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Abstract

Several language processing tasks can be
inherently represented by a weighted graph
where the weights are interpreted as a
measure of relatedness between two ver-
tices. Measuring similarity between ar-
bitary pairs of vertices is essential in solv-
ing several language processing problems
on these datasets. Random walk based
measures perform better than other path
based measures like shortest-path. We
evaluate several random walk measures
and propose a new measure based on com-
mute time. We use the psuedo inverse
of the Laplacian to derive estimates for
commute times in graphs. Further, we
show that this pseudo inverse based mea-
sure could be improved by discarding the
least significant eigenvectors, correspond-
ing to the noise in the graph construction
process, using singular value decomposi-
tion.

1 Introduction

Natural language data lend themselves to a graph
based representation. Words could be linked by
explicit relations as in WordNet (Fellbaum, 1989)
or documents could be linked to one another via
hyperlinks. Even in the absence of such a straight-
forward representation it is possible to derive
meaningful graphs such as the nearest neighbor
graphs as done in certain manifold learning meth-
ods (Roweis and Saul, 2000; Belkin and Niyogi,
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2001). All of these graphs share the following
properties:

• They are edge-weighted.

• The edge weight encodes some notion of re-
latedness between the vertices.

• The relation represented by edges is at least
weakly transitive. Examples of such rela-
tions include, “is similar to”, “is more general
than”, and so on. It is important that the re-
lations selected are transitive for the random
walk to make sense.

Such graphs present several possibilities in solv-
ing language problems on the data. One such task
is, given two vertices in the graph we would like
to know how related the two vertices are. There
is an abundance of literature on this topic, some
of which will be reviewed here. Finding similarity
between vertices in a graph could be an end in it-
self, as in the lexical similarity task, or could be a
stage before solving other problems like clustering
and classification.

2 Contributions of this paper

The major contributions of this paper are

• A comprehensive evaluation of various ran-
dom walk based measures

• Propose a new similarity measure based on
commute time.

• An improvement to the above measure by
eliminating noisy features via singular value
decomposition.
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3 Problem setting

Consider an undirected graph G(V, E, W) with
vertices V , edges E, and W = [wij ] be the sym-
metric adjacency weight matrix with wij as the
weight of the edge connecting vertices i and j. The
weight, wij = 0 for vertices i and j that are not
neighbors and when wij > 0 it is interpreted as an
indication of relatedness between i and j. In our
case, we consider uniformly weighted graphs, i.e,
wij = 1 for neighbors but this need not be the case.
Let n = |V | be the order of the graph. We define
a relation sim : V × V → R+ such that sim(i, j)
is the relatedness between vertices i and j. There
are several ways to define sim; the ones explored
in this paper are:

• simG(i, j) is the reciprocal of the shortest
path length between vertices i and j. Note
that this is not a random walk based mea-
sure but a useful baseline for comparison pur-
poses.

• simB(i, j) is the probability of a random walk
from vertex i to vertex j using all paths of
length less than m.

• simP(i, j) is the probability of a random walk
from vertex i to vertex j defined via a pager-
ank model.

• simC(i, j) is a function of the commute time
between vertex i and vertex j.

4 Data and Evaluation

We evaluate each of the similarity measure we
consider by using a linguistically motivated task
of finding lexical similarity. Deriving lexical
relatedness between terms has been a topic of
interest with applications in word sense disam-
biguation (Patwardhan et al., 2005), paraphras-
ing (Kauchak and Barzilay, 2006), question an-
swering (Prager et al., 2001), and machine trans-
lation (Blatz et al., 2004) to name a few. Lex-
ical relatedness between terms could be derived
either from a thesaurus like WordNet or from
raw monolingual corpora via distributional simi-
larity (Pereira et al., 1993). WordNet is an inter-
esting graph-structured thesaurus where the ver-
tices are the words and the edges represent rela-
tions between the words. For the purpose of this
work, we only consider relations like hypernymy,
hyponymy, and synonymy. The importance of this

problem has generated copious literature in the
past – see (Pedersen et al., 2004) or (Budanitsky
and Hirst, 2006) for a detailed review of various
lexical relatedness measures on WordNet. Our fo-
cus in this paper is not to derive the best similar-
ity measure for WordNet but to use WordNet and
the lexical relatedness task as a method to evalu-
ate the various random walk based similarity mea-
sures. Following the tradition in previous litera-
ture we evaluate on the Miller and Charles (1991)
dataset. This data consists of 30 word-pairs along
with human judgements which is a real value be-
tween 1 and 4. For every measure we consider,
we derive similarity scores and compare with the
human judgements using the Spearman rank cor-
relation coefficient.

