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Abstract

Previous work on paraphrase extraction and
application has relied on either parallel
datasets, or on distributional similarity met-
rics over large text corpora. Our approach
combines these two orthogonal sources of in-
formation and directly integrates them into
our paraphrasing system’s log-linear model.
We compare different distributional similar-
ity feature-sets and show significant improve-
ments in grammaticality and meaning reten-
tion on the example text-to-text generation
task of sentence compression, achieving state-
of-the-art quality.

1 Introduction

A wide variety of applications in natural language
processing can be cast in terms of text-to-text gen-
eration. Given input in the form of natural lan-
guage, a text-to-text generation system produces
natural language output that is subject to a set of
constraints. Compression systems, for instance, pro-
duce shorter sentences. Paraphrases, i.e. differ-
ing textual realizations of the same meaning, are a
crucial components of text-to-text generation sys-
tems, and have been successfully applied to tasks
such as multi-document summarization (Barzilay et
al., 1999; Barzilay, 2003), query expansion (An-
ick and Tipirneni, 1999; Riezler et al., 2007), ques-
tion answering (McKeown, 1979; Ravichandran and
Hovy, 2002), sentence compression (Cohn and La-
pata, 2008; Zhao et al., 2009), and simplification
(Wubben et al., 2012).

Paraphrase collections for text-to-text generation
have been extracted from a variety of different cor-
pora. Several approaches rely on bilingual paral-

lel data (Bannard and Callison-Burch, 2005; Zhao
et al., 2008; Callison-Burch, 2008; Ganitkevitch et
al., 2011), while others leverage distributional meth-
ods on monolingual text corpora (Lin and Pantel,
2001; Bhagat and Ravichandran, 2008). So far, how-
ever, only preliminary studies have been undertaken
to combine the information from these two sources
(Chan et al., 2011).

In this paper, we describe an extension of Gan-
itkevitch et al. (2011)’s bilingual data-based ap-
proach. We augment the bilingually-sourced para-
phrases using features based on monolingual distri-
butional similarity. More specifically:

• We show that using monolingual distributional
similarity features improves paraphrase quality
beyond what we can achieve with features esti-
mated from bilingual data.

• We define distributional similarity for para-
phrase patterns that contain constituent-level
gaps, e.g.

sim(one JJ instance of NP , a JJ case of NP).

This generalizes over distributional similarity
for contiguous phrases.

• We compare different types of monolingual
distributional information and show that they
can be used to achieve significant improve-
ments in grammaticality.

• Finally, we compare our method to several
strong baselines on the text-to-text generation
task of sentence compression. Our method
shows state-of-the-art results, beating a purely
bilingually sourced paraphrasing system.
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Figure 1: Pivot-based paraphrase extraction for con-
tiguous phrases. Two phrases translating to the same
phrase in the foreign language are assumed to be
paraphrases of one another.

2 Background

Approaches to paraphrase extraction differ based on
their underlying data source. In Section 2.1 we out-
line pivot-based paraphrase extraction from bilin-
gual data, while the contextual features used to de-
termine closeness in meaning in monolingual ap-
proaches is described in Section 2.2.

2.1 Paraphrase Extraction via Pivoting
Following Ganitkevitch et al. (2011), we formulate
our paraphrases as a syntactically annotated syn-
chronous context-free grammar (SCFG) (Aho and
Ullman, 1972; Chiang, 2005). An SCFG rule has
the form:

r = C → 〈f, e,∼, ~ϕ〉,
where the left-hand side of the rule, C, is a nonter-
minal and the right-hand sides f and e are strings
of terminal and nonterminal symbols. There is a
one-to-one correspondency between the nontermi-
nals in f and e: each nonterminal symbol in f has
to also appear in e. The function ∼ captures this bi-
jective mapping between the nonterminals. Drawing
on machine translation terminology, we refer to f as
the source and e as the target side of the rule.

