
n k

n

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 157–166

Hierarchical Phrase-Based Grammar Extraction in Joshua
Suffix Arrays and Prefix Trees

Lane Schwartz, Chris Callison-Burch

Abstract
While example-based machine translation has long used corpus information at run-time,

statistical phrase-based approaches typically include a preprocessing stage where an aligned
parallel corpus is split into phrases, and parameter values are calculated for each phrase using
simple relative frequency estimates. This paper describes an open source implementation of
the crucial algorithms presented in (Lopez, 2008) which allow direct run-time calculation of
SCFG translation rules in Joshua.

1. Introduction
A significant amount of the recent research in statistical machine translation has

focused on modeling translation based on contiguous strings of words, called phrases, in
the source language and corresponding phrases in the target language. Phrase-based
translation (Och, Tillmann, and Ney, 1999, Koehn, Och, and Marcu, 2003, Marcu
and Wong, 2002, Och and Ney, 2004) have proved to be very successful, and many
state-of-the-art machine translation systems are based on these approaches.

A critical component in phrase-based translation is the estimation of a transla-
tion model from a word-aligned parallel text. A phrase table containing the source
phrases, their target translations and their associated probabilities that is typically
extracted in a preprocessing stage before decoding a test set (Koehn, Och, and Marcu,
2003, Kumar, Deng, and Byrne, 2006). An example of this preprocessing approach is
found in the training scripts provided as part of the open source phrase-based Moses
toolkit (Koehn et al., 2007). Hierarchical phrase-based translation (Chiang, 2005)
extends phrase-based translation by allowing phrases with gaps, modeled as a syn-
chronous context-free grammar (SCFG). The original Hiero implementation (Chiang,

c© 2010 PBML. All rights reserved.
Please cite this article as: Lane Schwartz, Chris Callison-Burch, Hierarchical Phrase-Based Grammar
Extraction in Joshua: Suffix Arrays and Prefix Trees. The Prague Bulletin of Mathematical Linguistics
No. 93, 2010, 157–166.

PBML 93 JANUARY 2010

2007) trains its SFCG translation model in a similar preprocessing stage.
By contrast, example-based machine translation (EBMT) approaches (Nagao, 1981,

Sato and Nagao, 1990, Somers, 2003) are notable for their use of aligned parallel cor-
pora at run time. EBMT research has successfully explored how various efficient data
structures for pattern matching (Brown, 2004) can be leveraged to allow the decoder
to access at decode-time portions of the training text that are most relevant to the
text currently being translated. The Cunei machine translation toolkit (Phillips and
Brown, 2009) is an open source, statistical EBMT system that follows this approach.

Suffix arrays are compact data structures which allow efficient pattern matching
to be performed over all text in a corpus (Manber and Myers, 1990). Callison-Burch,
Bannard, and Schroeder (2005) and Zhang and Vogel (2005) showed that suffix arrays
can be adapted to allow phrase-based translation to calculate translation options for
the translation model at run-time. A subsample of occurrences of given source phrase
are used to calculate translation probabilities. By accessing the target corpus and
word alignment data, the phrasal translations and their associated model parameters
can be calculated at run-time. Lopez (2007) showed that hierarchical phrases can also
by obtained at run time using a suffix array.

This article reports on an implementation of the basic techniques described in
Lopez (2008) that was incoporated into the open source machine translation system
Joshua (Li et al., 2009). The implementation described here enables users of Joshua to
begin translating sentences using an aligned parallel corpus without having to extract
an SCFG before decoding begins. The advantages of using this implementation are
that any input sentence can be decoded (making it appropriate for live demos or real
world use), and that the data structures require much less disk space than full phrase
tables. This comes at the cost of slower running time for the decoder itself, since
phrase translations have to be calculated on the fly.

2. Related Work

While example-based machine translation has long used corpus information at run-
time, statistical phrase-based approaches typically include a preprocessing stage where
an aligned parallel corpus is split into phrases, and parameter values are calculated
for each phrase using simple relative frequency estimates. The phrase-based decoders
Pharaoh (Koehn, 2004) and Moses (Koehn et al., 2007) take this approach, providing
users with scripts to estimate a translation model from a sentence-aligned parallel cor-
pus. Similarly, Hiero (Chiang, 2007) and the syntax-augmented machine translation
(SAMT) system (Zollmann and Venugopal, 2006) both require a preprocessing stage
to extract a SCFG translation model. Recent work in Moses (Huang and Koehn, p.c.)
provides similar functionality for extracting an SCFG-based translation model during
a preprocessing stage.