5 Graph construction

For the purpose of evaluation of the random walk
measures, we construct a graph for every pair of
words for which similarity has to be computed.
This graph is derived from WordNet as follows:

• For each word w in the pair (w1, w2):

– Add an edge between w and all of its
parts of speech. For example, if the word
is coast, add edges between coast and
coast#noun and coast#verb.

– For each word#pos combination,
add edges to all of its senses (For
example, coast#noun#1 through
coast#noun#4.

– For each word sense, add edges to all of
its hyponyms

– For each word sense, add edges to all of
its hypernyms recursively.

In this paper we consider uniform weights on all
edges as our main aim is to illustrate the differ-
ent random walk measures rather than fine tune the
graph construction process.

6 Shortest path based measure

The most obvious measure of distance in a graph is
the shortest path between the vertices which is de-
fined as the minimum number of intervening edges
between two vertices. This is also known as the
geodesic distance. To convert this distance mea-
sure to a similarity measure, we take the recipro-
cal of the shortest-path length. We refer to this as
the geodesic similarity. This is not a random walk
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Figure 1: Shortest path distances on graphs

measure but will serve as an important baseline for
our work. As can be observed from Table 1, the

Method Spearman correlation
Geodesic 0.275

Table 1: Similarity using shortest-path measure.

correlation is rather poor for the shortest path mea-
sure.

7 Why are shortest path distances bad?

While shortest-path distances are useful in many
applications, it fails to capture the following obser-
vation. Consider the subgraph of WordNet shown
in Figure 1. The term moon is connected to the
terms religious leader and satellite1.
Observe that both religious leader and
satellite are at the same shortest path dis-
tance from moon. However, the connectivity
structure of the graph would suggest satellite
to be “more” similar than religious leader
as there are multiple senses, and hence multiple
paths, connecting satellite and moon.

Thus it is desirable to have a measure that cap-
tures not only path lengths but also the connectiv-
ity structure of the graph. This notion is elegantly
captured using random walks on graphs.

7.1 Similarity via Random walks
A random walk is a stochastic process that consists
of a sequence of discrete steps taken at random de-
fined by a distribution. Random walks have inter-
esting connections to Brownian motion, heat diffu-
sion and have been used in semi-supervised learn-
ing – for example, see (Zhu et al., 2003). Certain
properties of random walks are defined for ergodic
processes only2. In our work, we assume these

1The religious leader sense of moon is due to Sun
Myung Moon, a US religious leader.

2A stochastic process is ergodic if the underlying Markov
chain is irreducible and aperiodic. A Markov chain is irre-

hold true as the graphs we deal with are connected,
undirected, and non-bipartite.

7.1.1 Bounded length walks
As our first random walk measure, we consider

the bounded length walk – i.e., all random walks of
length less than or equal to a bound m. We derive
a probability transition matrix P from the weight
matrix W as follows:

P = D−1W

where, D is a diagonal matrix with dii =∑n
j = 1 wij . Observe that:

• pij = P[i, j] ≥ 0, and

• ∑n
j = 1 pij = 1

Hence pij can be interpreted as the probability
of transition from vertex i to vertex j in one step. It
is easy to observe that Pk gives the transition prob-
ability from vertex i to vertex j in k steps. This
leads to the following similarity measure:

S = P + P2 + P3 + ... + Pm

Observe that S[i, j] derives the total probability of
transition from vertex i to vertex j in at most m
steps3. Given S, we can derive several measures of
similarity:

1. Bounded Walk: S[i, j]

2. Bounded Walk Cosine: dot product of
rowvectors Si and Sj .

When we evaluate these measures on the Miller-
Charles data the results shown in Table 2. are ob-
served. For this experiment, we consider all walks
that are at most 20 steps long, i.e., m = 20. Ob-
serve that these results are significantly better than
the Geodesic similarity based on shortest-paths.

ducible if there exists a path between any two states and it is
aperiodic if the GCD of all cycle lengths is one.

