <- mem[R[t]]
mem[R[t]] <- R[d]

halt

if (R[d] == 0) pc <- addr
if (R[d] > 0) pc <- addr
pc <- R[d]

R[d] <- pc; pc <- addr

Register 0 always reads O.

Loads from mem[FF] come from stdin.
Stores to mem[FF] go to stdout.

(0-6, A-B)
(7-9, C-F)

Miscellaneous
1. (1 points)
(a) Write your name, recitation number, and PennKey (username) on the front of the exam.

(b) Sign the certification that you comply with the Penn Academic Integrity Code

Number Systems

2. (3 points) The following hexadecimal numbers represent 16-bit 2’s complement numbers.
Put them in order from lowest (most negative) to highest (most positive).

OFFF FO00 1ABC 8888 FFFF

lowest

highest

TOY

3. (8 points) Consider what happens when the following TOY program is executed by pressing
RUN with the program counter set to 10:

10: 8110 R[1] <- Mem[10]

11: 7203 R[2] <- 03

12: 1212 R[2] <- R[1] + R[2]
13: 9214 Mem[14] <- R[2]

14: 0000 Halt

15: 0000 Halt

(a) What is the value (in hex) of R[1] after the instruction at location 10 completes?

(b) What is the value of R[2] after the instruction at location 12 completes?

(c) What is the value of Mem[14] after the instruction at location 13 completes?

(d) What is the value of R[1] when the program halts?

Sorting and Analysis

4. (6 points) You are provided a method called pennSort that takes an array of ints, and
sorts it in ascending order using one of the algorithms we covered this semester. You called this
method with some sample arrays and recorded the execution times in this table:

Array size | Time (sec)
50000 5
100000 22
200000 90
800000 1451

(a) How long would you expect it to take to sort an array of 1.5 million items? Circle your
answer:
i. Under half an hour
ii. 1-3 hours
iii. 4—6 hours

iv. ~half a day
(b) Based on your timing analysis, which sort could pennSort () be? Circle your answer:

i. Insertion sort
ii. Mergesort
iii. Insertion sort or mergesort
iv. Neither insertion sort nor mergesort
(¢) Given an unsorted array of size N, what is the order of growth you would expect to find in the

execution time of the second (and only the second) call to pennSort () below? Circle your
answer.

pennSort (randomUnsortedArray) ;
pennSort (randomUnsortedArray) ;

i. Constant
ii. Linear
iii. Logarithmic

iv. Quadratic

Linked Lists

5. (15 points) Consider the following class, which implements a linked list data structure:

class Node {
public int key;
public Node next;
public Node(int key) { this.key = key; this.next = null; }

public class LinkedList {
private Node foo;
private Node bar;
public LinkedList() { foo = null; bar = null; }
// instance methods A(), B, ¢, DO, EO
}

Answer the questions on the following page about these five instance methods for this class

public void A(int key) { public void D() {
Node x = new Node(key); if (foo == bar) {
if (foo == null) foo = x; foo = null;
else bar.next = x; bar = null;
bar = x; } else {
T Node t = foo;
while (t.next != bar) t = t.next;
public int B() { return bar.key; } t.next = null;
bar = t;
public void CO { }
Node t = foo; T

while (t != null) {
System.out.print(t.key + " "); public LinkedList E() {

t = t.next; LinkedList 11 = new LinkedList();
} while (foo !'= null) {
System.out.println(); 11.A(this.BQ));
} DO);
}

return 11;

Match each intance method with one of the descriptions below by writing its letter in the
blank to the left of the corresponding description. Since there are twice as many descriptions
as instance methods, you must leave five options blank.

