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Abstract

We introduce a novel discriminative model for
phrase-based monolingual alignment using a
semi-Markov CRF. Our model achieves state-
of-the-art alignment accuracy on two phrase-
based alignment datasets (RTE and para-
phrase), while doing significantly better than
other strong baselines in both non-identical
alignment and phrase-only alignment. Addi-
tional experiments highlight the potential ben-
efit of our alignment model to RTE, para-
phrase identification and question answering,
where even a naive application of our model’s
alignment score approaches the state of the art.

1 Introduction

Various NLP tasks can be treated as an alignment
problem: machine translation (aligning words in one
language with words in another language), ques-
tion answering (aligning question words with the an-
swer phrase), textual entailment recognition (align-
ing premise with hypothesis), paraphrase detection
(aligning semantically equivalent words), etc. Even
though most of these tasks involve only a single lan-
guage, alignment research has primarily focused on
the bilingual setting (i.e., machine translation) rather
than monolingual. Moreover, most work has con-
sidered token-based approaches over phrase-based.1

Here we seek to address this imbalance by proposing
better phrase-based models for monolingual word
alignment.

⇤Performed while faculty at Johns Hopkins University.
1In this paper we use the term token-based alignment for

one-to-one alignment and phrase-based for non one-to-one
alignment, and word alignment in general for both.

Most token-based alignment models can extrin-
sically handle phrase-based alignment to some ex-
tent. For instance, in the case of NYC align-
ing to New York City, the single source word
NYC may align three times separately to the tar-
get words: NYC$New, NYC$York, NYC$City.
Or in the case of identical alignment, New York

City aligning to New York City is simply
New$New, York$York, City$City. How-
ever, it is not as clear how to token-align New York

(as a city) with New York City. The problem is
more prominent when aligning phrasal paraphrases
or multiword expressions, such as pass away and
kick the bucket. This suggests an intrinsi-
cally phrase-based alignment model.

The token aligner jacana-align (Yao et al., 2013a)
has achieved state-of-the-art result on the task of
monolingual alignment, based on previous work of
Blunsom and Cohn (2006). It employs a Conditional
Random Field (Lafferty et al., 2001) to align tokens
from the source sentence to tokens in the target sen-
tence, by treating source tokens as “observation” and
target tokens as “hidden states”. However, it is not
designed to handle phrase-based alignment, largely
due to the Markov nature of the underlying model:
a state can only span one token each time, making
it unable to align multiple consecutive tokens (i.e. a
phrase). We extend this model by introducing semi-
Markov states for phrase-based alignment: a state
can instead span multiple consecutive time steps,
thus aligning phrases on the source side. Also, we
merge phrases on the target side to phrasal states,
allowing the model to align phrases on the target
side as well. We evaluate the resulting semi-Markov



CRF model on the task of phrase-based alignment,
and then show a basic application in the NLP tasks
of recognizing textual entailment, paraphrase iden-
tification, and question answering sentence ranking.
The final phrase-based aligner is open-source.2

2 Related Work

Most work in monolingual alignment employs de-
pendency tree/graph matching algorithms, includ-
ing tree edit distance (Punyakanok et al., 2004;
Kouylekov and Magnini, 2005; Heilman and Smith,
2010; Yao et al., 2013b), Particle Swarm Optimiza-
tion (Mehdad, 2009), linear regression/classification
models (Chambers et al., 2007; Wang and Manning,
2010), and min-cut (Roth and Frank, 2012). These
works inherently only support token-based align-
ment, with phrase-like alignment achieved by first
merging tokens to phrases as a preprocessing step.

The MANLI aligner (MacCartney et al., 2008)
and its derivations (Thadani and McKeown, 2011;
Thadani et al., 2012) are the first known phrase-
based aligners specifically designed for aligning En-
glish sentence pairs. It applies discriminative per-
ceptron learning with various features and handles
phrase-based alignment of arbitrary phrase lengths.
MANLI suffers from slow decoding time due to its
large search space. This was optimized by Thadani
and McKeown (2011) through Integer Linear Pro-
gramming (ILP), where benefiting from modern ILP
solvers they showed an order-of-magnitude speedup
in decoding. Also, various syntactic constraints can
be easily added, significantly improving exact align-
ment match rate for whole sentence pairs. Besides
the common application of textual entailment and
question answering, monolingual alignment has also
been applied in the field of text generation (Barzilay
and Lee, 2003; Pang et al., 2003).