3The matrix S is row normalized to ensure that the entries
can be interpreted as probabilities.
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Method Spearman correlation
Bounded Walk 0.346
Bounded Walk Cosine 0.365

Table 2: Similarity using bounded random walks
(m = 20).

7.1.2 How many paths are sufficient?
In the previous experiment, we arbitrarily fixed

m = 20. However, as observed in Figure 2. , be-
yond a certain value the choice of m does not affect
the result as the random walk converges to its sta-
tionary distribution. The choice of m depends on

Figure 2: Effect of m in Bounded walk

the amount of computation available. A reason-
ably large value of m (m > 10) should be suffi-
cient for most purposes and one could use lower
values of m to derive an approximation for this
measure. One could derive an upper bound on the
value of m using the mixing time of the underlying
Markov chain (Aldous and Fill, 2001).

7.1.3 Similarity via pagerank
Pagerank (Page et al., 1998) is the celebrated ci-

tation ranking algorithm that has been applied to
several natural language problems from summa-
rization (Erkan and Radev, 2004) to opinion min-
ing (Esuli and Sebastiani, 2007) to our task of
lexical relatedness (Hughes and Ramage, 2007).
Pagerank is yet another random walk model with a
difference that it allows the random walk to “jump”
to its initial state with a nonzero probability (α).
Given the probability transition matrix P as defined
above, a stationary distribution vector for any ver-
tex (say i) could be derived as follows:

1. Let ei be a vector of all zeros with ei(i) = 1

2. Let v0 = ei

3. Repeat until ‖vt − vt−1‖F < ε

• vt+1 = αvtP + (1− α)v0

• t = t + 1

4. Assign vt+1 as the stationary distribution for
vertex i.

Armed with the stationary distribution vectors for
vertices i and j, we define pagerank similarity ei-
ther as the cosine of the stationary distribution vec-
tors or the reciprocal Jensen-Shannon (JS) diver-
gence4 between them. Table 3. shows results on
the Miller-Charles data. We use α = 0.1, the best
value on this data. Observe that these results are

Method Spearman correlation
Pagerank JS-Divergence 0.379
Pagerank Cosine 0.393

Table 3: Similarity via pagerank (α = 0.1).

better than the best bounded walk result. We fur-
ther note that our results are different from that
of (Hughes and Ramage, 2007) as they use exten-
sive feature engineering and weight tuning during
the graph generation process that we have not been
able to reproduce. Hence for simplicity we stuck to
a simpler graph generation process. Nevertheless,
the result in Table 3. is still useful as we are in-
terested in the performance of the various spectral
similarity measures rather than achieving the best
performance on the lexical relatedness task. The
graphs we use in all methods are identical making
comparisons across methods possible.

7.2 Similarity via Hitting Time
Given a graph with the transition probability ma-
trix P as defined above, the hitting time between
vertices i and j, denoted as h(i, j), is defined as
the expected number of steps taken by a random
walker to first encounter vertex j starting from ver-
tex i. This can be recursively defined as follows:

h(i, j) =

 1 +
∑

k : wik > 0
pikh(k, j) if i 6= j

0 if i = j
(1)

4The Jensen-Shannon divergence between two distribu-
tions p and q is defined as D(p ‖ a)+D(q ‖ a), where D(. ‖
.) is the Kullback-Liebler divergence and a = (p + q)/2.
Note that unlike KL-divergence this measure is symmetric.
See (Lin, 1991) for additional details.
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The lower the hitting times of two vertices, the
more similar they are. It can be easily verified
that hitting time is not a symmetric relation hence
graph theory literature suggests another symmet-
ric measure – the commute time.5 The commute
time, c(i, j), is the expected number of steps taken
to leave vertex i, reach vertex j, and return back to
i. Thus,

c(i, j) = h(i, j) + h(j, i) (2)

Observe that, the commute time is a metric in that
it is positive definite, symmetric, and satisifies tri-
angle inequality. Hence, commute time could be
used as a distance measure as well. We derive a
similarity measure from this distance measure us-
ing the following lemma.

