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Abstract

We present our work on the extraction and estimation of syntactic paraphrases

using commodity text data and automated linguistic annotation. Our initial approach

leverages bilingual parallel data and builds on extraction techniques for synchronous

context-free grammars frequently used in statistical machine translation. We extend

our estimation methods to include contextual similarity metrics drawn from vast

amounts of plain English text. We evaluate the quality of our paraphrases by applying

a generalizable adaptation scheme that tunes our paraphraser to arbitrary text-to-

text generation tasks. Our system produces results comparable with contemporary

systems with only little data and work needed. We further discuss the scaling of our

extraction method to large data sizes, and the building of the paraphrase database

PPDB, a large-scale collection of paraphrases in 23 languages.

Primary Reader: Chris Callison-Burch

Secondary Reader: Benjamin Van-Durme
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Chapter 1

Introduction

1.1 Overview

The focus of this thesis is the extraction and application of paraphrases at scale.

Paraphrases are pairs of natural language expressions that we consider to be identical

or very similar in meaning. A collection of paraphrases thus offers a way to capture the

different ways in which a particular concept may be expressed in natural language.

For practitioners of natural language processing (NLP), this makes paraphrases a

valuable resource: if we know more ways in which a concept can be stated in natural

language, our NLP system will have better coverage, we will need less data to achieve

comparable quality, and the machine-learned models driving our system’s decision-

making will be able to generalize better. The use of paraphrases in NLP can offer

a straightforward avenue to abstract an NLP system’s functionality from the surface
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form of a natural language statement to the concepts expressed within.

Prior to the work presented in this thesis, state of the art paraphrase extraction

methods typically forced the unwieldy choice between quality and volume. More data-

driven paraphrase extraction methods could extract high volumes of paraphrases, but

be limited to shallow and noise-prone formats lacking linguistic annotation. More

linguistically driven approaches were able to produce richly annotated paraphrases,

but in severely limited amounts, bounding the paraphrases’ usefulness. We present a

more detailed overview in Chapter 2.

In this work, we begin by investigating whether linguistically rich paraphrases

can be extracted from commodity data sources like bilingual parallel data. The bilin-

gual parallel corpora we use are sentence-aligned data sets in two different languages

where the aligned sentences are translations of each other. Large amounts of human-

translated text have been produced over time, owing to a social need to transfer

and make available information across the many natural languages spoken around

the world. This data has been compiled and made available by the academic and

industrial efforts driving research in statistical machine translation (SMT). A vari-

ety of sources are leveraged to produce sentence-aligned bitext data, ranging from

parliamentary proceedings and other government documents produced by multilin-

gual bodies of government such as the European Union or the Canadian government.

Bitext data has also been extracted from other domains where translation work is

commonplace, like books, newswire, movie subtitles, and technical manuals. Even
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larger volumes of bilingual parallel data have been obtained through statistical meth-

ods by crawling the Web for potential translations and probabilistically aligning them.

After over 20 years of research into statistical machine translation, especially English-

to-non-English bitexts are easily and plentifully available.

An equally important prerequisite to our work is the availability of good-quality

automatic linguistic annotation. Over two decades of work in statistical parsing and

tagging, building on the release of the Penn Treebank corpus have yielded publicly

available, efficient, and high-precision toolkits to automatically annotate English text

with linguistic structure. We can use these tools to cheaply and quickly produce rich

annotations on large volumes of text – leveraging the sheer amount of data to weed

out potential outlier mistakes made by the parser.

This thesis investigates whether we can obtain rich, linguistically annotated para-

phrases at scale by combining automated linguistic annotation with large amounts

of English-sided bitext by pivoting through the non-English language. We use piv-

oting and probability-estimation approaches that adapt methods used in syntacti-

cally informed statistical machine translation to extract probabilistic synchronous

context-free grammars (PSCFG) of paraphrases (Chapter 3). We conduct a qualita-

tive analysis of the obtained paraphrases, showing that the method is indeed capable

of capturing well-known syntactic rewrites like the possessive rule, the dative shift,

or reduced relative clause rewrites, as shown in Table 1.1.

To provide a more empirical and quantitative evaluation of the syntactic para-
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twelve cartoons insulting the prophet mohammad
CD NNS JJ DT NNP

NP

NP

VP
NP

DT+NNP

12 the prophet mohammad
CD NNS JJ DT NNP

NP

NP
VP

NP

DT+NNP

cartoons offensive

Foreign Pivot PhraseParaphrase Rule

JJ → offensive  |   insulting
Lexical paraphrase:

NP → NP that VP  |  NP VP
Reduced relative clause:

NP → CD of the NNS  |  CD NNS
Partitive construction: 

VP → are JJ to NP  |  JJ NP
Pred. adjective copula deletion:

JJ -> beleidigend  |  offensive
JJ -> beleidigend  |  insulting

NP -> NP die VP  |  NP VP
NP -> NP die VP  |  NP that VP

NP -> CD der NNS  |  CD of the NNS
NP -> CD der NNS  |  CD NNS

VP → sind JJ für NP  |  are JJ to NP
VP → sind JJ für NP  |  JJ NP

of the that are to

Figure 1.1: An example of a synchronous paraphrastic derivation using syntactically

labeled grammars. A few of the rules applied in the parse are show in the left column,

with the German-English pivot phrases that gave rise to them on the right.
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Possessive rule
NP → the NN of the NNP | the NNP ’s NN

NP → the NNS 1 made by NNS 2 | the NNS 2’s NNS 1

Dative shift
VP → give NN to NP | give NP the NN

VP → provide NP1 to NP2 | give NP2 NP1

Adv./adj. phrase move
S/VP → ADVP they VBP | they VPB ADVP

S → it is ADJP VP | VP is ADJP

Verb particle shift VP → VB NP up | VB up NP

Reduced relative clause
SBAR/S → although PRP VBP that | although PRP VBP

ADJP → very JJ that S | JJ S

Partitive constructions
NP → CD of the NN | CD NN

NP → all DT\NP | all of the DT\NP
Topicalization S → NP , VP . | VP , NP .

Passivization SBAR → that NP had VBN | which was VBN by NP

Light verbs
VP → take action ADVP | to act ADVP

VP → TO take a decision PP | TO decide PP

Table 1.1: A selection of meaning-preserving transformations and hand-picked exam-

ples of syntactic paraphrases that our system extracts capturing these.

phrases our approach produces, we construct a flexible text-to-text generation frame-

work. Our method casts paraphrasing as an English-to-English translation problem,

allowing us to apply syntactic SMT machinery. Figure 1.1 shows an example deriva-

tion, the paraphrase rules applied, and examples of German pivot expressions that

gave rise to the rules. Our approach uses the paraphrase grammar and a lightweight

adaptation scheme to reduce a given text rewriting task to a targeted paraphrase

problem.