Word alignment has been more explored in ma-
chine translation. The IBM models (Brown et al.,
1993) allow many-to-one alignment and are essen-
tially asymmetric. Phrase-based MT historically
relied on heuristics (Koehn, 2010) to merge two
sets of word alignment in opposite directions to
yield phrasal alignment. Later, researchers explored
non-heuristic phrase-based methods. Among them,
Marcu and Wong (2002) described a joint proba-

2
http://code.google.com/p/jacana/

bility model that generates both the source and tar-
get sentences simultaneously. All possible pairs of
phrases in both sentences are enumerated and then
pruned with statistical evidence. Deng and Byrne
(2008) explored token-to-phrase alignment based
on HMM models (Vogel et al., 1996) by explic-
itly modeling the token-to-phrase probability and
phrase lengths. However, the token-to-phrase align-
ment is only in one direction: each target state still
only spans one source word, and thus alignment on
the source side is limited to tokens. Andrés-Ferrer
and Juan (2009) extended the HMM-based method
to Hidden Semi-Markov Models (HSMM) (Osten-
dorf et al., 1996), allowing phrasal alignments on
the source side. Finally, Bansal et al. (2011) unified
the HSMM models with the alignment by agreement
framework (Liang et al., 2006), achieving phrasal
alignment that agreed in both directions.

Despite successful usage of generative semi-
Markov models in bilingual alignment, this has not
been followed with models in discriminative mono-
lingual alignment. Essentially monolingual align-
ment would benefit more from discriminative mod-
els with various feature extractions (just like those
defined in MANLI) than generative models without
any predefined feature (just like how they were used
in bilingual alignment). To combine the strengths of
both semi-Markov models and discriminative train-
ing, we propose to use the semi-Markov Conditional
Random Field (Sarawagi and Cohen, 2004), which
was first used in information extraction to tag con-
tinuous segments of input sequences and outper-
formed conventional CRFs in the task of named en-
tity recognition. We describe this model in the fol-
lowing section.

3 The Alignment Model

Our objective is to define a model that supports
phrase-based alignment of arbitrary phrase length.
In this section we first describe a regular CRF
model that supports one-to-one token-based align-
ment (Blunsom and Cohn, 2006; Yao et al., 2013a),
then extend it to phrase-based alignment with the
semi-Markov model.



3.1 Token-based Model

Given a source sentence s of length M , and a target
sentence t of length N , the alignment from s to t is a
sequence of target word indices a, where ai2[1,M ] 2
[0, N ]. We specify that when ai = 0, source word si
is aligned to a NULL state, i.e., deleted. This models
a many-to-one alignment from source to target: mul-
tiple source words can be aligned to the same target
word, but not vice versa. One-to-many alignment
can be obtained by running the aligner in the other
direction. The probability of alignment sequence a
conditioned on both s and t is then:

p(a | s, t) =
exp(

P
i,k �kfk(ai�1, ai, s, t))

Z(s, t)

This assumes a first-order Conditional Random
Field (Lafferty et al., 2001). Since the word align-
ment task is evaluated over F1, instead of directly
optimizing it, we choose a much easier objective
(Gimpel and Smith, 2010) and add a cost function
to the normalizing function Z(s, t) in the denomi-
nator:

Z(s, t) =

X

â

exp(

X

i,k

�kfk(âi�1, âi, s, t)

+cost(ay, â))

where ay is the true alignments. cost(ay, â) can
be viewed as special “features” that encourage de-
coding to be consistent with true labels. It is only
computed during training in the denominator be-
cause in the numerator cost(ay,ay) = 0. Ham-
ming cost is used in practice without learning the
weights (i.e., uniform weights). The more inconsis-
tence there is between ay and â, the more penalized
is the decoding sequence â through the cost func-
tion.

