2.3 Recursion

Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?
- New mode of thinking.
- Powerful programming paradigm.
- Many computations are naturally self-referential.
- Mergesort, FFT, gcd, depth-first search.
- Linked data structures.
- A folder contains files and other folders.
- Closely related to mathematical induction.

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Ex: gcd(4032, 1272) = 24.

\[4032 = 2^6 \times 3^3 \times 7^1 \]
\[1272 = 2^3 \times 3^3 \times 5^1 \]
\[\text{gcd} = 2^3 \times 3^3 = 24 \]

Applications:
- Simplify fractions: \(\frac{1272}{4032} = \frac{53}{168} \).
- RSA cryptosystem.

Euclid’s algorithm. (Euclid 300 BCE)

\[
gcd(p, q) = \begin{cases}
p & \text{if } q = 0 \\
gcd(q, p \mod q) & \text{otherwise} \end{cases}
\]

Java implementation.

```java
public static int gcd(int p, int q) {
    if (q == 0) return p;
    else return gcd(q, p % q);
}
```
Recursive Graphics

Htree

- H-tree of order n.
 - Draw an H.
 - Recursively draw 4 H-trees of order n-1, one connected to each tip.

```java
public class Htree {
    public static void draw(int n, double sz, double x, double y) {
        if (n == 0) return;
        double x0 = x - sz / 2, x1 = x + sz / 2;
        double y0 = y - sz / 2, y1 = y + sz / 2;
        StdDraw.line(x0, y0, x1, y0);
        StdDraw.line(x0, y1, x1, y1);
        StdDraw.line(x0, y, x1, y);
        StdDraw.line(x0, y0, x0, y1);
        StdDraw.line(x1, y0, x1, y1);
        draw(n-1, sz/2, x0, y0);
        draw(n-1, sz/2, x1, y0);
        draw(n-1, sz/2, x0, y1);
        draw(n-1, sz/2, x1, y1);
    }
    public static void main(String[] args) {
        int n = Integer.parseInt(args[0]);
        draw(n, .5, .5, .5);
    }
}
```

Htree in Java

Animated H-tree

Animated H-tree. Pause for 1 second after drawing each H.

Towers of Hanoi

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.
- Only one disc may be moved at a time.
- A disc can be placed either on empty peg or on top of a larger disc.

Towers of Hanoi Legend

Q. Is world going to end (according to legend)?
- 64 golden discs on 3 diamond pegs.
- World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?

Towers of Hanoi: Recursive Solution

```java
public class TowersOfHanoi {
    public static void moves(int n, boolean left) {
        if (n == 0) return;
        moves(n - 1, !left);
        if (left) System.out.println(n + " left");
        else System.out.println(n + " right");
        moves(n - 1, !left);
    }
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        moves(N, true);
    }
}
```

moves(n, true): move discs 1 to n one pole to the left
moves(n, false): move discs 1 to n one pole to the right

Towers of Hanoi: Recursion Tree

1. Move n-1 smallest discs right.
2. Move largest disc left.
3. Move n-1 smallest discs right.

Every other move is smallest disc
Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution:
- Takes \(2^n - 1\) moves to solve \(n\) disc problem.
- Sequence of discs is same as subdivisions of ruler.
- Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!
- Alternate between two moves:
 - move smallest disc to right if \(n\) is even
 - make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.
- Takes 585 billion years for \(n = 64\) (at rate of 1 disc per second).
- Reassuring fact: any solution takes at least this long!

Fibonacci Numbers

Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Fibonacci Numbers and Nature

Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

L. P. Fibonacci (1170 - 1250)

A Possible Pitfall With Recursion

Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Recursion Challenge 1 (difficult but important)

Q. Is this an efficient way to compute \(F(50)\)?

A. No, no, no! This code is spectacularly inefficient.
Recursion Challenge 2 (easy and also important)

Q. Is this a more efficient way to compute $F(50)$?

A. Yes. This code does it with 50 additions.

Lesson. Don't use recursion to engage in exponential waste.

Context. This is a special case of an important programming technique known as dynamic programming (stay tuned).

$F(n) = \phi^n - (1-\phi)^n$

$F(5) = \phi^5 \lfloor \cdot \rfloor$

$\phi = \text{golden ratio} \approx 1.618$

FYI: classic math

Summary

How to write simple recursive programs?
- Base case, reduction step.
- Trace the execution of a recursive program.
- Use pictures.

Why learn recursion?
- New mode of thinking.
- Powerful programming tool.

Extra Slides

Collatz Sequence

Collatz sequence.
- If n is 1, stop.
- If n is even, divide by 2.
- If n is odd, multiply by 3 and add 1.

Ex. 35 106 53 160 80 40 20 10 5 16 8 4 2 1.

Fractional Brownian Motion

Physical process which models many natural and artificial phenomena.
- Price of stocks.
- Dispersion of ink flowing in water.
- Rugged shapes of mountains and clouds.
- Fractal landscapes and textures for computer graphics.
Simulating Brownian Motion

Midpoint displacement method.
- Maintain an interval with endpoints \((x_0, y_0)\) and \((x_1, y_1)\).
- Divide the interval in half.
- Choose \(\delta \) at random from Gaussian distribution.
- Set \(x_m = (x_0 + x_1)/2 \) and \(y_m = (y_0 + y_1)/2 + \delta \).
- Recur on the left and right intervals.

```java
public static void curve(double x0, double y0, double x1, double y1, double var) {
    if (x1 - x0 < 0.01) {
        StdDraw.line(x0, y0, x1, y1);
        return;
    }
    double xm = (x0 + x1) / 2;
    double ym = (y0 + y1) / 2;
    ym += StdRandom.gaussian(0, Math.sqrt(var));
    curve(x0, y0, xm, ym, var / 2);
    curve(xm, ym, x1, y1, var / 2);
}
```

Variance halves at each level; change factor to get different shapes.

Simulating Brownian Motion: Java Implementation

Midpoint displacement method.
- Maintain an interval with endpoints \((x_0, y_0)\) and \((x_1, y_1)\).
- Divide the interval in half.
- Choose \(\delta \) at random from Gaussian distribution.
- Set \(x_m = (x_0 + x_1)/2 \) and \(y_m = (y_0 + y_1)/2 + \delta \).
- Recur on the left and right intervals.

Plasma Cloud

Plasma cloud centered at \((x, y)\) of size \(s\).
- Each corner labeled with some grayscale value.
- Divide square into four quadrants.
- The grayscale of each new corner is the average of others.
- center: average of the four corners + random displacement
- others: average of two original corners
- Recur on the four quadrants.

Brownian Landscape

Brown

Robert Brown (1773-1858)