Lemma 1. For every edge (i, j), c(i, j) ≤ 2l
where l = |E|, the number of edges.

Proof. This can be easily observed by defining a
Markov chain on the edges with probability tran-
sition matrix Q with 2l states, such that Qe1e2 =
1/degree(e1 ∩ e2). Since this matrix is doubly
stochastic, the stationary distribution on this chain
will be uniform with a probability 1/2l. Now
c(i, j) = h(i, j)+h(j, i), is the expected time for a
walk to start at i, visit j, and return back to i. When
the stationary probability at each edge is 1/2l, this
expected time evaluates to 2l. Hence the commute
time can be at most 2l.

This lemma allows us to define a similarity mea-
sure as follows:

simC(i, j) = 1− c(i, j)
2l

(3)

Observe that the measure defined in Equation 3 is
a metric and further its range is defined in [0, 1].
We now only need a way to compute the commute
times to use Equation 3. One could compute the
hitting times and hence the commute times from
the Equations 1 and 2 using dynamic program-
ming, akin to shortest paths in graphs. In this pa-
per, we instead choose to derive commute times
via the graph Laplacian. This also allows us to
handle “noise” in the graph construction process
which cannot be taken care by naive dynamic pro-
gramming.

5Note that distance measures, in general, need not be sym-
metric but we interpret distance as proximity which mandates
symmetry.

Chandra et. al. (1989) show that the commute
time between two vertices is equal to the resis-
tance distance between them. Resistance distance,
as proposed by Klein and Randic (1993), is the
effective resistance between two vertices in the
electrical network represented by the graph, where
the edges have resistance 1/wij . Xiao and Gut-
man (2003), show the relation between resistance
distances in graphs to the Laplacian spectrum, thus
enabling a way to derive commute times from the
graph Laplacian in closed form.

We now introduce graph Laplacians, which are
interesting in their own right besides being related
to commute time. The Laplacian of a graph could
be viewed as a discrete version of the Laplace-
Beltrami operator on Riemannian manifolds. It is
defined as

L = D−W

The graph Laplacian has interesting properties and
a wide range of applications, in semi-supervised
learning (Zhu et al., 2003), non-linear dimension-
ality reduction (Roweis and Saul, 2000; Belkin and
Niyogi, 2001), and so on. See (Chung, 1997) for
a thorough introduction on Laplacians and their
properties. We depend on the fact that L is:

1. symmetric (since D and W are for undirected
graphs)

2. positive-semidefinite : since it is symmet-
ric, all of the eigenvalues are real and by
the Greshgorin circle theorem, the eigenval-
ues must also be non-negative and hence L is
positive-semidefinite.

Throughout this paper we use normalized Lapla-
cians as defined below:

L = D−1/2LD−1/2 = I− D−1/2WD−1/2

The normalized Laplacians preserve all properties
of the Laplacian by construction.

As noted in Xiao and Gutman (2003), the re-
sistance distances can be derived from the gener-
alized Moore-Penrose pseudo-inverse of the graph
Laplacian(L†) – also called the inverse Laplacian.
Like Laplacians, their pseudo inverse counterparts
are also symmetric, and positive semi-definite.

Lemma 2. L† is symmetric

Proof. The Moore-Penrose pseudo-inverse is de-
fined as L† = (LT L)−1LT . From this definition,
it is clear that (L†)T = (LT )†. By the symmetry
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property of graph Laplacians, LT = L. Hence,
(L†)T = L†.

Lemma 3. L† is positive semi-definite

Proof. We make use of the following properties
from (Chung, 1997):

• The Laplacian, L, is positive semi-definite
(also shown above).

• If the Eigen-decomposition of L is QΛQT ,
then the Eigen-decomposition of the pseudo-
inverse L† is QΛ−1QT . If any of the eigenval-
ues of L is zero then the corresponding eigen-
value for L† is also zero.

Since L is positive semi-definite, and the eigen-
values of L† have the same sign as L, the pseudo
inverse L† has to be positive semi-definite.