3.2 Phrase-based Model

The token-based model supports 1 : 1 alignment.
We first extend it in the direction of ls : 1, where
a target state spans ls words on the source side (ls
source words align to 1 target word). Then we ex-
tend it in the direction of 1 : lt, where lt is the tar-
get phrase length a source word aligns to (1 source
word aligns to lt target words). The final combined
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Figure 1: A semi-Markov phrase-based model
example and the desired Viterbi decoding path.
Shaded horizontal circles represent the source
sentence (Shops are closed up for now

until March) and hollow vertical circles repre-
sent the hidden states with state IDs for the target
sentence (Shops are temporarily closed

down). State 0, a NULL state, is designated for dele-
tion. One state (e.g. state 3 and 15) can span multi-
ple consecutive source words (a semi-Markov prop-
erty) for aligning phrases on the source side. States
with an ID larger than the target sentence length
indicate “phrasal states” (states 6-15 in this exam-
ple), where consecutive target tokens are merged for
aligning phrases on the target side. Combining the
semi-Markov property and phrasal states yields for
instance, a 2⇥2 alignment between closed up in
the source and closed down in the target.

model supports ls : lt alignment. Throughout this
section we use Figure 1 as an illustrative example,
which shows phrasal alignment between the source
sentence: (Shops are closed up for now

until March) and the target sentence: (Shops
are temporarily closed down).
1 : 1 alignment is a special case of ls : 1 align-

ment where the target side state spans ls = 1 source
word, i.e., at each time step i, the source side word



si aligns to one state ai and the next aligned state
ai+1 only depends on the current state ai. This is
the Markovian property of the CRF. When ls > 1,
during the time frame [i, i + ls), all source words
[ai, ai+ls) share the same state ai. Or in other words,
the state ai “spans” the following ls time steps. The
Markovian property still holds “outside” the time
frame ls, i.e., ai+ls still only depends on ai, the pre-
vious state ls time steps ago. But “within” the time
frame ls, the Markovian property does not hold any
more: [ai, ..., ai+ls�1] are essentially the same state
ai. This is the semi-Markov property . States can be
distinguished by this property into two types: semi-
Markovian states and Markovian states.

We have generalized the regular CRF to a semi-
Markov CRF. Now we define it by generalizing the
feature function:

p(a | s, t) =
exp(

P
i,k,ls �kfk(ai�ls , ai, s, t))

Z(s, t)

At time i, the k-th feature function fk mainly
extracts features from the pair of source words
(si�ls , ..., si] and target word tai (still with a spe-
cial case that ai = 0 marks for deletion). Inference
is still Viterbi-like: except for the fact during maxi-
mization, the Viterbi algorithm not only checks the
previous one time step, but all ls time steps. Sup-
pose the allowed maximal source phrase length is
Ls, define Vi(a | s, t) as the highest score along the
decoding path until time i ending with state a:

Vi(a | s, t) = max

a1,a2,...ai�1
p(a1, a2, . . . , ai = a | s, t)

then the recursive maximization is:

Vi(a | s, t) = max

a0
max

ls=1...Ls

[Vi�ls(a
0 | s, t)

+ i(a
0
, a, ls, s, t)]

with factor:

 i(a
0
, a, ls, s, t) =

X

k

�kfk(a
0
i�ls , ai, s, t)

and the best alignment a can be obtained by back-
tracking the last state aM from VM (aM | s, t).

Training a semi-Markov CRF is very similar to
the inference, except for replacing maximization
with summation. The forward-backward algorithm
should also be used to dynamically compute the nor-
malization function Z(s, t). Compared to regular
CRFs, a semi-Markov CRF has a decoding time
complexity of O(LsMN2

), a constant factor Ls

(usually 3 or 4) slower.
To extend from 1 : 1 alignment to 1 : lt alignment

with one source word aligning to lt target words,
we simply explode the state space by Lt times with
Lt the maximal allowed target phrase length. Thus
the states can be represented as an N ⇥ Lt ma-
trix. The state at (j, lt) represents the target phrase
[tj , ..., tj+lt). In this paper we distinguish states by
three types: NULL state (j = 0, lt = 0), token state
(lt = 1) and phrasal state (lt > 1).