On the example of text shortening, or compression, we show that a rapidly adapted

paraphrase grammar, applied through a readily available SMT decoder, can indeed

produce text-to-text generation performance comparable to specialized NLP compres-
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Source

he also expected that he would have a role in the future at the level of the islamic

movement across the palestinian territories , even if he was not lucky enough to win

in the elections .

Reference
he expects to have a future role in the islamic movement in the palestinian territories

if he is not successful in the elections .

Paraphrases
he also expected that he would have a role in the future of the islamic movement in

the palestinian territories , although he was not lucky enough to win elections .

ILP
he also expected that he would have a role at the level of the islamic movement , even

if he was not lucky enough to win in the elections .

Source
in this war which has carried on for the last 12 days , around 700 palestinians , which

include a large number of women and children , have died .

Reference
about 700 palestinians , mostly women and children , have been killed in the israeli

offensive over the last 12 days .

Paraphrases
in this war has done for the last 12 days , around 700 palestinians , including women

and children , died .

ILP
in this war which has carried for the days palestinians , which include a number of

women and children died .

Source
hala speaks arabic most of the time with her son , taking into consideration that he

can speak english with others .

Reference hala speaks to her son mostly in arabic , as he can speak english to others .

Paraphrases
hala speaks arabic most of the time with her son , considering that he can speak

english with others .

ILP
hala speaks arabic most of the time , taking into consideration that he can speak

english with others .

Table 1.2: Examples of text compressions produced by our paraphrase-based text-to-

text approach (Paraphrases), a specialized integer linear programming solver-based

compression system (ILP), along with the input sentence and a human-generated

paraphrase.
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sion systems (Chapter 4). In Table 1.2, we show a sample of compressions generated

by our adapted text-to-text system.

Another type of easily available, high-volume corpora is plain, monolingual English

text. We conduct a series of experiments to investigate the usefulness of signal drawn

from this massive data source for our paraphrase extraction work. Prior research has

largely relied on distributional signals to extract paraphrases from plain text data.

We opt for a more high-precision approach, and choose to augment our extraction

framework by integrating monolingual text as an additional source of signal to assess

the quality of a paraphrase pair.

We compare simpler, word-count based methods of context representation and

context representations that make use of rich, automatically generated syntactic an-

notations over text. Our work shows that overall distributional signal derived from

monolingual text data improves paraphrase quality. It also demonstrates that auto-

matically annotating large volumes of text data yields improvements in paraphrase

quality that exceed those derived from purely word count based approaches (Chap-

ter 5).

The core thesis of this work is that high-quality paraphrases can be derived from

commodity data and automated annotations, and, when made readily available and

efficiently usable, can drive progress in NLP research. The main contribution of the

research we present in this thesis, is therefore condensed in a large-scale paraphrase

resource we extracted, estimated, and made publicly available. This resource, the
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Figure 1.2: A visualization of the resource size for the paraphrase database per lan-

guage, measured in millions of paraphrase pairs. Languages are in order of resource

size.

ParaPhrase DataBase (PPDB), to date remains the largest published paraphrase

collection.

The composite parallel corpus PPDB is extracted from has more than 106 million

sentence pairs, over 2 billion English words, and spans 23 pivot languages. To scale

our extraction machinery to this size of data, and to make the resulting paraphrase

collection more widely usable, we explore compact representations for grammar ex-

traction from bitexts, and devise a highly compact representation for probabilistic

synchronous CFGs. The resulting system reduces time and space requirements for

grammar extraction by a factor of 4, effectively eliminates the loading overhead for

large translation and parapharse grammars, and reduces their memory footprint by
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over 90%.

Additionally, reversing the pivoting approach developed for English, we made

PPDB available in a variety of other languages, in many cases marking the first

release of a paraphrase corpus for that language (Chapter 6). Figure 1.2 illustrates

the size of the published paraphrase collections per language.

1.2 Related publications

Ganitkevitch et al. [2011] describes the pivot-based extraction of syntactic para-

phrases from bilingual parallel corpora, and their application to text-to-text genera-

tion.

In Ganitkevitch et al. [2012b] we describe and evaluate the integration of mono-

lingual distributional signal into paraphrase extraction.

Ganitkevitch et al. [2013] and Ganitkevitch and Callison-Burch [2014] mark, re-

spectively, the releases of the Paraphrase Database in English and in its multi-lingual

iteration. Ganitkevitch et al. [2012a] reports on the efficiency improvements that

enabled the extraction of PPDB.

1.3 Disclaimer

The entirety of the research discussed in this thesis was conducted and published

before the use of deep neural networks and word embeddings-based methods became
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state-of-the-art in NLP. In fact, the chief contribution of this thesis, the Paraphrase

Database, remains widely used in deep learning-based NLP work, frequently cited as

a useful resource in improving the quality of word embeddings.
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Chapter 2

Background and Related Work

In this thesis, we adapt methods from statistical machine translation towards

paraphrase extraction and paraphrase-based text rewriting. Specifically, we adapt

techniques from syntactically informed, parsing-based statistical machine translation

to extract syntactic paraphrases, rank them, and perform targeted text-to-text gen-

eration.

This chapter presents an overview of prior work in data-driven paraphrase extrac-

tion, and applications in text rewriting, as well as the statistical machine translation

methods we appropriate and adapt for our work. Section 2.1 addresses the nature

and utility of paraphrases, followed by an overview of published efforts on paraphrase

extraction. In Section 2.2 we give an overview of methods and formalisms used in

statistical machine translation.
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2.1 Paraphrase Extraction

2.1.1 Paraphrases, How Do They Work?

The object of the majority of the efforts presented in this thesis, paraphrases, are

notoriously hard to formally define. Throughout this thesis and associated publica-

tions, we use a fairly informal notion of what a paraphrase is. Our work is concerned

with what Bhagat and Hovy [2013] call a quasi-paraphrase: loose text rewrites that

preserve enough meaning to be still be useful for practical applications. In this we

follow a paraphrase definition given in Barzilay [2003]: paraphrases are language

units that express approximate conceptual equivalence, and can be substituted for

one another in many contexts.

For instance we consider soldiers and combatants perfectly valid, high-quality

paraphrases, even though the terms clearly differ in their legal definitions, more fine-

grained implications, and context-dependent associations. To us, the overlapping

conceptual notion of “persons participating in an armed conflict” is the salient point,

along with the fact that there exist a multitude of contexts in which substituting one

for the other is largely meaning-preserving.

In this, our work is a precursor to the more in-depth classification efforts of Pavlick

et al. [2015a], who presented a method for classifying quasi-paraphrases into finer-

grained relations based on the Natural Logic paradigm MacCartney [2009], like hyper-

nyms, hyponyms, and proper equivalence. Pavlick et al. [2015b] applied this improved
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categorization of paraphrases at scale, dramatically improving the utility of automat-

ically extracted paraphrase corpora for tasks like recognition of textual entailment,

where the precise relationship underlying a quasi-paraphrase matters.

For the remainder of this thesis, we take the term “paraphrases” to mean quasi-

paraphrases, as stated above.