Lemma 4. The inverse Laplacian is a gram matrix

Proof. To prove this, we use the fact that the
Laplacian Matrix is symmetric and positive semi-
definite. Hence by Cholesky decomposition we
can write L = UUT .

Therefore L† = (UT )†U† = (U†)T (U†).
Hence L† is a matrix of dot-products or a gram-

matrix.

Thus, from Lemmas 2, 3 and 4, the inverse
Laplacian L† is a valid Kernel.

7.2.1 Similarity measures from the Laplacian
The pseudo inverse of the Laplacian allows us

to compute the following similarity measures.

1. Since L† is a kernel, L†ij can be interpreted a
similarity value of vertices i and j.

2. Commute time: This is due to (Aldous and
Fill, 2001). The commute time, c(i, j) ∝
(L†ii + L†jj − 2L†ij). This allows us to derive
similarities using Equation 3.

Evaluating the above measures with the Miller-
Charles data yields results shown in Table 4.
Again, these results are better than the other ran-
dom walk methods compared in the paper.

Method Spearman correlation
L†ij 0.469
Commute Time (simC) 0.520

Table 4: Similarity via inverse Laplacian.

7.2.2 Noise in the graph construction process
The graph construction process outlined in Sec-

tion 5 is not necessarily the best one. In fact, any
method that constructs graphs from existing data
incorporates “noise” or extraneous features. These
could be spurious edges between vertices, miss-
ing edges, or even improper edge weights. It is
however impossible to know any of this a priori
and some noise is inevitable. The derivation of
commute times via the pseudo inverse of a noisy
Laplacian matrix makes it even worse because the
pseudo inverse amplifies the noise in the original
matrix. This is because the largest singular value
of the pseudo inverse of a matrix is equal to the in-
verse of the smallest singular value of the original
matrix. A standard technique in signal processing
and information retrieval to eliminate noise or han-
dle missing values is to use singular value decom-
position (Deerwester et al., 1990). We apply SVD
to handle noise in the graph construction process.

For a given matrix A, SVD decomposes A into
three matrices U, S, and V such that A = USV T ,
where S is a diagonal matrix of eigenvalues of A,
and U and V are orthonormal matrices containing
the left and the right eigenvectors respectively. The
top-k eigenvectors and eigenvalues are computed
using the iterative method by Lanczos-Arnoldi (us-
ing LAPACK) and the product of these matrices
represents a “smoothed” version of the original
Laplacian. The pseudo inverse is then computed
on this smooth Laplacian. Table 5., shows the im-
provements obtained by discarding bottom 20% of
the eigenvalues.

Method Original After SVD
L†ij 0.469 0.472
Commute Time (simC) 0.520 0.542

Table 5: Denoising graph Laplacian via SVD

Figure 3. shows the dependence on the num-
ber of eigenvalues selected. As can be observed in
both curves there is a reduction in performance by
adding the last few eigenvectors and hence may be
safely discarded. This observation is true in other
text processing tasks like document clustering or
classification using Latent Semantic Indexing.

8 Related Work

Apart from the related work cited throughout this
paper, we would also like to note the paper by Yen
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Figure 3: Noise reduction via SVD.

et al (2007) on using sigmoid commute time kernel
on a graph for document clustering but our work
differs in that our goal was to study various ran-
dom walk measures rather than a specific task and
we provide a new similarity measure (ref. Eqn
3) based on an upper bound on the commute time
(Lemma 1). Our work also suggests a way to han-
dle noise in the graph construction process.

9 Conclusions and Future Work

This paper presented an evaluation of random
walk based similarity measures on weighted undi-
rected graphs. We provided an intuitive explana-
tion of why random walk based measures perform
better than shortest-path or geodesic measures,
and backed it with empirical evidence. The ran-
dom walk measures we consider include bounded
length walks, pagerank based measures, and a new
measure based on the commute times in graphs.
We derived the commute times via pseudo inverse
of the graph Laplacian. This enables a new method
of graph similarity using SVD that is robust to the
noise in the graph construction process. Further,
the inverse Laplacian is also interesting in that it is
a kernel by itself and could be used for other tasks
like word clustering, for example.
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