To efficiently store and compute these states, we
linearize the two dimensional matrix with a linear
function mapping uniquely between the state ID and
the target phrase offset/span. Suppose the target
phrase tj of length ltj 2 [1, Lt] holds a position
ptj 2 [1, N ], and the source word si is aligned to
this state (ptj , ltj ), a tuple for (position, span). Then
state ID asi is computed as:

asi(ptj , ltj ) =

(
ptj ltj = 1

N + (ptj � 1)⇥ Lt + ltj 1 < ltj  Lt

Assume in Figure 1, Lt = 2, then the state ID for
the phrasal state (5, 2) closed-down with ptj = 5

for the position of word down and ltj = 2 for the
span of 2 words (looking “backward” from the word
down) is: 5 + (5� 1)⇥ 2 + 2 = 15.

Similarly, given a state id asi , the original target
phrase position and length can be recovered through
integer division and modulation. Thus during decod-
ing, if one output state is 15, we would know that it
uniquely comes from the phrasal state (5,2), repre-
senting the target phrase closed down.

This two dimensional definition of state space ex-
pands the number of states from 1 + N to 1 +

LtN . Thus the decoding complexity becomes
O(M(LtN)

2
) = O(L2

tMN2
) with a usual value

of 3 or 4 for Lt.
Now we have defined separately the ls : 1 model

and the 1 : lt model. We can simply merge them to



have an ls : lt alignment model. The semi-Markov
property makes it possible for any target states to
align phrases on the source side, while the two di-
mensional state mapping makes it possible for any
source words to align phrases on the target side. For
instance, in Figure 1, the phrasal state a15 repre-
sents the two-word phrase closed down on the
target side, while still spanning for two words on the
source side, allowing a 2⇥ 2 alignment. State a15 is
phrasal, and at source word position 3 and 4 (span-
ning closed up) it is semi-Markovian. The final
decoding complexity is O(LsL

2
tMN2

), a factor of
30 ⇠ 60 times slower than the token-based model
(with a typical value of 3 or 4 for Ls and Lt).

In the following we describe features.

3.3 Feature Design

We reused features in the original token-based
model based on string similarity, POS tags, position,
WordNet, distortion and context. Then we used an
additional chunker to mark phrase boundaries only
for feature extraction:

Chunking Features are binary indicators of
whether the phrase types of two phrases match.
Also, we added indicators for mappings between
source phrase types and target phrase types, such as
“vp2np”, meaning that a verb phrase in the source is
mapped to a noun phrase in the target.

Moreover, we introduced the following lexical
features:

PPDB Features (Ganitkevitch et al., 2013) in-
clude various similarity scores derived from a para-
phrase database with 73 million phrasal and 8 mil-
lion lexical paraphrases. Various paraphrase condi-
tional probability was employed. For instance, for
the ADJP/VP phrase pair capable of and able

to, there are the following minus-log probabilities:

p(lhs|e1) = 0.1, p(lhs|e2) = 0.3, p(e1|lhs) = 5.0
p(e1|e2) = 1.3, p(e2|lhs) = 6.7, p(e2|e1) = 2.8

p(e1|e2, lhs) = 0.6, p(e2|e1, lhs) = 2.3

where e1/e2 are the phrase pair, and lhs is the
left hand side syntactic non-terminal symbol. We
did not use the syntactic part (e.g., the NP of

NNS $ the NNS of NP) of PPDB as we did not
make the assumption that the input sentence pairs
were well-formed (and newswire-like) English, or

even of a language with a parser available. Also, for
phrasal alignments, we ruled out those paraphrases
spanning multiple syntactic structures, or of differ-
ent syntactic structures (indicated as [X] in PPDB),
for instance, and crazy$ , mad.

Semantic Relatedness Feature is a single scaled
number in [0, 1] from the best performing system
(Han et al., 2013) of the *Sem 2013 Semantic Tex-
tual Similarity (STS) task. We included this fea-
ture mainly to deal with cases where “related” words
cannot be well measured by either paraphrases or
distributional similarities. For instance, in one align-
ment dataset annotators aligned married with
wife. Adding a few other words as comparison, the
Han et al. (2013) system gives the following similar-
ity scores:
married/wife: 0.85

married/husband: 0.84

married/child: 0.10

married/stone: 0.01

Name Phylogeny Feature (Andrews et al., 2012)
is a similarity feature with a string transducer to
model how one name evolves to another. Examples
below show how similar is the name Bill associ-
ated with other names in log probability:
Bill/Bill: -0.8

Bill/Billy: -5.2

Bill/William: -13.6

Bill/Mary: -18.6

Finally, one decision we made during feature
design was not to use any parsing-based features,
with a permissive assumption that the input might
not be well-formed English, or even not complete
sentences (such as fragmented snippets from web
search). The “deepest” linguistic processing stays at
the level of tagging and chunking, making the model
more easily extendable to other languages.