2.1.2 Classes and Applications of Paraphrases

Automatically generating and detecting paraphrases is a crucial aspect of many

NLP tasks. In multi-document summarization, paraphrase detection is used to col-

lapse redundancies [Barzilay et al., 1999, Barzilay, 2003]. Paraphrase generation can

be used for query expansion in information retrieval and question answering systems

[McKeown, 1979, Anick and Tipirneni, 1999, Ravichandran and Hovy, 2002, Riezler

et al., 2007]. Paraphrases allow for more flexible matching of system output against

human references for tasks like machine translation and automatic summarization

[Zhou et al., 2006, Kauchak and Barzilay, 2006, Madnani et al., 2007, Snover et al.,

2010]. Paraphrases are used to generate additional reference translations for sta-

tistical machine translation [Madnani et al., 2007] and for more flexible matching

when evaluating the output of machine translation systems or automatically gener-

ated summaries [Zhou et al., 2006, Kauchak and Barzilay, 2006, Owczarzak et al.,

2006].

In this thesis, we will use the following terminology for different types of para-
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phrases: Lexical paraphrases denote pairs of synonyms, i.e. words with the same

meaning:

ratification | approval

Lexical paraphrases are comparatively straightforward to extract and easy to apply.

The single-word format however limits them in both contextualization and expressive

power. One way to amend this is to move to phrasal paraphrases. These extend the

notion of synonymity to contiguous multi-word phrases like:

the proposal’s ratification | the approval of the motion.

Paraphrastic multiword units offer considerably more expressive power, and can cap-

ture complex rewrites like the one above. However semantic similarity is captured

purely via memorization; phrasal paraphrases do not generalize well.

Paraphrase patterns that add nonterminal slots into the expression are a step

towards greater generalization capabilities:

X1’s ratification | the approval of X1.

However, since the nonterminal slots in paraphrase patterns are unconstrained they

can vastly overgeneralize. For example, the above pattern could be correctly applied

to paraphrase the sentence

The press anxiously awaited the proposal’s ratification.

into (X1 matching “the proposal”)

14
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The press anxiously awaited the approval of the proposal.

But the X1 could also be mis-applied to match “anxiously awaited the proposal,”

leading to the ungrammatical

The press the approval of anxiously awaited the proposal.

This makes it difficult to meaningfully use paraphrase patterns for high-level para-

phrastic transforms like the possessive rule. E.g. the pattern

X1’s X2 | X2 of X1

overgeneralizes too much to be useful.

To limit the paraphrases’ generalizations to useful cases, we can add syntactic

constraints to the patterns’ nonterminals. The resulting syntactic paraphrases contain

slots that are annotated with syntactic constraints:

NP1’s NP2 | NP2 of NP1

It is evident that syntactic paraphrases have a much higher potential for well-formed

generalization, and for capturing interesting paraphrastic transformations.

2.1.3 Sources for Data-Driven Paraphrase Extrac-

tion

A variety of different types of corpora and semantic equivalence cues have been

used to automatically induce paraphrase collections for English. Madnani and Dorr
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[2010] survey a variety of data-driven paraphrasing techniques, categorizing them

based on the type of data that they use. These include large monolingual texts [Lin

and Pantel, 2001, Szpektor et al., 2004, Bhagat and Ravichandran, 2008], compara-

ble corpora [Barzilay and Lee, 2003, Dolan et al., 2004], monolingual parallel corpora

[Barzilay and McKeown, 2001, Pang et al., 2003], and bilingual parallel corpora [Ban-

nard and Callison-Burch, 2005, Madnani et al., 2007, Zhao et al., 2008a]. We focus

on the latter type of data.

Perhaps the most natural type of corpus for paraphrase extraction is a monolingual

parallel text, which allows sentential paraphrases to be extracted since the sentence

pairs in such corpora are perfect paraphrases of each other [Barzilay and McKeown,

2001, Pang et al., 2003]. While rich syntactic paraphrases have been learned from

monolingual parallel corpora, they suffer from very limited data availability and thus

have poor coverage. Dolan et al. [2004] work around this issue by extracting parallel

sentences from the vast amount of freely available comparable English text and apply

machine translation techniques to create a paraphrasing system [Quirk et al., 2004].

However, the word-based translation model and monotone decoder they use results

in a substantial amount of identity paraphrases or single-word substitutions.

Other methods obtain paraphrases from raw monolingual text by relying on dis-

tributional similarity [Lin and Pantel, 2001, Bhagat and Ravichandran, 2008]. While

vast amounts of data are readily available for these approaches, the distributional

similarity signal they use is noisier than the sentence-level correspondency in parallel
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corpora and additionally suffers from problems such as mistaking cousin expressions

or antonyms (such as {boy , girl} or {rise, fall}) for paraphrases.

Abundantly available bilingual parallel corpora have been shown to address both

these issues, obtaining paraphrases via a pivoting step over foreign language phrases

[Bannard and Callison-Burch, 2005]. The coverage of paraphrase lexica extracted

from bitexts has been shown to outperform that obtained from other sources [Zhao

et al., 2008b]. While there have been efforts pursuing the extraction of more powerful

paraphrases [Madnani et al., 2007, Callison-Burch, 2008, Cohn and Lapata, 2008,

Zhao et al., 2008a], it is not yet clear to what extent meaningful syntactic paraphrases

can be induced from bitexts.

In their paraphrase extraction work using bilingual parallel corpora Bannard and

Callison-Burch [2005] used techniques from phrase-based statistical machine transla-

tion [Koehn et al., 2003]. After extracting a bilingual phrase table, English para-

phrases are obtained by pivoting through foreign language phrases. The phrase table

contains phrase pairs (e, f) (where the e and f stand for English and foreign phrases,

respectively) as well as bi-directional translation probabilities p(e|f) and p(f |e).

Since many paraphrases can be extracted for a phrase, Bannard and Callison-

Burch [2005] rank them using a paraphrase probability defined in terms of the trans-
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lation model probabilities p(f |e) and p(e|f):

p(e2|e1) =
∑

f

p(e2, f |e1) (2.1)

=
∑

f

p(e2|f, e1)p(f |e1) (2.2)

≈
∑

f

p(e2|f)p(f |e1). (2.3)

Several subsequent efforts extended the bilingual pivoting technique, many of

which introduced elements of more contemporary syntax-based approaches to statisti-

cal machine translation. Madnani et al. [2007] extended the technique to hierarchical

phrase-based machine translation [Chiang, 2005], which is formally a synchronous

context-free grammar (SCFG) and thus can be thought of as a paraphrase gram-

mar. The paraphrase grammar can paraphrase (or “decode”) input sentences using

an SCFG decoder, like the Hiero, Joshua or cdec MT systems [Chiang, 2007, Li et al.,

2009, Dyer et al., 2010]. Like Hiero, Madnani’s model uses just one nonterminal X

instead of linguistic nonterminals.

