CIS 110: Introduction to Computer Programming

Lecture 5
The Loop-the-Loop
(§ 2.3-2.4)
Outline

1. For-loops!
2. Algorithm Design and Pseudocode
Announcements

• Date of the final is tentatively:

 MONDAY, DECEMBER 19th, 6-8 PM

 – If you have a conflict, please let me know ASAP.

• Need more practice? Try Practice-it!

 – Web-based tool where you can work on practice problems that are automatically checked online.

 – Linked off of the course webpage.
For Loops
Redundancy in Patterns

• Problem: write a program that prints out successive cubes.

Output:

\[0^3 = 0 \]
\[1^3 = 1 \]
\[2^3 = 8 \]
\[3^3 = 27 \]
\[4^3 = 64 \]
public class Cubes {
 public static void main(String[] args) {
 System.out.println("0^3 = \(0 \times 0 \times 0\)\);
 System.out.println("1^3 = \(1 \times 1 \times 1\)\);
 System.out.println("2^3 = \(2 \times 2 \times 2\)\);
 System.out.println("3^3 = \(3 \times 3 \times 3\)\);
 System.out.println("4^3 = \(4 \times 4 \times 4\)\);
 }
}

• Pretty obvious repetition, but we have no way of dealing with it...
public class Cubes {
 public static void main(String[] args) {
 for (int i = 0; i < 5; i++) {
 System.out.println(i + "^3 = " + i * i * i);
 }
 }
}

- The *for loop* construct allows us to express repetitive patterns in a structured way.
The For-loop

• The For-loop is a control statement.
 – Doesn’t do anything on its own, but instead controls the execution of other statements.

```java
for (int i = 0; i < 5; i++) {
    System.out.println(i + "^3 = " + i * i * i);
}
```
For-loop Semantics

Initialization: \(i = 0 \)

Test: \(i < 5 \)

Body: \(\text{println} \)

Update: \(i++ \)

Next

Loop iteration

Test is true

Test is false
public class Cubes {
 public static void main(String[] args) {
 for (int i = 0; i < 5; i++) {
 System.out.println(i + "^3 = " + i * i * i);
 }
 }
}

<table>
<thead>
<tr>
<th>Iteration #</th>
<th>Value of i</th>
<th>Test</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our Example, Step-by-step (2)

```java
class Cubes {
    public static void main(String[] args) {
        for (int i = 0; i < 5; i++) {
            System.out.println(i + "^3 = " + i * i * i);
        }
    }
}
```

<table>
<thead>
<tr>
<th>Iteration #</th>
<th>Value of i</th>
<th>Test</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0 < 5 is true</td>
<td>0^3 = 0</td>
</tr>
</tbody>
</table>
public class Cubes {
 public static void main(String[] args) {
 for (int i = 0; i < 5; i++) {
 System.out.println(i + "^3 = " + i * i * i);
 }
 }
}

<table>
<thead>
<tr>
<th>Iteration #</th>
<th>Value of i</th>
<th>Test</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0 < 5 is true</td>
<td>0^3 = 0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1 < 5 is true</td>
<td>1^3 = 1</td>
</tr>
</tbody>
</table>
public class Cubes {
 public static void main(String[] args) {
 for (int i = 0; i < 5; i++) {
 System.out.println(i + "^3 = " + i * i * i);
 }
 }
}

<table>
<thead>
<tr>
<th>Iteration #</th>
<th>Value of i</th>
<th>Test</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0 < 5 is true</td>
<td>0^3 = 0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1 < 5 is true</td>
<td>1^3 = 1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2 < 5 is true</td>
<td>2^3 = 8</td>
</tr>
</tbody>
</table>
public class Cubes {
 public static void main(String[] args) {
 for (int i = 0; i < 5; i++) {
 System.out.println(i + "^3 = " + i * i * i);
 }
 }
}