Each rule is annotated with a feature vector of fea-
ture functions ~ϕ = {ϕ1...ϕN} that, using a corre-
sponding weight vector ~λ, are combined in a log-
linear model to compute the cost of applying r:

cost(r) = −
N∑

i=1

λi logϕi. (1)

A wide variety of feature functions can be formu-
lated. We detail the feature-set used in our experi-
ments in Section 4.
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Figure 2: Extraction of syntactic paraphrases via the
pivoting approach: We aggregate over different sur-
face realizations, matching the lexicalized portions
of the rule and generalizing over the nonterminals.

To extract paraphrases we follow the intuition that
two English strings e1 and e2 that translate to the
same foreign string f can be assumed to have the
same meaning, as illustrated in Figure 1.1

First, we use standard machine translation meth-
ods to extract a foreign-to-English translation gram-
mar from a bilingual parallel corpus (Koehn, 2010).
Then, for each pair of translation rules where the
left-hand side C and foreign string f match:

r1 = C → 〈f, e1,∼1, ~ϕ1〉
r2 = C → 〈f, e2,∼2, ~ϕ2〉,

we pivot over f to create a paraphrase rule rp:

rp = C → 〈e1, e2,∼p, ~ϕp〉,

with a combined nonterminal correspondency func-
tion ∼p. Note that the common source side f im-
plies that e1 and e2 share the same set of nonterminal
symbols.

The paraphrase feature vector ~ϕp is computed
from the translation feature vectors ~ϕ1 and ~ϕ2 by
following the pivoting idea. For instance, we esti-
mate the conditional paraphrase probability p(e2|e1)
by marginalizing over all shared foreign-language
translations f :

p(e2|e1) =
∑

f

p(e2, f |e1) (2)

=
∑

f

p(e2|f, e1)p(f |e1) (3)

≈
∑

f

p(e2|f)p(f |e1). (4)

1See Yao et al. (2012) for an analysis of this assumption.



twelve cartoons insulting the prophet mohammad
CD NNS JJ DT NNP

NP

NP
VP

NP

DT+NNP

12 the prophet mohammad
CD NNS JJ DT NNP

NP

NP
VP

NP

DT+NNP

cartoons offensiveof the that are to

Figure 3: An example of a synchronous paraphras-
tic derivation, here a sentence compression. Shaded
words are deleted in the indicated rule applications.

Figure 2 illustrates syntax-constrained pivoting and
feature aggregation over multiple foreign language
translations for a paraphrase pattern.

After the SCFG has been extracted, it can be used
within standard machine translation machinery, such
as the Joshua decoder (Ganitkevitch et al., 2012).
Figure 3 shows an example for a synchronous para-
phrastic derivation produced as a result of applying
our paraphrase grammar in the decoding process.

The approach outlined relies on aligned bilingual
texts to identify phrases and patterns that are equiva-
lent in meaning. When extracting paraphrases from
monolingual text, we have to rely on an entirely dif-
ferent set of semantic cues and features.

2.2 Monolingual Distributional Similarity

Methods based on monolingual text corpora mea-
sure the similarity of phrases based on contextual
features. To describe a phrase e, we define a set of
features that capture the context of an occurrence of
e in our corpus. Writing the context vector for the
i-th occurrence of e as ~se,i, we can aggregate over
all occurrences of e, resulting in a distributional sig-
nature for e, ~se =

∑
i ~se,i. Following the intuition

that phrases with similar meanings occur in similar
contexts, we can then quantify the goodness of e′ as
a paraphrase of e by computing the cosine similarity
between their distributional signatures:

sim(e, e′) =
~se · ~se′
|~se||~se′ |

.

A wide variety of features have been used to de-
scribe the distributional context of a phrase. Rich,

linguistically informed feature-sets that rely on de-
pendency and constituency parses, part-of-speech
tags, or lemmatization have been proposed in widely
known work such as by Church and Hanks (1991)
and Lin and Pantel (2001). For instance, a phrase
is described by the various syntactic relations it has
with lexical items in its context, such as: “for what
verbs do we see with the phrase as the subject?”, or
“what adjectives modify the phrase?”.