Additional efforts incorporated linguistic syntax. Callison-Burch [2008] introduced

syntactic constraints by labeling all phrases and paraphrases (even non-constituent

phrases) with CCG-inspired slash categories [Steedman and Baldridge, 2011], an ap-

proach similar to Zollmann and Venugopal [2006]’s syntax-augmented machine trans-

lation (SAMT). Callison-Burch did not formally define a synchronous grammar, nor

discuss decoding, since his presentation did not include hierarchical rules. Cohn and

Lapata [2008] used the GHKM extraction method [Galley et al., 2004], which is lim-
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ited to constituent phrases and thus produces a reasonably small set of syntactic rules.

Zhao et al. [2008a] added slots to bilingually extracted paraphrase patterns that were

labeled with part-of-speech tags, but not larger syntactic constituents.

More recent work leveraged temporal and structural signals available in online

newswire text and on Twitter1 to extract sentential and predicate-level paraphrases

from quasi-parallel text. Zhang and Weld [2013] use a set of temporal heuristics

over entities appearing in news articles to model whether relations observed between

such entities may be paraphrases of one another. They later extend their method

to replace entity candidates generated by an off-the-shelf relation extraction system

with an unsupervised approach, showing further improvement in both precision and

recall [Zhang et al., 2015].

Xu et al. [2014] present a supervised approach, extracting sentential paraphrases

from news headlines on Twitter using a latent-variable model that leverages signals

derived from the trending topics clustering and pivoting over shared entity mentions.

2.1.3.1 Paraphrases and Word Sense Ambiguity

In this work our focus is on extending the paraphrase extraction methods of Ban-

nard and Callison-Burch [2005]. In their work, and in ours, paraphrase extraction

from bilingual corpora relies on the assumption that two English expressions e and e′

that share a common high-likelihood translation f are likely paraphrases. It is worth

1twitter.com
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noting that while we are trying to relate two different types e and e′ by drawing on

their occurrences and translations over a dataset, we are glossing over a sense ambi-

guity problem: for an ambiguous expression e different occurrences of e may in fact

have different meanings (e.g. river bank and savings bank).

Diab [2003] addresses the task of word sense disambiguation (WSD) in a multilin-

gual framework, proposing a projection method to compute estimates for word sense

in foreign languages that takes into account the different known senses of a word’s

English translations.

Addressing word sense ambiguity explicitly as part of a paraphrase extraction

approach is an interesting research problem. In this work, we take no special precau-

tions to avoid cross-contamination from different word senses being lumped together.

Nonetheless, some extensions we present to prior paraphrase extraction work make

the resulting paraphrases more robust against WSD problems: in Chapter 3 we in-

troduce the requirement that an expression’s syntactic label has to match that of

its paraphrases, avoiding ambiguity that can be resolved with part-of-speech labeling

that takes context into account (e.g. lead paint and she lead a team). Chapter 5 adds

a distributional similarity signal that can further help detect sense mismatches.
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2.1.4 Paraphrasing and Statistical Machine Trans-

lation

Before the shift to statistical natural language processing, paraphrasing was of-

ten treated as syntactic transformations or by parsing and then generating from a

semantic representation [McKeown, 1979, Muraki, 1982, Meteer and Shaked, 1988,

Shemtov, 1996, Yamamoto, 2002]. Indeed, some work generated paraphrases using

(non-probabilistic) synchronous grammars[Shieber and Schabes, 1990, Dras, 1997,

1999, Kozlowski et al., 2003].

After the rise of statistical machine translation, many machine translation tech-

niques were repurposed for paraphrasing. These include sentence alignment [Gale and

Church, 1993, Barzilay and Lee, 2003], word alignment and noisy channel decoding

[Brown et al., 1990, Quirk et al., 2004], phrase-based models [Koehn et al., 2003,

Bannard and Callison-Burch, 2005], hierarchical phrase-based models [Chiang, 2005,

Madnani et al., 2007], log-linear models, minimum error rate training [Och, 2003,

Madnani et al., 2007, Zhao et al., 2008b], and syntax-based machine translation [Wu,

1997, Yamada and Knight, 2001, Melamed, 2004, Quirk et al., 2005].

Relying on small data sets of semantically equivalent translations, Pang et al.

[2003] created finite state automata by syntax-aligning parallel sentences, enabling

the generation of additional reference translations.

Both Barzilay and McKeown [2001] and Ibrahim et al. [2003] sentence-align exist-
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ing noisy parallel monolingual corpora such as translations of the same novels. While

Ibrahim et al. [2003] employ a set of heuristics that rely on anchor words identified

by textual identity or matching liguistic features such as gender, number or semantic

class, Barzilay and McKeown [2001] use a co-training approach that leverages context

similarity to identify viable paraphrases.

Semantic parallelism is well-established as a stong basis for the extraction of cor-

respondencies such as paraphrases. However, there are notable efforts that choose

to forgo it in favor of clustering approaches based on distributional characteristics.

The well-known DIRT method by Lin and Pantel [2001] fully relies on distributional

similarity features to extract inference rules. Patterns extracted from paths in depen-

dency graphs are clustered based on the similarity of the observed contents of their

slots.

Similarly, Bhagat and Ravichandran [2008] argue that vast amounts of text can

be leveraged to make up for the relative weakness of distributional features compared

to parallelism. They also forgo complex annotations such as syntactic or dependency

parses, relying only on part-of-speech tags to inform their approach. In their work,

relations are learned by finding pattern clusters initially seeded by already known

patterns. However, this method is not capable of producing syntactic paraphrases.
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2.2 Statistical Machine Translation

Work in statistical machine translation (SMT) relies on bilingual parallel corpora

(or bitexts) to learn models for translating between natural languages. Bilingual par-

allel corpora are collections that pair sentences in one language with their translations

in another language.

In statistical machine translation systems, bitexts are used to learn word align-

ment models that compute the probability of individual words in a sentence pair

being translations. Based on a word alignment model trained from the bitext, a

single best alignment is then computed for each sentence pair. Subsequently, larger

translation units, like pairs of contiguous multi-word phrases or context-free gram-

mar rules that include nonterminal gaps, can be extracted from the sentence pair.

Translation probabilities for these elements are estimated by aggregating counts over

the entire bitext. The resulting translation model can then be used to translate pre-

viously unseen source language sentences by simultaneously finding the best way to

partition the input sentence into known units, and picking the best translation for

each of these units. A language model in the target language is used to ensure the

fluency of the output produced.

In our work, we adapt much of this machinery to extract syntactically informed

paraphrases from bilingual data. In the following, we give a brief overview of the

major components of an SMT system that our work builds on.
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2.2.1 Word-Based Machine Translation and Align-

ments

Brown et al. [1990] first cast translation as a probabilistic process. Given a French

sentence f , we can find the best English translation ê by choosing the most likely e:

ê = arg max
e
p(e|f) (2.4)

= arg max
e

p(e)p(f |e)

p(f)
(2.5)

= arg max
e
p(e)p(f |e). (2.6)

This formulation decomposes into two sub-models, the language model p(e) and the

translation model p(f |e). The language model quantifies the fluency of e (it aims to

answer the question “how likely is this sentence to appear in well-formed English?”),

while the translation model quantifies how close in meaning e is to the original French

input f . We describe each model in the following.