3.4 Feature Value

In this phrase-based model, the width of a state span
over the source words depends on the competition
between features fired on the phrases as a whole vs.
the consecutive but individual tokens. We found it
critical to assign feature values “fairly” among to-
kens and phrases to make sure that semi-Markov
states and phrasal states fire up often enough for
phrasal alignments.



train test length %align.

MSR06 800 800 29/11 36%
Edinburgh++ 715 305 22/22 78%

Table 1: Statistics of the two manually aligned cor-
pora, divided into training and test in sentence pairs.
The length column shows average lengths of source
and target sentences in a pair. %align. is the per-
centage of aligned tokens.

To illustrate this in a simplified way, take
closed up$closed down in Figure 1, and as-
sume the only feature is the normalized number of
matching tokens in the pair. Then this feature firing
on the following pairs would have values (the nor-
malization factor is the maximal phrase length):

closed$closed 1.0
closed up$closed 0.5
closed up$up 0.5

closed up$closed down 0.5
...$... ...

The desired alignment closed up$closed

down would not have survived the state com-
petition due to its weak feature value. In this
case the model would simply prefer a token align-
ment closed$closed and up$... (probably
NULL).

Thus we upweighted feature values by the max-
imum source or target phrase length to encour-
age phrasal alignments, in this case closed up

$closed down:1.0. Then this alignment would
have a better chance to be picked out with additional
features, such as with the PPDB and Semantic Relat-
edness Features, which are also upweighted by max-
imum phrase lengths.

4 Experiment

4.1 Data Preparation

There are two annotated datasets for training and
testing. MSR06

3 (Brockett, 2007) has annotated
alignments on the 2006 PASCAL RTE2 develop-
ment and test corpora, with 1600 pairs in total.

3
http://www.cs.biu.ac.il/

˜

nlp/files/RTE_

2006_Aligned.zip

1x1 1x2 1x3 2x2 2x3 3x3 more

MSR06 89.2 1.9 0.3 5.7 0.0 1.9 0.8
EDB++ 81.9 3.5 0.8 8.3 0.4 3.0 2.1

Table 2: Percentage of various alignment sizes
(undirectional, e.g., 1x2 and 2x1 are merged) af-
ter synthesizing phrasal alignment from token align-
ment in the training portion of two corpora.

Semantically equivalent words and phrases in the
premise and hypothesis sentences are aligned in a
manner analogous to alignments in statistical ma-
chine translation. This dataset is asymmetric: on
average the premises contain 29 words and the hy-
potheses 11 words. Edinburgh++

4 (Thadani et al.,
2012) is a revised version of the Edinburgh para-
phrase corpus(Cohn et al., 2008) with sentences
from the following resources: 1. the Multiple-
Translation Chinese corpus; 2. Jules Verne’s novel
Twenty Thousand Leagues Under the Sea. 3. the
Microsoft Research paraphrase corpus (Dolan et al.,
2004). The corpus is more balanced and symmetric:
the source and target sentences are both 22 words
long on average. Table 1 shows some statistics.

Both corpora contain mostly token-based align-
ment. For MSR06, MacCartney et al. (2008) showed
that setting the allowable phrase size to be greater
than one only increased F1 by 0.2%. For Ed-
inburgh++, the annotation guideline5 explicitly in-
structs to “prefer smaller alignments whenever pos-
sible”. Statistics shows that single token alignment
counts 96% and 95% of total alignments in these two
corpora separately. With such a heavy imbalance to-
wards only token-based alignment, a phrase-based
aligner would learn feature weights that award token
alignments more than phrasal alignments.