<table>
<thead>
<tr>
<th>Iteration #</th>
<th>Value of i</th>
<th>Test</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0 < 5 is true</td>
<td>0^3 = 0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1 < 5 is true</td>
<td>1^3 = 1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2 < 5 is true</td>
<td>2^3 = 8</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3 < 5 is true</td>
<td>3^3 = 27</td>
</tr>
</tbody>
</table>
public class Cubes {
 public static void main(String[] args) {
 for (int i = 0; i < 5; i++) {
 System.out.println(i + "^3 = " + i * i * i);
 }
 }
}

<table>
<thead>
<tr>
<th>Iteration #</th>
<th>Value of i</th>
<th>Test</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0 < 5 is true</td>
<td>0^3 = 0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1 < 5 is true</td>
<td>1^3 = 1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2 < 5 is true</td>
<td>2^3 = 8</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3 < 5 is true</td>
<td>3^3 = 27</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4 < 5 is true</td>
<td>4^3 = 64</td>
</tr>
</tbody>
</table>
Our Example, Step-by-step (7)

```java
public class Cubes {
    public static void main(String[] args) {
        for (int i = 0; i < 5; i++) {
            System.out.println(i + "^3 = " + i * i * i);
        }
    }
}
```

<table>
<thead>
<tr>
<th>Iteration #</th>
<th>Value of i</th>
<th>Test</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0 < 5 is true</td>
<td>0^3 = 0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1 < 5 is true</td>
<td>1^3 = 1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2 < 5 is true</td>
<td>2^3 = 8</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3 < 5 is true</td>
<td>3^3 = 27</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4 < 5 is true</td>
<td>4^3 = 64</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5 < 5 is false</td>
<td></td>
</tr>
</tbody>
</table>
For-loop Bounds

• Different sorts of bounds are possible!

```java
for (int i = 1; i <= 5; i++) {
    System.out.print(i + " ");
}
```
Output: 1 2 3 4 5

```java
for (int i = 5; i > 0; i--) {
    System.out.print(i + " ");
}
```
Output: 5 4 3 2 1

```java
for (int i = 256; i > 0; i /= 2) {
    System.out.print(i + " ");
}
```
Output: 256 128 64 32 16 8 4 2 1

```java
for (int i = -3; i < 10; i += 2) {
    System.out.print(i + " ");
}
```
Output: -3 -1 1 3 5 7 9
“<“ versus “<=“ Bounds

• “i = 0; i < 5” versus “i = 1; i <= 5”:
 – Both give 5 loop iterations.
 – “i = 0, 1, 2, 3, 4” versus “i = 1, 2, 3, 4, 5”.

• “i = 0; i < 5” is less intuitive, more canonical
 – Most computations are naturally zero-based.
 – For homework 2, either is fine.
 • Try to get used to the zero-based style.
Yo Dawg, I Heard You Liked Loops

- Problem: draw a rectangle of stars.

public class Rectangle {
 public static void main(String[] args) {
 // The outer for-loop controls the #/lines
 for (int i = 0; i < 5; i++) {
 // The inner for-loop controls the // contents of a single line.
 for (int j = 0; j < 5; j++) {
 System.out.print("*");
 }
 System.out.println();
 }
 }
}
Careful with Your Nested Loop Bounds!

```java
for (int i = 0; i < 5; i++) {
    for (int j = 0; j < 5; j++) {
        System.out.print("*");
    }
    System.out.println();
}

for (int i = 0; i < 5; i++) {
    for (int j = 0; j < i; j++) {
        System.out.print("*");
    }
    System.out.println();
}

for (int i = 0; i < 5; i++) {
    for (int j = 0; j < 5; i++) {
        System.out.print("*");
    }
    System.out.println();
}
```

Infinite loop!
Remember Compilation?

You (the programmer) → The compiler → The computer (your new best friend)

PUT THE JELLY ON THE BREAD AND THEN PUT IT ALL IN YOUR MOUTH

The computer program

Machine code

Ilagay ang halaya SA tinapay AT pagkatapos ay ilagay ito LAHAT SA INYONG bibig
English is Still Useful!