2.2.1.1 Language Model

The language model, borrowing from speech recognition, was an n-gram model.

Under an n-gram model, the probability of a sentence was the probability of each
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successive word, given the n previous words.

p(e) = p(eI1) (2.7)

= p(e1) · p(e2|e1) · p(e3|e2, e1) · p(e4|e3e2e1) · · · (2.8)

=
I∏

i=1

p(ei|ei−1 . . . ei−n). (2.9)

The language model parameters, i.e. the individual n-gram probabilities are typically

estimated using occurrence counts over a large monolingual corpus. A variety of

techniques have been developed to smooth the language model probabilities to ensure

better performance on unseen data and account for the incompleteness of the training

corpus.

While linguistically crude, n-gram models have proven highly successful and are

still in use in a wide variety of natural language processing tasks, including machine

translation and paraphrasing.

2.2.1.2 Word-Based Translation Model

Owing to dearth of data and the computational limitations of the time, the trans-

lation model Brown et al. [1990] introduced is similarly simple in its approach. The

translation probability is defined by way of word-to-word translation probabilities,

and word alignments between the two sentences:

p(f |e) =
∑

a

p(f , a|e) (2.10)
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Brown et al. [1993] define a series of increasingly complex word-based translation

and alignment models, referred to as the IBM models. The simplest of these, Model

1, is based purely on co-occurrence statistics over the bitext. The subsequent models

introduce additional parameters to account for translation effects like differences in

word order (modeled by the distortion probability d(pi|i, l,m)), words that do not

have direct counterparts in the other language (modeled by a spurious word proba-

bility parameter), and single words in one language translating as multiple words in

the other (captured by a fertility probability parameter).

Since the bitext does not contain given alignments, these parameters cannot be es-

timated directly. Instead, Brown et al. [1993] treat them as hidden variables, and learn

the model parameters using the expectation maximization (EM) algorithm [Dempster

et al., 1977]. Especially for complex models, the EM algorithm is liable to converge

to sub-optimal local minima. To ameliorate this, Brown et al. [1993] attempt ini-

tializing the model parameters to reasonable values. Specifically, each model in the

IBM model family is seeded with the parameters learned from training its simpler

precursor.

While state-of-art translation modeling in machine translation has long moved

past word-based translation, word alignments and the IBM models still are a key

component in learning the more complex and linguistically informed models.

26



CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.2 SCFGs in Translation

The model we use in our paraphrasing approach is a syntactically informed syn-

chronous context-free grammar (SCFG). The SCFG formalism [Aho and Ullman,

1972] was repopularized for statistical machine translation by Chiang [2005]. For-

mally, a probabilistic SCFG G is defined by specifying

G = 〈N , TS, TT ,R, S〉,

whereN is a set of nonterminal symbols, TS and TT are the source and target language

vocabularies, R is a set of rules and S ∈ N is the root symbol. The rules in R take

the form:

C → 〈γ, α,∼, w〉,

where the rule’s left-hand side C ∈ N is a nonterminal, γ ∈ (N ∪ TS)∗ and α ∈

(N ∪ TT )∗ are strings of terminal and nonterminal symbols with an equal number of

nonterminals cNT (γ) = cNT (α) and

∼: {1 . . . cNT (γ)} → {1 . . . cNT (α)}

constitutes a one-to-one correspondency function between the nonterminals in γ and

α. A non-negative weight w ≥ 0 is assigned to each rule, reflecting the likelihood of

the rule.
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PP/NN → mit einer  |  with a
NP → das leck  |  the leak

VP →  NP PP/NN detonation zu schliessen  |  closing NP PP/NN blast 

they

VP
VP

PRP VBD NNDTNN

NP NPNP

closing          tried the   

S

sie versuchten das zu schliessen

leak

leck

with          a   blast
DT IN

PP

VBG

einermit detonation

Figure 2.1: Synchronous grammar rules for translation are extracted from sentence

pairs in a bitext which have been automatically parsed and word-aligned. Extraction

methods vary on whether they extract only minimal rules for phrases dominated by

nodes in the parse tree, or more complex rules that include non-constituent phrases.

2.2.3 Rule Extraction

Phrase-based approaches to statistical machine translation (and their successors)

extract pairs of (e, f) phrases from automatically word-aligned parallel sentences. ?

described various heuristics for extracting phrase alignments from the Viterbi word-

level alignments that are estimated using Brown et al. [1993] word-alignment models.

The phrase extraction heuristics for phrase-based machine translation have been

extended so that they extract synchronous grammar rules [Galley et al., 2004, Chiang,

2005, Zollmann and Venugopal, 2006, Liu et al., 2006]. Most of these extraction

methods require that one side of the parallel corpus be parsed. This is typically done

automatically with a statistical parser.
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Figure 2.1 shows examples of rules obtained from a sentence pair. To extract a

rule, we first choose a source side span f like das leck. Then we use phrase extraction

techniques to find target spans e that are consistent with the word alignment (in this

case the leak is consistent with our f). The nonterminal symbol that is the left-hand

side of the SCFG rule is then determined by the syntactic constituent that dominates

e (in this case NP). To introduce nonterminals into the right-hand side of the rule, we

can apply rules extracted over sub-phrases of f , synchronously substituting the cor-

responding nonterminal symbol for the sub-phrases on both sides. The synchronous

substitution applied to f and e then yields the correspondency ∼.

One significant differentiating factor between the competing ways of extracting

SCFG rules is whether the extraction method generates rules only for constituent

phrases that are dominated by a node in the parse tree [Galley et al., 2004, Cohn and

Lapata, 2008] or whether they include arbitrary phrases, including non-constituent

phrases [Zollmann and Venugopal, 2006, Callison-Burch, 2008]. We adopt the extrac-

tion for all phrases, including non-constituents, since it allows us to cover a much

greater set of phrases, both in translation and paraphrasing.

However, in doing so we can only assign left-hand side labels to a small portion of

the possible phrases in a sentence pair. To allow for broader coverage, we rely on the

labeling method introduced by Zollmann and Venugopal [2006]: in addition to single

constituent nonterminals, we allow for the concatenation of constituents as well as

for CCG-style slashed constituents [Steedman, 1999].
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2.2.4 Feature Functions

Rather than assigning a single weight w, we define a set of feature functions

~ϕ = {ϕ1...ϕN} that are combined in a log-linear model:

w = −
N∑

i=1

λi logϕi. (2.11)

The weights ~λ of these feature functions are set to maximize some objective function

like Bleu [Papineni et al., 2002] using a procedure called minimum error rate training

(MERT), owing to Och [2003]. MERT iteratively adjusts the weights until the de-

coder produces output that best matches reference translations in a development set,

according to the objective function. We will examine appropriate objective functions

for text-to-text generation tasks in Section 4.2.2.