Thus we synthesized phrasal alignments from
continuous monotonic token alignments in these two
corpora. We first ran the OpenNLP chunker through
the corpora. Then for each phrase pair, if each token
in the source phrase is aligned to a token in the tar-
get phrase in a monotonic way, and vice versa, we

4
http://www.ling.ohio-state.edu/

˜

scott/

#edinburgh-plusplus

5
http://staffwww.dcs.shef.ac.uk/people/

T.Cohn/paraphrase_guidelines.pdf



merge these alignments to form one single phrasal
alignment.6 Table 2 lists the percentage of vari-
ous alignment sizes after the merge. Two obser-
vations can be made: first, the portion of phrasal
alignments increases to 10% ⇠ 20% after merging;
second, allowing a maximal phrase length of 3 cov-
ers 98% ⇠ 99% of total alignments, thus a phrase
length larger than 3 would be a bad trade-off for cov-
erage vs speed.

4.2 Baselines and Evaluation Metrics

MacCartney et al. (2008) and Yao et al. (2013a)
showed that the traditional MT bilingual aligner
GIZA++ (Och and Ney, 2003) presented weak re-
sults on the task of monolingual alignment. Thus
we instead used four other strong baselines:

Meteor (Denkowski and Lavie, 2011): a sys-
tem for evaluating machine translation by aligning
MT output with reference sentences. It is designed
for the task of monolingual alignment and supports
phrasal alignment. We used version 1.4 and default
weights to optimize by maximum accuracy.

MANLI-constraint (Thadani and McKeown,
2011): a re-implemented MANLI system with ILP-
powered decoding for speed and hard syntactic con-
straints to boost exact match rate, with reported
numbers on MSR06.

MANLI-joint (Thadani et al., 2012): an im-
proved version of MANLI-constraint that not only
models phrasal alignments, but also alignments be-
tween dependency arcs, with reported numbers on
the original Edinburgh paraphrase corpus.

jacana-token (Yao et al., 2013a): a token-
based aligner with state-of-the-art performance on
MSR06.

Note that the jacana-token aligner is open-source,
so we were able to re-train it with exactly the
same feature set used by our phrase-based model.
This allows a fair comparison of model performance
(token-based vs. phrase-based). The MANLI* sys-
tems are not available, thus we only reported their
numbers from published papers.

The standard evaluation metrics for alignments
are precision (P), recall (R), F1, and exact matching

6a few examples: two Atlanta-based

companies$two Atlanta companies, the

UK$the UK, the 17-year-old$the teenager,
was held$was held.

rate (E) based on either tokens (two tokens are con-
sidered aligned iff they are aligned) or phrases (two
tokens are considered aligned iff they are contained
within phrases that are aligned). Following Thadani
et al. (2012), we only report the results based on
token alignments (which allows a partial credit if
their containing phrases are not aligned), even for
the phrase-based alignment task. The reasoning is
that if a phrase-based aligner is already doing bet-
ter than a token aligner in terms of token alignment
scores, then the difference in terms of phrase align-
ment scores will be even larger. Thus showing the
superiority of token alignment scores is sufficient.

4.3 Implementation and Training

The elements in the phrase-based model: dynamic
state indices, semi-Markov and phrasal states, are
not typically found in standard CRF implementa-
tions. Thus we implemented the phrase-based model
in the Scala programming language, which is fully
interoperable with Java, using one semi-Markov
CRF package7 as a reference. We used the L2 reg-
ularizer and LBFGS for optimization. OpenNLP8

provided the POS tagger and chunker and JWNL9

interfaced with WordNet (Fellbaum, 1998).

4.4 Results

Table 3 gives scores (in bigger fonts) of different
aligners on MSR06 and Edinburgh++ and their cor-
responding phrasal versions. Overall, the token-
based aligner did the best on the original corpora, in
which single token alignment counts more than 95%

of total alignment. The phrase-based aligner did
slightly worse. We think the main reason was that it
output more phrasal alignment, which in turn harms
scores in token-based evaluation (for instance, if the
gold alignment is New$New, York$York, then
the phrasal alignment of New York$New York

would only have half the precision because it inher-
ently also aligns New in the source with York in
the target.). Further investigation showed that on the
Edinburgh++ corpus, over-generated phrase-based
alignment, when evaluated under just token align-
ment, contributed hurting about 1.1% of overall F1,

7
http://crf.sf.net

8
http://opennlp.apache.org/

9
http://jwordnet.sf.net/



a gap that would make the phrase aligner (85.9%)
outperform the token aligner (86.4%).