Callison-Burch, Bannard, and Schroeder (2005), Zhang and Vogel (2005), and
Lopez (2008) all describe implementations of traditional phrase-based models extended

2

L. Schwartz, C. Callison-Burch Grammar Extraction (157–166)

to take advantage of suffix array data structures to extract phrase translation options
at run-time. However, functional open source implementations of these have yet to be
made available. Preliminary work has investigated integrating these techniques into
Moses, but this work is not complete.1

Lopez (2008) provides a fast implementation of SCFG grammar extraction for Hiero
which uses suffix arrays. This implementation allows Hiero to use an aligned parallel
corpus at run-time in lieu of a pre-extracted SCFG. However, this implementation is
not available as open source software due to intellectual property restrictions imposed
by the University of Maryland. Cunei (Phillips and Brown, 2009)2 is a statistical open
source EBMT system that uses suffix arrays to extract relevant phrase pairs from an
aligned parallel corpus at run-time.

3. Implementation: Data Structures and Algorithms

To extract hierarchical translation rules at run-time, the decoder must have access
to the aligned parallel corpus. Internally, Joshua treats all source and target words as
32-bit integers. Each unique string that is encountered is assigned a unique integer.
A hash map maintains the mapping from string to integer, while a corresponding list
of strings maintains the mapping from integer back to string. Together these data
structures comprise the symbol table.

A corpus can be considered a simple list whose size is equal to the number of
words in the corpus. Using this approach with the symbol table, Joshua stores the
source corpus as an integer array. An auxiliary array, with size equal to the number
of sentences in the source corpus, is maintained. Elements in this auxiliary sentence
array indicate the corpus index where each sentence begins. The target corpus is
likewise represented by a corpus array and corresponding sentence array.

Once the source and target corpus arrays are available, the corresponding suffix
arrays can be constructed. Given a corpus array c and a symbol table, a second
array is created of equal size to the corpus array. This array s is initialized such that
s[x] = x. Where each integer in c represents a word string, each integer in s represents
an index into c. The contents of s are sorted, using the element comparison function
defined in Figure 1. After sorting, the indices of all instances in the corpus of any
given phrase are located in a contiguous segment in the suffix array s.

While a phrase-based decoder can simply look up any required phrase in a suffix ar-
ray, hierarchical decoders must deal with discontinuous phrases that include gaps. To
deal with such phrases, Lopez (2008) defines an incremental algorithm for constructing
a specialized trie (Fredkin, 1960) to represent the SCFG translation grammar. Given
a source sentence, this algorithm constructs a prefix tree with suffix links by first

1Much of this preliminary work was conducted by Chris Callison-Burch, Andreas Eisele, Juri
Ganitkevitch, and Adam Lopez at the Second Machine Translation Marathon in 2008.

2http://sourceforge.net/projects/cunei

3

PBML 93 JANUARY 2010

1: function Compare_Elements(index1, index2, max, corpusEnd)
2: for i = 0; i < max; i+ + do
3: if index1+ i < corpusEnd and index2+ i > corpusEnd then
4: return 1
5: else if index2+ i < corpusEnd and index1+ i > corpusEnd then
6: return −1
7: else if corpus[index1+ i] is lexicographically < corpus[index2+ i] then
8: return −1
9: else if corpus[index1+ i] is lexicographically > corpus[index2+ i] then

10: return 1
11: end if
12: end for
13: return 0
14: end function

Figure 1. During suffix array creation, the contents of a corpus array are sorted using the
element comparison function Compare_Elements

examining all possible contiguous source phrases, and uses the source suffix array to
look up translations for contiguous phrases. Hierarchical phrases that consist of a
contiguous phrase preceded or followed by a single nonterminal X can be constructed
directly from the corresponding contiguous phrase. In this manner, the tree is gradu-
ally constructed into a grammar containing contiguous phrases and simple hierarchical
phrases.