However, when moving to vast text collections or
collapsed representations of large text corpora, lin-
guistic annotations can become impractically expen-
sive to produce. A straightforward and widely used
solution is to fall back onto lexical n-gram features,
e.g. “what words or bigrams have we seen to the left
of this phrase?” A substantial body of work has fo-
cussed on using this type of feature-set for a variety
of purposes in NLP (Lapata and Keller, 2005; Bha-
gat and Ravichandran, 2008; Lin et al., 2010; Van
Durme and Lall, 2010).

2.3 Other Related Work

Recently, Chan et al. (2011) presented an initial in-
vestigation into combining phrasal paraphrases ob-
tained through bilingual pivoting with monolingual
distributional information. Their work investigated
a reranking approach and evaluated their method via
a substitution task, showing that the two sources of
information are complementary and can yield im-
provements in paraphrase quality when combined.

3 Incorporating Distributional Similarity

In order to incorporate distributional similarity in-
formation into the paraphrasing system, we need
to calculate similarity scores for the paraphrastic
SCFG rules in our grammar. For rules with purely
lexical right-hand sides e1 and e2 this is a simple
task, and the similarity score sim(e1, e2) can be di-
rectly included in the rule’s feature vector ~ϕ. How-
ever, if e1 and e2 are long, their occurrences become
sparse and their similarity can no longer be reliably
estimated. In our case, the right-hand sides of our
rules often contain gaps and computing a similarity
score is less straightforward.

Figure 4 shows an example of such a discontin-
uous rule and illustrates our solution: we decom-
pose the discontinuous patterns that make up the
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Figure 4: Scoring a rule by extracting and scoring
contiguous phrases consistent with the alignment.
The overall score of the rule is determined by av-
eraging across all pairs of contiguous subphrases.

right-hand sides of a rule r into pairs of contiguous
phrases P(r) = {〈e, e′〉}, for which we can look
up distributional signatures and compute similarity
scores. This decomposition into phrases is non-
trivial, since our sentential paraphrase rules often
involve significant reordering or structural changes.
To avoid comparing unrelated phrase pairs, we re-
quire P(r) to be consistent with a token alignment
a. The alignment is defined analogously to word
alignments in machine translation, and computed by
treating the source and target sides of our paraphrase
rules as a parallel corpus.

We define the overall similarity score of the rule
to be the average of the similarity scores of all ex-
tracted phrase pairs:

sim(r,a) =
1

|P(a)|
∑

(e,e′)∈P(a)

sim(e, e′).

Since the distributional signatures for long, rare
phrases may be computed from only a handful of
occurrences, we additionally query for the shorter
sub-phrases that are more likely to have been ob-
served often enough to have reliable signatures and
thus similarity estimates.

Our definition of the similarity of two discon-
tinuous phrases substantially differs from others in
the literature. This difference is due to a differ-
ence in motivation. Lin and Pantel (2001), for in-
stance, seek to find new paraphrase pairs by compar-
ing their arguments. In this work, however, we try
to add orthogonal information to existing paraphrase
pairs. Both our definition of pattern similarity and
our feature-set (see Section 4.3) are therefore geared

towards comparing the substitutability and context
similarity of a pair of paraphrases.

Our two similarity scores are incorporated into
the paraphraser as additional rule features in ~ϕ,
simngram and simsyn , respectively. We estimate the
corresponding weights along with the other λi as de-
tailed in Section 4.

4 Experimental Setup

4.1 Task: Sentence Compression

To evaluate our method on a real text-to-text appli-
cation, we use the sentence compression task. To
tune the parameters of our paraphrase system for
sentence compression, we need an appropriate cor-
pus of reference compressions. Since our model is
designed to compress by paraphrasing rather than
deletion, the commonly used deletion-based com-
pression data sets like the Ziff-Davis corpus are not
suitable. We thus use the dataset introduced in our
previous work (Ganitkevitch et al., 2011).