On the phrasal alignment corpora (represented by
MSR06P and EDB++P in Table 3), the phrase-based
aligner did significantly better. Note that the over-
all F1 and exact match rate are still much lower
than those scores obtained from the original corpora,
suggesting that the phrasal corpora present a much
harder task. Furthermore, as a more “fair” com-
parison between the two aligners, we synthesized
phrasal alignments from the output of the token-
based aligner, just as how the phrased-based corpora
were prepared, then evaluated its performance again.
Still, on the EDB++P corpus, the token aligner was
about 1.6% (current difference is 69.1% vs. 72.8%)
worse than the phrase-based aligner.

Also, we want to emphasize that since the token-
based aligner and the phrase-based aligner shared
exactly the same features and lexical resources, the
performance boost of the phrase-based aligner on
the phrasal corpora results from a better model de-
sign: it is the semi-Markov property and phrasal
states making the phrase-based aligner better.

To further investigate the performance of aligners
with respect to different types of alignment, we di-
vided the scores into those for identical alignments
(such as New$New) and non-identical alignments
(such as wife$spouse), indicated by the sub-
scripts i and n in Table 3. In terms of identical
alignment, most aligners were able to score more
than 90%, but for non-identical alignment there was
noticeable decrease. Still, on the phrasal alignment
corpora, the phrase-based model has a much larger
recall score for non-identical alignment than others.

We also divided scores with respect to token-only
alignment and phrase-only alignment. Due to space
limit, we only show results on synthesized Edin-
burgh++, in Table 4. Meteor and the token aligner
inherently have either very limited or no support for
phrasal alignment, thus they had very low scores
on phrase-only alignment. We then ran the align-
ers in two directions and merged the results with the
“union” MT heuristic to get better phrase support.
But that still did not bring F1p’s up to over 5%.

The phrase-based aligner baseline Meteor did
worse than our aligners. We think there are two rea-
sons: First, Meteor was not trained on these corpora.
Second, Meteor only does strict word, stem, syn-

System

P% R% F1%

E%

Pi/Pn Ri/Rn F1i/F1n

M
SR

06
(7

8.
6%

) Meteor
82.5 81.2 81.9

15.0
89.9/39.9 97.3/24.6 93.5/30.5

MANLI-cons. 89.5 86.2 87.8 33.0

token
93.6 83.5 88.3

32.1
96.6/77.7 96.9/35.6 96.8/48.8

phrase
92.1 82.8 86.8

29.1
95.7/65.0 95.9/34.7 95.8/45.2

29.1

M
SR

06
P

(5
9.

0%
) Meteor

82.5 68.3 74.7
7.3

89.9/40.1 97.3/8.8 93.5/14.5

token
92.9 66.1 77.2

13.5
95.5/77.5 94.3/11.1 94.9/19.5

13.5

phrase
83.5 77.0 80.1

14.3

94.9/55.5 94.2/48.1 94.5/51.5

ED
B

++
(7

5.
2%

) Meteor
88.3 80.5 84.2

12.7
94.0/61.4 97.8/24.1 95.9/34.7

MANLI-jnt* 76.6 83.8 79.2 12.2

token
91.3 82.0 86.4

15.0

96.4/63.9 97.4/36.4 96.9/46.4

phrase
90.4 81.9 85.9

13.7
96.0/57.4 97.8/38.3 96.9/46.0

13.7

ED
B

++
P

(5
1.

7%
) Meteor

88.4 60.6 71.9
2.9

94.0/61.9 97.0/6.5 95.5/11.7

token
90.7 55.8 69.1

2.3
96.2/58.6 91.3/7.1 93.7/12.7

2.3

phrase
82.3 65.3 72.8

1.6
95.6/60.4 93.1/34.3 94.4/43.8

Table 3: Results on original (mostly token) and phrasal
(P) alignment corpora, where (x%) indicates how much
alignment is identical alignment, such as New$New. E%
stands for exact (perfect) match rate. Subscript i stands
for corresponding scores for “identical” alignment and n
for “non-identical”. *: scores of MANLI-joint were for
the original Edinburgh corpus instead of Edinburgh++
(with hand corrections) so it is not a direct comparison.

onym and paraphrase matching but does not use any
string similarity measures; this can be supported by
the large difference between, for instance, F1i and
F1n. In general Meteor did well on identical align-
ment, but not so well on non-identical alignment.