More complex hierarchical phrases are constructed using the Query_Intersect
function in Figure 2. This function takes two smaller phrases aα and αb (a and b
represent single words and α represents a sequence), along with the list of indices where
these phrases are located. These two lists can be efficiently processed to determine
the locations where the two phrases intersect to form the more complex phrase aαb.
In this way, all source hierarchical phrases can be located.

Each node in the prefix tree corresponds to a unique source phrase. Each node
stores the complete list of all indices in the source corpus where that node’s phrase
occurs. These locations are used in conjunction with the target corpus array and the
word alignment data to construct SCFG translation rules.

Ideally, once translation rules have been extracted for a given source phrase, those
rules would be stored and not calculated again. Memory constraints typically dictate
that not all rules are stored. Rather than storing the translation rules for a given
source phrase at the corresponding node in the prefix tree, a single least-recently-used
(LRU) cache is maintained. This cache maps from source phrase to the corresponding
set of translation rules.

Another technique used to save memory is the option of using memory-mapped data

4

L. Schwartz, C. Callison-Burch Grammar Extraction (157–166)

Algorithm Query_Intersect
Input: Sorted list of corpus locations matching source language pattern aα: Maα

Input: Sorted list of corpus locations matching source language pattern αb: Mαb

1: function Query_Intersect(Maα, Mαb)
2: Maαb ← ∅ . Result list is initially empty
3: I ← |Maα| . Number of instances of pattern aα in the source corpus
4: J ← |Mαb| . Number of instances of pattern αb in the source corpus
5: j ← 0
6: i← 0
7: while i < I and j < J do
8: . Ignore elements in Mαb that are
9: . too distant to intersect with Maα[i]

10: while j < J and Maα[i]>̈Mαb[j] do
11: j ← j + 1
12: end while
13: . Verify that the corpus index
14: . for the first terminal symbol
15: k ← i . in pattern αb is the same
16: while Mαb[i],1 = Mαb[k],1 do . for locations Mαb[i] and Mαb[k]
17: `← j
18: while ` < J and not Maα[i]<̈Mαb[`] do
19: if Maα[i]=̈Mαb[`] then
20: Intersect Maα[i] with Mαb[`] and append result to Maαb

21: end if
22: `← `+ 1 . Proceed to next element in Mαb

23: end while
24: i← i+ 1 . Proceed to next element in Maα

25: end while
26: end while
27: return Maαb

28: end function

Result: Sorted list of corpus locations matching source language pattern aαb : Maαb

Figure 2. Query intersection algorithm implemented in Joshua. This algorithm is
adapted from a corrected version (Lopez, p.c.) of query intersection (Lopez, 2008).

5

PBML 93 JANUARY 2010

structures. Memory-mapped version of the corpus array, suffix array, and alignment
grids data structures are implemented and used by default.

4. Using Joshua

Given a word-aligned parallel corpus, the first step in extracting a grammar, ei-
ther at run-time or during a preprocessing stage, is to compile the memory-mappable
data structures to binary files on disk. The joshua.corpus.suffix_array.Compile
program takes four parameters: source corpus text file, target corpus text file, word
alignments text file, and an output directory path. The output directory, by conven-
tion, is named with the suffix .josh. This directory stores the binary representations
of the symbol table, source and target corpus arrays, and the source and target suffix
arrays. These binary files are given canonical names inside the .josh directory, so that
the decoder can use them simply by specifying the .josh directory in the tm_file=. . .
line of the Joshua configuration file.

It is often useful (especially during MERT) to extract a test set specific grammar
once in a preprocessing step, since that test set will be translated many times and
re-extracting the grammar each time would be wasteful. To perform this task, the
program joshua.prefix_tree.ExtractRules can be used. When run directly, this
program accepts either three arguments (a compiled .josh directory, file name for
grammar to extract, and test file) or five arguments (source corpus text file, target
corpus text file, word alignments text file, file name for grammar to extract, and test
file). The following subsections document the mandatory and optional parameters
that can be passed to this program through the extractRules ant task.

4.1. Mandatory parameters

testFile Path to plain text file containing a source language test file. The grammar
extracted by extractRules will be all of the rules required to translate the
sentences in this test file.

outputFile Path where extracted grammar will be placed. This grammar will consist
of all of the rules required to translate the sentences in the test file defined in
the testFile option.

joshDir Path to directory containing the binary files representing memory-mappable
aligned parallel corpus.