_ Prints the list in order

_ Prints the list in reverse order

_ Adds a key at the beginning of the list

_ Adds a key at the end of the list

__ Copies the list in order

_ Copies the list in reverse order

_ Returns the key in the first element of the list

_ Returns the key in the last element of the list

_ Removes the first element of the list

_ Removes the last element of the list

In the space provided, write the output produced by the following code:

LinkedList 11 = new LinkedList();
11.AC1); 11.A(7); 11.A(4); 11.A(9);
11.CcO;

11.00);

11.EQ).CQO;

first line of output:

second line of output:

Analysis of Algorithms

6. (10 points)

(a) Professor Quring proposes the following recursive algrotihms for sorting an array of real
numbers in ascending order:

public static void sort(double[] a) {
sort(a, 0, a.length - 1);
}

public static void sort(double[] a, int lo, int hi) {
if (lo >= hi) return;
sort(a, lo, hi - i);
if (alhi] < afhi - 1]) {
double temp = alhi];
alhi] = alhi - il;
alhi - i] = temp;
sort(a, lo, hi - 1);

¥

To analyze its running time, the professor performs the following experiments on arrays of
random numbers:

N | time (sec)
1,000 | 0.75
2,000 6.00
3,000 20.25
4,000 48.00
5,000 93.75
6,000 | 162,00

Predict (within 10%) holw long it will take (in seconds) to sort 10,000 random numbers:

(b) Give two compelling reasons why you might prefer to implement an algorithm that run in
time proportion to N? rather than N log N.

e Reason 1:

e Reason 2:

Divide and Concquer

7. (8 points) Consider the following class:
public calss Foo {
public static String bar(String s) {
if (s.length() < 2) return s;
int m = s.length() / 2;
String lh = bar(s.substring(0, m));

String rh = bar(s.substring(m, s.length()));
s = rh + 1h;

System.out.println(s);

return s;

public static void main(String[args) {
String s = args[0];
s = bar(s);

}

Recall that s.substring(i, j) returns the substring of s from indicies i to j—1. For example,
if s is the string "stressed", then s.substring(0, 6) is "stress".

(a) Give the one line of output produced by the command

% java Foo ab

(b) Give the seven lines of output produced by the command

% java Foo stressed

Queue and Stack

8. (15 points) Given the following APIs for a queue and a stack of integers:

public class QueueOfInts

Queue0fInts () creates an empty queue

boolean isEmpty() true if queue is empty
void enqueue(int item) enqueues one int
int dequeue() dequeues on int

public class Stack0OfInts

Stack0fInts () creates an empty stack
boolean isEmpty() true if stack is empty
void push(int item) pushes one int
int pop() pops one int

Write a static function reverse that reverses a QueueOf Ints using an intermediate StackOf Ints.
reverse should not return anything, and should not crash if its argument is null.

10

Graphs

9. (34 points) In the Traveling Salesman homework, we assumed that the distance between any
pair of cities was the Euclidean, or straight-line, distance between them. But in reality, cities are
connected by roads that may be indirect; there may not even be direct roads between certain cities.
Moreover, cities may be connected by one-way streets so that the distance from city A to city B is
different than the distance from B to A. We can represent this situation using a graph data type
that stores not only the cities, but also the lengths of the paths that connect them. In the standard
graph terminology, the cities are called vertices, and the paths are called edges. Computing a tour
on a graph is no different than on the set of points in the homework except that the graph data
type will need to include a method

public double distance(Vertex a, Vertex b)

that takes the place of the Point.distanceTo () method.

The question naturally arises how the edges should be stored. Two of the most common
approaches are the adjacency matriz, and the adjacency list. An adjacency matrix is a n X n
array (assuming there are n vertices), where entry (i,j) stores the distance from vertex i to
vertex j. If there is no edge from vertex i to vertex j, then entry (i,j) in the array is set to
Double.POSITIVE_INFINITY. The alternative, an adjacency list, stores an array of edges. Each
edge records the starting and ending vertices, and the distance. If no edge exists that goes from ¢
to 7 then there is no way to travel directly from ¢ to j. This approach is slightly more complex than
an adjacency matrix, but avoids storing lots of Double .POSITIVE_INFINITY’s if there are relatively
few edges.