- Sometimes it is difficult to write an algorithm/computer program directly.

Problem:

```
*****
*****
*****
*****
*****
```

"Draw 5 rows each containing 5 stars"

Pseudocode!

```c
/* ??? */
```
Pseudocode Helps Organize Your Thoughts

• Stuck and don’t know how to make progress?
 – Write an English description of your solution.
 – Transform that English description into code.

```java
for (Each of 5 rows) {
    Draw 5 stars.
}
```

```java
for (Each of 5 rows) {
    for (int i = 0; i < 5; i++) {
        System.out.print("*");
    }
}
```

```java
for (int i = 0; i < 5; i++) {
    for (int j = 0; j < 5; j++) {
        System.out.print("*");
    }
    System.out.println();
}
```
By Example: A Cone

• Problem: draw the following cone shape.

```
  /
 /--
/----
/------
/--------
```

“Draw 5 rows each containing a section of the cone.”

```java
for (int i = 0; i < 5; i++) {
    Draw a section of the cone
    System.out.println();
}
```
Cone Sections

• Each line has the following form:
 – <spaces> / <dashes> \n – Let’s find the pattern for each part!

<table>
<thead>
<tr>
<th>Iteration/row (i)</th>
<th>Spaces</th>
<th>/</th>
<th>Dashes</th>
<th>\</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

• Formula for spaces: $4 - i$
• Formula for dashes: $i \times 2$
for (int i = 0; i < 5; i++) {
 Draw a section of the cone
 System.out.println();
}

for (int i = 0; i < 5; i++) {
 Draw spaces
 Draw /
 Draw dashes
 Draw \n System.out.println();
}
Stop Being So Constant

• What value controls the height of the cone?

```java
for (int i = 0; i < 5; i++) {
    for (int j = 0; j < 4 - i; j++) {
        System.out.print(“ “);
    }
    System.out.print(“/”);
    for (int j = 0; j < i * 2; j++) {
        System.out.print(“-”);
    }
    System.out.print(“\”);
    System.out.println();
}
```

The height of the cone but not immediately obvious! An example of a magic number.

Surprise! An indirect use of the height of the cone. If we change the height, then this number needs to change as well!
float Q_rsqrt(float number)
{
 long i;
 float x2, y;
 const float threehalves = 1.5F;

 x2 = number * 0.5F;
 y = number;
 i = *(long *) &y; // evil floating point bit level hacking
 i = 0x5f3759df - (i >> 1); // what the fuck?
 y = *(float *) &i;
 y = y * (threehalves - (x2 * y * y)); // 1st iteration
 // y = y * (threehalves - (x2 * y * y)); // 2nd iteration, this can be removed

 return y;
}

• Note: code is written in C but should be (somewhat) understandable!
• This is the exact source from the game!
• The constant was a source of much debate! See Fast Inverse Square Root @ Wikipedia for more details.
• Class constants let us “document” magic numbers by naming them and giving us a central place to change their values if necessary.

```java
public class Cone {
    public static final int HEIGHT = 5;
    public static void main(String[] args) {
        for (int i = 0; i < HEIGHT; i++) {
            for (int j = 0; j < (HEIGHT - 1) - i; j++) {
                System.out.print(" ");
            }
            System.out.print("/");
            for (int j = 0; j < i * 2; j++) {
                System.out.print("-");
            }
            System.out.print("\"\"\"");
            System.out.println();
        }
    }
}
```
Syntax of Class Constants

- Constants are declared outside of methods but inside the class.
 - `public static final <type> <name> = <value>;`
- Constants are variables that cannot be reassigned.
- Convention is to `NAME_THEM_LIKE_THIS`.

```java
public class Cone {
    public static final int HEIGHT = 5;
    public static void main(String[] args) {
        for (int i = 0; i < HEIGHT; i++) {
            /* Snip! */
    }
```