Typical features used in statistical machine translation include phrase transla-

tion probabilities (calculated using maximum likelihood estimation over all phrase

pairs enumerable in the parallel corpus), word-for-word lexical translation probabili-

ties (which help to smooth sparser phrase translation estimates), a “rule application

penalty” (which governs whether the system prefers fewer longer phrases or a greater

number of shorter phrases), and a language model probability.

• Phrase translation probabilities ϕphrase(e|f) and ϕphrase(f |e) which are com-

puted using maximum likelihood estimation over all phrase pairs that are ex-

tracted from the parallel corpus.
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• Lexical translation probabilities

ϕlex = 〈− log plex (e|f),− log plex (f |e)〉

• Count features csrc and ctgt indicating the number of words on either side of the

rule as well as two difference features, cdcount = ctgt − csrc and the analoguosly

computed difference in the average word length in characters, cdavg .

• Language model probability.

• A length penalty.

• An indicator for when a rule only contains terminal symbols (δlex ) and an indi-

cator for when the source side contains terminals, but the target side does not

(δdel).

• Indicators for whether the rule swaps the order of two nonterminals (δreorder)

and whether the two nonterminals are adjacent (δadj ).

• A rarity penalty ϕrarity = e(1−crule) that quantifies the doubt we may place in a

rule based on how often we have encountered it in the corpus2.

2.2.5 Decoding

Given an SCFG and an input source sentence, the decoder performs a search for

the single most probable derivation via the CKY algorithm. In principle the best

2Since we do not have an immediate rule count for a paraphrase rule N → e1|e2, we instead
estimate its rarity penalty as ϕrarity(N → e1|e2) = maxf min{ϕrarity(N → e1|f), ϕrarity(N → f |e2)}
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translation should be the English sentence e that is the most probable after summing

over all d ∈ D derivations, since many derivations yield the same e. In practice, we

use a Viterbi approximation and return the translation that is the yield of the single

best derivation:

ê = arg max
e∈Trans(f)

∑

d∈D(e,f)

p(d, e|f)

≈ yield(arg max
d∈D(e,f)

p(d, e|f)). (2.12)

Derivations are simply successive applications of the SCFG rules such as those given

in Figure 2.2.

NP/NN → dem rest des | the rest of the

VB + JJ → gefährlich werden | be dangerous

NP → NP/NN dorfes | NP/NN village

VP/PP → nicht VB + JJ können | can not VB + JJ

S → sie NP VP/PP | they VP/PP to NP

A variety of different types of corpora (and semantic equivalence cues) have been

used to automatically induce paraphrase collections for English [Madnani and Dorr,

2010]. Perhaps the most natural type of corpus for this task is a monolingual parallel

text, which allows sentential paraphrases to be extracted since the sentence pairs in

such corpora are perfect paraphrases of each other [Barzilay and McKeown, 2001,

Pang et al., 2003]. While rich syntactic paraphrases have been learned from mono-

lingual parallel corpora, they suffer from very limited data availability and thus have

poor coverage.

Other methods obtain paraphrases from raw monolingual text by relying on dis-

tributional similarity [Lin and Pantel, 2001, Bhagat and Ravichandran, 2008]. While
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they can not be dangerous to the rest of the village

VP/PP

VB+JJ

S

NP

NP/NN

sie könnengefährlich werdennichtdem rest des dorfes

VP/PP

VB+JJ

S

NP

NP/NN

NP/NN → dem rest des  |   the rest of the

NP → NP/NN dorfes  |  NP/NN village
VP/PP → nicht VB+JJ können  |  can not VB+JJ

VB+JJ → gefährlich werden  |  be dangerous

S → sie NP VP/PP  |  they VP/PP to NP

Figure 2.2: An example derivation produced by a syntactic machine translation sys-

tem. Although the synchronous trees are unlike the derivations found in the Penn

Treebank, their yield is a good translation of the German.

vast amounts of data are readily available for these approaches, the distributional

similarity signal they use is noisier than the sentence-level correspondency in parallel

corpora and additionally suffers from problems such as mistaking cousin expressions

or antonyms (such as {boy , girl} or {rise, fall}) for paraphrases.

Abundantly available bilingual parallel corpora have been shown to address both

these issues, obtaining paraphrases via a pivoting step over foreign language phrases

[Bannard and Callison-Burch, 2005]. The coverage of paraphrase lexica extracted
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from bitexts has been shown to outperform that obtained from other sources [Zhao

et al., 2008a]. While there have been efforts pursuing the extraction of more powerful

paraphrases [Madnani et al., 2007, Callison-Burch, 2008, Cohn and Lapata, 2008,

Zhao et al., 2008b], it is not yet clear to what extent meaningful syntactic paraphrases

can be induced from bitexts. In this thesis we propose that high-coverage and -quality

collections of syntactic paraphrases can indeed be extracted from bilingual parallel

data.
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Paraphrasing as Monolingual

Syntactic Machine Translation

In this work we approach paraphrasing as monolingual syntactic machine trans-

lation. Our method is an extension of two prominent lines of work on paraphrasing,

which cast it as phrase-based machine translation [Bannard and Callison-Burch, 2005]

and hierarchical machine translation [Madnani et al., 2007]. Like this past work, we

extract paraphrases from bilingual parallel corpora. Our work expands on these

methods to extract syntactic paraphrases.

Paraphrase extraction using bilingual parallel corpora was proposed by Bannard

and Callison-Burch [2005] who induced paraphrases using techniques from phrase-

based statistical machine translation [Koehn et al., 2003]. After extracting a bilingual

phrase table, English paraphrases are obtained by pivoting through foreign language
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phrases.

Since many paraphrases can be extracted for a phrase, Bannard and Callison-

Burch [2005] rank them using a paraphrase probability defined in terms of the trans-

lation model probabilities p(f |e) and p(e|f):

p(e2|e1) =
∑

f

p(e2, f |e1) (3.1)

=
∑

f

p(e2|f, e1)p(f |e1) (3.2)

≈
∑

f

p(e2|f)p(f |e1). (3.3)

Madnani et al. [2007] extended the technique to hierarchical phrase-based machine

translation [Chiang, 2005], which is formally a synchronous context-free grammar

(SCFG) and thus can be thought of as a paraphrase grammar. Like Hiero, Madnani’s

model uses just one nonterminal X instead of linguistic nonterminals.

In this chapter we extend the bilingual pivoting approach to paraphrase induc-

tion to produce rich syntactic paraphrases.1 We expect syntactic paraphrases to be

able to generally capture meaning-preserving English transformations without over-

generating. We describe the formalisms and techniques used in syntactically informed

statistical machine translation, and extend them to apply to our paraphrases. Fur-

thermore, we perform a thorough analysis of the types of paraphrases we obtain and

discuss the paraphrastic transformations we are capable of capturing.