5 Applications

Natural language alignment can be applied to vari-
ous NLP tasks. While how to most effectively apply



System

P% R% F1%

E%

Pt/Pp Rt/Rp F1t/F1p

ED
B

++
P

Meteor
88.4 60.6 71.9

2.9

59.5/14.9 90.6/1.1 71.8/2.0

token
90.7 55.8 69.1

2.3
59.4/21.4 85.5/0.9 70.1/1.7

2.3

phrase
82.3 65.3 72.8

1.6
73.3/48.0 73.5/44.2 73.4/46.0

Table 4: Same results on the phrasal Edinburgh++ cor-
pus but with scores divided by token-only alignment
(subscript t) and phrase-only alignment (subscript p).

it is another topic, we simply show in this section us-
ing just alignment scores in binary prediction prob-
lems. Specifically, we pick the tasks of recognizing
textual entailment (RTE), paraphrase identification
(PP), and question answering sentence ranking (QA)
described in Heilman and Smith (2010):

RTE: predicting whether a hypothesis can be in-
ferred from the premise, with training data from
RTE-1/2 and RTE-3 dev, and test from RTE-3 test.

PP: predicting whether two sentences are para-
phrases, with training and test data from the MSR
Paraphrase Corpus (Dolan et al., 2004).

QA: predicting whether a sentence contains the
answer to the question, with training data from
TREC-8 to TREC-12 and test data from TREC-13.

For each aligned pair, we can compute a normal-
ized decoding score. Following MacCartney et al.
(2008), we select a threshold score and predict true
if the decoding score is above this threshold. For the
tasks of RTE and PP, we tuned this threshold w.r.t
the maximal accuracy on the training set, then re-
ported performance on the test set. For the task of
QA, since the evaluation methods in Mean Average
Precision and Mean Reciprocal Rank only need a
ranked list of answer sentences, and the scores on
the test set are sufficient to provide the ranking, we
did not tune anything on training but instead directly
ran the aligner on the test set. All three tasks shared
the same aligner model trained on the superset of
MSR06 and Edinburgh++. Results are reported in
Table 5. We could not report on Meteor as Meteor
does not explicitly output alignment scores.

We did not expect the aligners to beat any of the

system A% P% R%

de Marneffe et al. (2006) 60.5 61.8 60.2
MacCartney and Manning (2008) 64.3 65.5 63.9

Heilman and Smith (2010) 62.8 61.9 71.2

the token aligner 59.1 61.2 55.4
our phrasal aligner 57.6 57.2 68.8

(a) Recognizing Textual Entailment

system A% P% R%

Wan et al. (2006) 75.6 77 90
Das and Smith (2009) 73.9 74.9 91.3

Heilman and Smith (2010) 73.2 75.7 87.8
the token aligner 70.0 72.6 88.1

our phrasal aligner 68.1 68.6 95.8

(b) Paraphrase Identification

system MAP MRR

Cui et al. (2005) 0.4271 0.5259
Wang et al. (2007) 0.6029 0.6852

Heilman and Smith (2010) 0.6091 0.6917
Yao et al. (2013b) 0.6307 0.7477

the token aligner 0.5982 0.6582
our phrasal aligner 0.6165 0.7333

(c) Question Answering Sentence Ranking

Table 5: Results (Accuracy, Precision, Recall, Mean
Average Precision, Mean Reciprocal Rank) on the
tasks of RTE, PP and QA.

state-of-the-art result since no sophisticated models
were additionally used but only the alignment score.
Still, the aligners showed competitive performance.
It still follows the pattern from the alignment exper-
iment that the phrasal aligner had higher recall and
lower precision than the token aligner in the task of
RTE and PP. In the QA task, the phrasal aligner per-
formed better than all systems except for the top one.

6 Conclusion

We have introduced a phrase-to-phrase alignment
model based on semi-Markov Conditional Random
Fields. The combination of semi-Markov states and
phrasal states makes phrasal alignment on both the
source and target sides possible. The final phrase-



based aligner performed the best on two phrasal
alignment corpora and showed its potential usage
in three NLP tasks. Future work includes aligning
discontinuous (gappy) phrases and integrating align-
ment more closely in NLP applications.
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