The following parameters may be specified instead of the joshDir parameter.

sourceFileName Path to text file containing source corpus.
targetFileName Path to text file containing target corpus.
alignmentsFileName Path to text file containing word alignment data.

6

L. Schwartz, C. Callison-Burch Grammar Extraction (157–166)

4.2. Optional parameters

maxPhraseSpan Defines the maximum span (in the source corpus) of any extracted
SCFG rule. Default value is 10.

maxPhraseLength Defines the maximum number of tokens (terminals plus non-
terminals) allowed in the source right-hand side of any extracted SCFG rule.
Default value is 10.

maxNonterminals Defines the maximum number of nonterminal symbols allowed in
the source side of any synchronous context-free rule extracted. Note: the number
and type of nonterminals is the same in the source and target right-hand sides
of a SCFG rule. Default value is 2.

cacheSize Maximum number of source phrases for which translation rules will be
maintained in the least-recently-used (LRU) cache.

encoding Defines the file encoding scheme of the input test file and the output gram-
mar file. Default value is UTF-8.

ruleSampleSize When extracting SCFG rules for a given source language phrase,
this option defines the number of instances of that source phrase will be sampled
from the source training corpus for use in rule extraction. Default value is 300.

startingSentence Defines the (1-based) sentence index in the test file where gram-
mar extraction will begin. Default value is 1, indicating that a grammar will be
extracted capable of translating sentences starting with the first sentence in the
test file.

maxTestSentences Defines the number of sentences in the test file over which gram-
mar extraction will be performed. Default value is Integer.MAX_VALUE. For
example, given a test file of 100 sentences, the options startingSentence="51"
maxTestSentences="25" would cause grammar extraction to be performed over
test sentences 51–75.

The following parameters can be configured in the extractRules target to make
rule extraction behave like the Hiero suffix array rule extractor (Lopez, 2008) instead
of the behaving according to the rule extraction originally defined in Chiang (2005).
sentenceInitialX Boolean option indicates whether rules with an initial source-side

nonterminal should be extracted from phrases at the start of a sentence, even
though such rules do not have supporting corporal evidence. This option is
provided for compatibility with Hiero’s suffix array rule extractor (Lopez, 2008),
in which this setting is set to true. Default value is true.

sentenceFinalX Boolean option indicates whether rules with a final source-side non-
terminal should be extracted from phrases at the end of a sentence, even though
such rules do not have supporting corporal evidence. This option is provided
for compatibility with Hiero’s suffix array rule extractor (Lopez, 2008), in which
this setting is set to true. Default value is true.

edgeXViolates Boolean option indicates whether rules with an initial or final source-
side nonterminal should be extracted when the source corpus phrase span for the

7

PBML 93 JANUARY 2010

rule, discounting the initial or final nonterminal, is already equal to the maxi-
mum phrase span value. Since nonterminals conceptually correspond to elided
elements in the training corpus, setting this value to true allows phrases which
have a longer phrase span than the maximum allowed phrase span. This op-
tion is provided for compatibility with Hiero’s suffix array rule extractor (Lopez,
2008), in which this setting is set to true. Default value is true.

requireTightSpans Boolean option; if true, follow the heuristic from (Chiang, 2005):
where multiple initial phrase pairs contain the same set of alignment points,
consider only the smallest when performing rule extraction. For compatibility
with Lopez (2008), set this parameter to false. Default value is true.

Additional options can be configured in the extractRules target to change the
behavior of the prefix tree.
keepTree Boolean option indicates whether the prefix tree should persist from sen-

tence to sentence during grammar extraction. If set to false, a new prefix tree
will be created to process each sentence in the test file. Default value is true.

printPrefixTree Boolean option indicates whether a representation of the prefix tree
should be printed to standard output. If set to true, the tree will be printed after
processing each sentence in the test file. Default value is false.

Acknowledgements

This research was supported in part by the EuroMatrixPlus project funded by the
European Commission under the Seventh Framework Programme, by the US National
Science Foundation under grant IIS-0713448, and by the DARPA GALE program
under contract number HR0011-06-2-0001. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

Special thanks to Adam Lopez for his help and advice, and for making the LATEXcode
for his algorithms available.

Bibliography

Brown, Ralf D. 2004. A modified burrows-wheeler transform for highly-scalable example-
based translation. In Proceedings of the 6th Biennial Conference of the Association for
Machine Translation in the Americas (AMTA-2004), Washington DC.