Beginning with 9570 tuples of parallel English–
English sentences obtained from multiple reference
translations for machine translation evaluation, we
construct a parallel compression corpus by select-
ing the longest reference in each tuple as the source
sentence and the shortest reference as the target sen-
tence. We further retain only those sentence pairs
where the compression ratio cr falls in the range
0.5 < cr ≤ 0.8. From these, we select 936 sen-
tences for the development set, as well as 560 sen-
tences for a test set that we use to gauge the perfor-
mance of our system.

We contrast our distributional similarity-informed
paraphrase system with a pivoting-only baseline, as
well as an implementation of Clarke and Lapata
(2008)’s state-of-the-art compression model which
uses a series of constraints in an integer linear pro-
gramming (ILP) solver.

4.2 Baseline Paraphrase Grammar

We extract our paraphrase grammar from the
French–English portion of the Europarl corpus (ver-
sion 5) (Koehn, 2005). The Berkeley aligner (Liang
et al., 2006) and the Berkeley parser (Petrov and
Klein, 2007) are used to align the bitext and parse
the English side, respectively. The paraphrase gram-
mar is produced using the Hadoop-based Thrax
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Figure 5: An example of the n-gram feature extrac-
tion on an n-gram corpus. Here, “the long-term” is
seen preceded by “revise” (43 times) and followed
by “plans” (97 times). The corresponding left- and
right-side features are added to the phrase signature
with the counts of the n-grams that gave rise to them.

grammar extractor’s paraphrase mode (Ganitkevitch
et al., 2012). The syntactic nonterminal labels we
allowed in the grammar were limited to constituent
labels and CCG-style slashed categories. Paraphrase
grammars extracted via pivoting tend to grow very
large. To keep the grammar size manageable, we
pruned away all paraphrase rules whose phrasal
paraphrase probabilities p(e1|e2) or p(e2|e1) were
smaller than 0.001.

We extend the feature-set used in Ganitkevitch et
al. (2011) with a number of features that aim to bet-
ter describe a rule’s compressive power: on top of
the word count features wcountsrc and wcount tgt

and the word count difference feature wcountdiff ,
we add character based count and difference features
ccountsrc , ccount tgt , and ccountdiff , as well as log-
compression ratio features wordcr = log

wcount tgt
wcountsrc

and the analogously defined charcr = log
ccount tgt
ccountsrc

.
For model tuning and decoding we used the

Joshua machine translation system (Ganitkevitch et
al., 2012). The model weights are estimated using an
implementation of the PRO tuning algorithm (Hop-
kins and May, 2011), with PRÉCIS as our objective
function (Ganitkevitch et al., 2011). The language
model used in our paraphraser and the Clarke and
Lapata (2008) baseline system is a Kneser-Ney dis-
counted 5-gram model estimated on the Gigaword
corpus using the SRILM toolkit (Stolcke, 2002).
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Figure 6: An example of the syntactic feature-
set. The phrase “the long-term” is annotated with
position-aware lexical and part-of-speech n-gram
features (e.g. “on to” on the left, and “investment”
and “NN” to its right), labeled dependency links
(e.g. amod − investment) and features derived
from the phrase’s CCG label NP/NN .

4.3 Distributional Similarity Model

To investigate the impact of the feature-set used to
construct distributional signatures, we contrast two
approaches: a high-coverage collection of distribu-
tional signatures with a relatively simple feature-set,
and a much smaller set of signatures with a rich, syn-
tactically informed feature-set.