The nice thing is that we can implement TSP for both types of graph data structure by using
an interface, because Tour only needs a method to compute the distance between cities. We will
therefore define the following Vertex class and GraphDistance interface, and modify the Tour API
as follows:

11

public class Vertex {
public Point p;
public int id;

public Vertex(double x, double y, int id) {
p = new Point(x, y);;

// record the number of this vertex
// (0, 1, 2, etc.)
this.id = id;

public Interface GraphDistance {
// Return the distance between a and b according
// to the edges of the graph.
// If there is no path from vertex a to vertex b,
// return Double.POSITIVE_INFINITY
public double distance(Vertex a, Vertex b);

public class Tour {
// create a Tour for the graph g. g can be any
// type that implements the GraphDistance interface
// since we only need the distance() method to compute tours
public Tour(GraphDistance g) { ... }

public void show() { ... }
public void draw() { ... }

public int size() { ... %}

public double distance() { ... }

public void insertNearest(Vertex v) { ... }
public void insertSmallest(Vertex v) { ... }

12

Complete the distance() and readGraph() methods for the AdjacencyMatrixGraph data
type below. distance () should use the id instance variable in the two vertices to figure out which
entries of the adjacency matrix to access. It does not need to do any error checking. readGraph ()
should read two integers n and e from standard input using the StdIn library; n gives the number
of vertices in the graph, and e gives the number of edges. The next n lines contain the x and y
coordinates of the vertices, in order. Following that are e lines, each containing two integers and
a double which are the start and end vertices of an edge, and the distance along that edge. You
may assume the input will always be valid and that at most one edge will be listed from vertex ¢
to vertex j. However it is possible there will be no edge from 4 to j, in which case that distance
should be set to Double.POSITIVE_INFINITY. Also, remember that the distances from ¢ to j and
from j to ¢ are not necessarily the same; if there is an edge from 4 to j but not from j to ¢, then
the distance from j to 7 is still Double .POSITIVE_INFINITY. For example:

3 4

0.2 0.3
0.10.7
0.4 0.9
015.0
10 3.6
124.2
201.3

is a graph with three vertices at locations (0.2,0.3), (0.1,0.7), and (0.4,0.9). The distance
from vertex 0 to vertex 1 is 5, the distance in the other direction (from vertex 1 to vertex 0) is
3.6, the distance from vertex 1 to vertex 2 is 4.2, and the distance from vertex 2 to vertex 0 is
1.3. The remaining distances (from 0 to 2, from 2 to 1, and from any vertex to itself) are all
Double.POSITIVE_INFINITY.

13

public class AdjacencyMatrixGraph implements GraphDistance {
private double[][] adjacencyMatrix;
private Vertex[] vertices;

// create a graph with n vertices

public AdjacencyMatrixGraph(int n) {
adjacencyMatrix = new double[n] [n];
vertices = new Vertex[n];

public static void main(String[] args) {
// read in the graph
AdjacencyMatrixGraph g = readGraph();

// compute a Tour

Tour t = new Tour(g);

for (int i = 0; i < g.vertices.length; i++)
t.insertSmallest(g.vertices[i]);

t.show();

// return the distance between vertices a and b
// or Double.POSITIVE_INFINITY if there is no
// edge between them
public double distance(Vertex a, Vertex b) {

// COMPLETE THIS

Complete the readGraph() method on the next page...

14

public static AdjacencyMatrixGraph readGraph() {
int n = StdIn.readInt(); // get number of vertices
int e = StdIn.readInt(); // get number of edges
AdjacencyMatrixGraph g = new AdjacencyMatrixGraph(n);

// read in the vertices; set the id of the first vertex
// to 0, of the second vertex to 1, etc.
for (int i = 0; 1 < n; i++) {

// COMPLETE THIS

// COMPLETE THIS

// read in the edges and set the distances in the adjacency
// matrix accordingly, or to Double.POSITIVE_INFINITY for any
// edges that don’t exist

15

Postscript (extra paper)

16