Callison-Burch, Chris, Colin Bannard, and Josh Schroeder. 2005. Scaling phrase-based
statistical machine translation to larger corpora and longer phrases. In Proceedings of the
43rd Annual Meeting of the Association for Computational Linguistics (ACL-2005), Ann
Arbor, Michigan.

Chiang, David. 2005. A hierarchical phrase-based model for statistical machine transla-
tion. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL-2005), Ann Arbor, Michigan.

8

L. Schwartz, C. Callison-Burch Grammar Extraction (157–166)

Chiang, David. 2007. Hierarchical phrase-based translation. Computational Linguistics,
33(2):201–228.

Fredkin, Edward. 1960. Trie memory. In Communications of the ACM, volume 3, pages
490–499.

Koehn, Philipp. 2004. Pharaoh: A beam search decoder for phrase-based statistical machine
translation models. In Proceedings of the 6th Biennial Conference of the Association for
Machine Translation in the Americas (AMTA-2004), Washington DC.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer,
Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proc. ACL-2007 Demo and Poster Sessions,
Prague, Czech Republic.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based transla-
tion. In Proceedings of the Human Language Technology Conference of the North Amer-
ican chapter of the Association for Computational Linguistics (HLT/NAACL-2003), Ed-
monton, Alberta.

Kumar, Shankar, Yonggang Deng, and William Byrne. 2006. A weighted finite state trans-
ducer translation template model for statistical machine translation. Natural Language
Engineering, 12(1):35–75.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren Thornton, Jonathan Weese, and Omar Zaidan. 2009. Joshua: An open
source toolkit for parsing-based machine translation. In Proceedings of the Fourth Work-
shop on Statistical Machine Translation, pages 135–139, Athens, Greece, March. Associ-
ation for Computational Linguistics.

Lopez, Adam. 2007. Hierarchical phrase-based translation with suffix arrays. In Proceedings
of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL).

Lopez, Adam. 2008. Machine Translation by Pattern Matching. Ph.D. thesis, University of
Maryland, March.

Manber, Udi and Gene Myers. 1990. Suffix arrays: A new method for on-line string searches.
In The First Annual ACM-SIAM Symposium on Dicrete Algorithms, pages 319–327.

Marcu, Daniel and William Wong. 2002. A phrase-based, joint probability model for statis-
tical machine translation. In Proceedings of the 2002 Conference on Empirical Methods
in Natural Language Processing (EMNLP-2002), Philadelphia, Pennsylvania.

Nagao, Makoto. 1981. A framework of a mechanical translation between Japanese and
English by analogy principle. In A. Elithorn and R. Banerji, editors, Artificial and Human
Intelligence: edited review papers presented at the international NATO Symposium. pages
173–180.

Och, Franz Josef and Hermann Ney. 2004. The alignment template approach to statistical
machine translation. Computational Linguistics, 30(4):417–449.

9

PBML 93 JANUARY 2010

Och, Franz Josef, Christoph Tillmann, and Hermann Ney. 1999. Improved alignment models
for statistical machine translation. In Proceedings of the Joint Conference of Empirical
Methods in Natural Language Processing and Very Large Corpora.

Phillips, Aaron B. and Ralf D. Brown. 2009. Cunei machine translation platform: System
description. In 3rd Workshop on Example-Based Machine Translation, Dublin, Ireland.

Sato, Satoshi and Makoto Nagao. 1990. Toward memory-based translation. In Papers
presented to the 13th International Conference on Computational Linguistics (CoLing-
1990).

Somers, Harold. 2003. An overview of EBMT. In Michael Carl and Andy Way, editors,
Recent Advances in Example-Based Machine Translation. Kluwer Academic Publishers,
chapter 4, pages 115–153.

Zhang, Ying and Stephan Vogel. 2005. An efficient phrase-to-phrase alignment model for
arbitrarily long phrase and large corpora. In Proceedings of the 10th Annual Conference
of the European Association for Machine Translation (EAMT-2005), Budapest, Hungary.

Zollmann, Andreas and Ashish Venugopal. 2006. Syntax augmented machine translation
via chart parsing. In Proceedings of the NAACL-2006 Workshop on Statistcal Machine
Translation (WMT-06), New York, New York.

10