4.3.1 n-gram Model

The high-coverage model (from here on: n-gram
model) is drawn from a web-scale n-gram corpus
(Brants and Franz, 2006; Lin et al., 2010). We ex-
tract signatures for phrases up to a length of 4. For
each phrase p we look at n-grams of the form wp
and pv, where w and v are single words. We then
extract the corresponding features wleft and vright .
The feature count is set to the count of the n-gram,
reflecting the frequency with which p was preceded
or followed, respectively, by w and v in the data the
n-gram corpus is based on. Figure 5 illustrates this
feature extraction approach. The resulting collection
comprises distributional signatures for the 200 mil-
lion most frequent 1-to-4-grams in the n-gram cor-
pus.



4.3.2 Syntactic Model
For the syntactically informed signature model

(from here on: syntax model), we use the
constituency and dependency parses provided in
the Annotated Gigaword corpus (Napoles et al.,
2012). We limit ourselves to the Los Angeles
Times/Washington Post portion of the corpus and
extract phrases up to a length of 4. The following
feature set is used to compute distributional signa-
tures for the extracted phrases:

• Position-aware lexical and part-of-speech uni-
gram and bigram features, drawn from a three-
word window to the right and left of the phrase.

• Features based on dependencies for both links
into and out of the phrase, labeled with the cor-
responding lexical item and POS. If the phrase
corresponds to a complete subtree in the con-
stituency parse we additionally include lexical
and POS features for its head word.

• Syntactic features for any constituents govern-
ing the phrase, as well as for CCG-style slashed
constituent labels for the phrase. The latter are
split in governing constituent and missing con-
stituent (with directionality).

Figure 6 illustrates the syntax model’s feature ex-
traction for an example phrase occurrence. Using
this method we extract distributional signatures for
over 12 million 1-to-4-gram phrases.

4.3.3 Locality Sensitive Hashing
Collecting distributional signatures for a large

number of phrases quickly leads to unmanageably
large datasets. Storing the syntax model’s 12 mil-
lion signatures in a compressed readable format,
for instance, requires over 20GB of disk space.
Like Ravichandran et al. (2005) and Bhagat and
Ravichandran (2008), we rely on locality sensitive
hashing (LSH) to make the use of these large collec-
tions practical.

In order to avoid explicitly computing the fea-
ture vectors, which can be memory intensive for fre-
quent phrases, we chose the online LSH variant de-
scribed by Van Durme and Lall (2010), as imple-
mented in the Jerboa toolkit (Van Durme, 2012).
This method, based on the earlier work of Indyk and

Motwani (1998) and Charikar (2002), approximates
the cosine similarity between two feature vectors
based on the Hamming distance in a dimensionality-
reduced bitwise representation. Two feature vec-
tors u, v each of dimension d are first projected
through a d×b random matrix populated with draws
from N (0, 1). We then convert the resulting b-
dimensional vectors into bit-vectors by setting each
bit of the signature conditioned on whether the cor-
responding projected value is less than 0. Now,
given the bit signatures h(~u) and h(~v), we can ap-
proximate the cosine similarity of u and v as:

sim ′(u, v) = cos
(D(h(~u), h(~v))

b
π
)
,

where d(·, ·) is the Hamming distance. In our ex-
periments we use 256-bit signatures. This reduces
the memory requirements for the syntax model to
around 600MB.

5 Evaluation Results

To rate the quality of our output, we solicit human
judgments of the compressions along two five-point
scales: grammaticality and meaning preservation.
Judges are instructed to decide how much the mean-
ing from a reference translation is retained in the
compressed sentence, with a score of 5 indicating
that all of the important information is present, and
1 being that the compression does not retain any of
the original meaning. Similarly, a grammar score
of 5 indicates perfect grammaticality, while a score
of 1 is assigned to sentences that are entirely un-
grammatical. We ran our evaluation on Mechani-
cal Turk, where a total of 126 judges provided 3 re-
dundant judgments for each system output. To pro-
vide additional quality control, our HITs were aug-
mented with both positive and negative control com-
pressions. For the positive control we used the refer-
ence compressions from our test set. Negative con-
trol was provided by adding a compression model
based on random word deletions to the mix.