1Chapters 3 and 4 extend the exposition and analysis presented in Ganitkevitch et al. [2011].
The experimental results extend the published work using identical techniques.
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3.1 Syntax-Based Machine Translation

A variety of different approaches to including syntactic information in machine

translation have been proposed. Here, we use synchronous context free grammars

(SCFGs). We extend their use to paraphrasing.

3.1.1 SCFGs in Translation

The model we use in our paraphrasing approach is a syntactically informed syn-

chronous context-free grammar (SCFG). The SCFG formalism [Aho and Ullman,

1972] was repopularized for statistical machine translation by Chiang [2005]. For-

mally, a probabilistic SCFG G is defined by specifying

G = 〈N , TS, TT ,R, S〉,

whereN is a set of nonterminal symbols, TS and TT are the source and target language

vocabularies, R is a set of rules and S ∈ N is the root symbol. The rules in R take

the form:

C → 〈γ, α,∼, w〉,

where the rule’s left-hand side C ∈ N is a nonterminal, γ ∈ (N ∪ TS)∗ and α ∈

(N ∪ TT )∗ are strings of terminal and nonterminal symbols with an equal number of

nonterminals cNT (γ) = cNT (α) and

∼: {1 . . . cNT (γ)} → {1 . . . cNT (α)}
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PP/NN → mit einer  |  with a
NP → das leck  |  the leak

VP →  NP PP/NN detonation zu schliessen  |  closing NP PP/NN blast 

they

VP
VP

PRP VBD NNDTNN

NP NPNP

closing          tried the   

S

sie versuchten das zu schliessen

leak

leck

with          a   blast
DT IN

PP

VBG

einermit detonation

Figure 3.1: Synchronous grammar rules for translation are extracted from sentence

pairs in a bitext which have been automatically parsed and word-aligned. Extraction

methods vary on whether they extract only minimal rules for phrases dominated by

nodes in the parse tree, or more complex rules that include non-constituent phrases.

constitutes a one-to-one correspondency function between the nonterminals in γ and

α. A non-negative weight w ≥ 0 is assigned to each rule, reflecting the likelihood of

the rule.

3.1.2 Rule Extraction

Phrase-based approaches to statistical machine translation (and their successors)

extract pairs of phrases (e, f) from automatically word-aligned parallel sentences in

a given foreign language F and English (E). Koehn [2010] describes a variety of

heuristics for extracting phrase alignments from the Viterbi word-level alignments

that are commonly estimated using word-alignment models [Brown et al., 1993].
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These phrase extraction heuristics have been extended so that they extract syn-

chronous grammar rules [Galley et al., 2004, Chiang, 2005, Zollmann and Venugopal,

2006, Liu et al., 2006]. Most of these extraction methods require that one side of

the parallel corpus be parsed. This is typically done automatically with a statistical

parser.

Figure 3.1 shows examples of rules obtained from a sentence pair. To extract a

rule, we first choose a source side span f like das leck. Then we use phrase extraction

techniques to find target spans e that are consistent with the word alignment (in this

case the leak is consistent with our f). The nonterminal symbol that is the left-hand

side of the SCFG rule is then determined by the syntactic constituent that dominates

e (in this case NP). To introduce nonterminals into the right-hand side of the rule, we

can apply rules extracted over sub-phrases of f , synchronously substituting the cor-

responding nonterminal symbol for the sub-phrases on both sides. The synchronous

substitution applied to f and e then yields the correspondency ∼.

One significant differentiating factor between the competing ways of extracting

SCFG rules is what nonterminal labels are considered valid for an extracted rule.

Work like that of Galley et al. [2004] or Cohn and Lapata [2008] only considers a

rule valid if all nonterminals are full syntactic constituents, i.e. the span covered is

dominated by a node in the parse tree. In doing so, valid nonterminal labels can only

be assigned to a small portion of the possible phrases in a sentence pair. To allow

for broader coverage, approaches like Zollmann and Venugopal [2006] and Callison-
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Burch [2008] consider more complex labeling schemes that allow for concatenated

constituents as nonterminals, or CCG-style slashed labels [Steedman, 1999].

3.1.3 Feature Functions

In statistical machine translation, rather than assigning a single weight w to each

rule, a set of feature functions ~ϕ = {ϕ1...ϕN} are combined in a log-linear model:

w = −
N∑

i=1

λi logϕi. (3.4)

The weights ~λ of these feature functions are set to maximize some objective function

like Bleu [Papineni et al., 2002] using a procedure called minimum error rate train-

ing (MERT), owing to Och [2003]. MERT iteratively adjusts the weights until the

decoder produces output that best matches reference translations in a development

set, according to the objective function.

Typical features used in statistical machine translation include phrase transla-

tion probabilities (calculated using maximum likelihood estimation over all phrase

pairs enumerable in the parallel corpus), word-for-word lexical translation probabili-

ties (which help to smooth sparser phrase translation estimates), a “rule application

penalty” (which governs whether the system prefers fewer longer phrases or a greater

number of shorter phrases), and a language model probability. Syntax-based machine

translation systems typically extend this feature set by adding translation probability

estimates that are conditioned on syntactic information.
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The following list gives a more detailed overview of the features used in the Joshua

decoder:

• Phrase translation probabilities pphrase(e | f) and pphrase(f | e), which are com-

puted using maximum likelihood estimation (MLE) over all phrase pairs that

are extracted from the parallel corpus.

• Syntactically informed translation probabilities p(e | f, C), p(f | e, C), that

additionally condition on the nonterminal label C. These features are computed

as maximum likelihood estimates, but are limited to corpus occurrences of e and

f that were dominated by C in the syntactic parse.

• Syntactic parsing probabilities p(e | C), p(f | C), p(C | e), and p(C | f),

similarly computed from the parsed bitext via MLE.

• Lexical translation probabilities plex (e | f) and plex (f | e), which are based on

the word alignment

A = {aij ∈ {0, 1} | i ∈ {1 . . . n}, j ∈ {1 . . .m}}

between e = e1 . . . en and f = f1 . . . fm. The lexical translation probability for

the rule is computed from the word-level translation probabilities pword(ei | fj)

and pword(fj | ei):

plex (e | f) =
n∏

i=0

1∑m
j=0 aij

m∑

j=1

pword(ei | fj) (3.5)
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The word probabilities, in turn, are maximum likelihood estimates over the

aligned bitext.

• The language model probability of the rule’s target side e.

• A rarity penalty ϕrarity = e(1−crule) that allows us to down-weigh a rule that only

appears in the corpus a few times. The rarity penalty is 1 for singleton rules,

and quickly drops off towards 0 as the number of rule occurrences in the parallel

text increases.

• An log-occurrence count feature log c that permits the decoder to express pref-

erence for frequent, well-estimated rules.

• Word count features csrc and ctgt indicating the number of words on either side

of the rule. This allows the system to learn a preference for longer or shorter

rules.