In Table 1 we compare our distributional
similarity-augmented systems to the plain pivoting-
based baseline and the ILP approach. The compres-
sion ratios of the paraphrasing systems are tuned to
match the average compression ratio seen on the de-
velopment and test set. The ILP system is config-



ured to loosely match this ratio, as to not overly con-
strain its search space. Our results indicate that the
paraphrase approach significantly outperforms ILP
on meaning retention. However, the baseline sys-
tem shows notable weaknesses in grammaticality.
Adding the n-gram distributional similarity model
to the paraphraser recovers some of the difference in
grammaticality while simultaneously yielding some
gain in the compressions’ meaning retention. Mov-
ing to distributional similarity estimated on the syn-
tactic feature-set yields additional improvement, de-
spite the model’s lower coverage.

It is known that human evaluation scores correlate
linearly with the compression ratio produced by a
sentence compression system (Napoles et al., 2011).
Thus, to ensure fairness in our comparisons, we pro-
duce a pairwise comparison breakdown that only
takes into account compressions of almost identical
length.2 Figure 7 shows the results of this analysis,
detailing the number of wins and ties in the human
judgements.

We note that the gains in meaning retention over
both the baseline and the ILP system are still present
in the pairwise breakdown. The gains over the
paraphrasing baseline, as well as the improvement
in meaning over ILP are statistically significant at
p < 0.05 (using the sign test).

We can observe that there is substantial overlap
between the baseline paraphraser and the n-gram
model, while the syntax model appears to yield no-
ticeably different output far more often.

Table 2 shows two example sentences drawn from
our test set and the compressions produced by the
different systems. It can be seen that both the
paraphrase-based and ILP systems produce good
quality results, with the paraphrase system retaining
the meaning of the source sentence more accurately.

6 Conclusion

We presented a method to incorporate monolingual
distributional similarity into linguistically informed
paraphrases extracted from bilingual parallel data.
Having extended the notion of similarity to dis-
contiguous pattern with multi-word gaps, we inves-
tigated the effect of using feature-sets of varying

2We require the compressions to be within ±10% length of
one another.
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Figure 7: A pairwise breakdown of the human judg-
ments comparing the systems. Dark grey regions
show the number of times the two systems were tied,
and light grey shows how many times one system
was judged to be better than the other.

CR Meaning Grammar
Reference 0.80 4.80 4.54

ILP 0.74 3.44 3.41
PP 0.78 3.53 2.98

PP + n-gram 0.80 3.65 3.16
PP + syntax 0.79 3.70 3.26

Random Deletions 0.78 2.91 2.53

Table 1: Results of the human evaluation on longer
compressions: pairwise compression rates (CR),
meaning and grammaticality scores. Bold indicates
a statistically significance difference at p < 0.05.

complexity to compute distributional similarity for
our paraphrase collection. We conclude that, com-
pared to a simple large-scale model, a rich, syntax-
based feature-set, even with significantly lower cov-
erage, noticeably improves output quality in a text-
to-text generation task. Our syntactic method sig-
nificantly improves grammaticality and meaning re-
tention over a strong paraphrastic baseline, and of-
fers substantial gains in meaning retention over a
deletion-based state-of-the-art system.
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Source should these political developments have an impact on sports ?

Reference should these political events affect sports ?

Syntax should these events have an impact on sports ?

n-gram these political developments impact on sports ?

PP should these events impact on sports ?

ILP political developments have an impact

Source now we have to think and make a decision about our direction and choose only one way .
thanks .

Reference we should ponder it and decide our path and follow it , thanks .

Syntax now we think and decide on our way and choose one way . thanks .

n-gram now we have and decide on our way and choose one way . thanks .

PP now we have and decide on our way and choose one way . thanks .

ILP we have to think and make a decision and choose way thanks

Table 2: Example compressions produced by our systems and the baselines Table 1 for three input sentences
from our test data.
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