• A rule application feature crule that is always 1 and counts the number of rules

applied in a synchronous derivation. This permits the decoder to prefer longer,

more complex parse trees over flatter ones – or vice versa.

Furthermore, machine translation systems like the Joshua decoder often consider

an array of boolean indicator features that describe structural aspects about a rule,

enabling the system to learn preferences for operations like reordering, or deletion of

words:
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• δlex for when a rule only contains terminal symbols on the right-hand side.

• δabstract for rules that do not contain any terminal symbols.

• δdel for when the source side contains terminals, but the target side does not.

• δgen for rules where the target side contains terminals but the source side does

not.

• δsrc−unal and δtgt−unal for when there are unaligned words on the source or target

side, respectively.

• Indicators for whether the rule swaps the order of two nonterminals (δreorder)

and whether there are two adjacent nonterminals (δadj ).

• δX for whether the rule contains a wildcard nonterminal.

• δidentity , which fires when the source and target sides are identical.

3.1.4 Decoding

Given an SCFG and an input foreign sentence, the decoder performs a search for

the single most probable derivation via the CKY algorithm. In principle the best

translation should be the English sentence e that is the most probable after summing

over all d ∈ D derivations, since many derivations yield the same e. In practice, we

use a Viterbi approximation and return the translation that is the yield of the single
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they can not be dangerous to the rest of the village

VP/PP

VB+JJ

S

NP

NP/NN

sie könnengefährlich werdennichtdem rest des dorfes

VP/PP

VB+JJ

S

NP

NP/NN

Figure 3.2: An example derivation produced by a syntactic machine translation sys-

tem. Although the synchronous trees are unlike the derivations found in the Penn

Treebank, their yield is a good translation of the German.

best derivation:

ê = arg max
e∈Trans(f)

∑

d∈D(e,f)

p(d, e|f)

≈ yield(arg max
d∈D(e,f)

p(d, e|f)). (3.6)

Synchronous derivations, like the one shown in Figure 3.2, are obtained by successive

application of a set of SCFG rules. Figure 3.2 for instance is obtained by applying

the below rule set:

NP/NN → dem rest des | the rest of the

VB + JJ → gefährlich werden | be dangerous

NP → NP/NN dorfes | NP/NN village

VP/PP → nicht VB + JJ können | can not VB + JJ

S → sie NP VP/PP | they VP/PP to NP
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3.2 Syntactic Paraphrases from Bilingual

Data

The novel contribution of this thesis is to extend the notion of paraphrases as

SCFGs to include syntactically informed SCFGs. Bannard and Callison-Burch [2005]

used techniques from phrase-based machine translation to extract lexical and phrasal

paraphrases. Lexical paraphrases, or synonyms, are pairs of words that, in an appro-

priate context, share a meaning:

committee | board

proposal | draft

Similarly, phrasal paraphrases denote pairs of contiguous surface text strings with the

same meaning:

the commission’s role | the role of the commission

Phrasal paraphrases can capture a wide range of meaning-preserving transformations.

However they do so by memorization: having seen only the above phrase, we would

not be able to learn anything general about the English possessive rule. Madnani

et al. [2007] add generalization capabilities by introducing nonterminals (or slots)

into the surface forms, resulting in paraphrase patterns :

X → the X1’s X2 | the X2 of the X1.

The introduction of nonterminals into the paraphrasing formalism also allows for re-

ordering, as shown by the nonterminal indices. By adding a left-hand side nonterminal
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(X, again), Madnani et al. [2007] extend the paraphrase collection to a synchronous

context-free grammar (SCFG). The extension to SCFGs allows paraphrase generation

and recognition via synchronous parsing, nesting paraphrase patterns into a sentence-

level parse tree in a way similar to SCFG-based machine translation as popularized

by Chiang [2005].

The nonterminals added by Madnani et al. [2007] are wildcards: they make no

restrictions on what can fill a slot. This can lead to significant over-generation. To

gain a better notion of fitting syntactic types while maintaining generalization capa-

bilities, we annotates the nonterminals with syntactic constraints, yielding syntactic

paraphrases :

NP → the NP1’s NP2 | the NP2 of the NP1.

It is evident that the syntactically labeled paraphrases have a much higher potential

for generalization and for capturing interesting paraphrastic transformations than

phrasal paraphrases. Yet they are more likely to produce grammatically correct re-

sults than unconstrained wildcard paraphrase patterns. This is especially interesting

for applications in sentential paraphrasing, where syntactic information can lead to

higher precision synchronous parses.
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journalisten wurden verhaftet  , ebenso auch aktive gewerkschafter .

journalists have been arrested , as have active trade unionists .

imprisoned , can not be called anything other thanandharrassedthreatened ,are

verhaftetundausgesetztübergriffen bedroht , .

workerselection

werdenwahlhelfer

Figure 3.3: An example of phrasal pivoting: the word “arrested” is seen aligned to

the German word “verhaftet.” In another sentence pair in the bitext, “verhaftet”

aligns to the English “imprisoned.” By pivoting over the shared German translation,

the two English words can be extracted as a pair of paraphrases.

3.2.1 Rule Extraction

Here we use bilingual parallel text to extract paraphrase rules. Our approach

builds on the work of Bannard and Callison-Burch [2005] and Madnani et al. [2007].

Bannard and Callison-Burch [2005] extract English paraphrases from English-to-

foreign bitext data by assuming that two English phrases that are observed translating

to the same foreign phrase are paraphrases. Figure 3.3 illustrates this idea: in one

parallel sentence pair, the word “arrested” is seen aligned to the German word “ver-

haftet.” In another sentence pair in the bitext, “verhaftet” aligns to the English

“imprisoned.” Bannard and Callison-Burch [2005] propose that by pivoting over the

German word we can extract the paraphrase pair:

arrested | imprisoned.
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In order to both make this pivot-based extraction more practicable, a typical imple-

mentation of pivot-based paraphrase extraction will not operate directly on the bitext,

but on a translation phrase table, i.e. a collection of English and foreign phrases that

have been seen as translations of one another, annotated with the typical features

used in phrase-based machine translation like their occurrence counts and translation

probabilities Koehn [2010]:

PT = {〈f, e, ~ϕ〉}.

Bannard and Callison-Burch [2005] find rule pairs with matching foreign phrases in

the phrase table:

〈f, e1, ~ϕ1〉 and 〈f, e2, ~ϕ2〉,

and combined them to create phrasal paraphrase rules:

〈e1, e2, ~ϕ〉.

Later work extends this phrasal pivoting approach to include some syntactic infor-

mation. Callison-Burch [2008] generate syntactic parses for the English side of the

bitext. They then keep track of the syntactic constituent C that dominates the En-

glish phrase e in the parallel corpus. This yields a syntactically annotated phrase

table:

PT syn = {〈f, e, C, ~ϕ〉}.
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The pivot rule pairs now are required to have both matching foreign phrases, and

syntactic labels C:

〈f, e1, C, ~ϕ1〉 and 〈f, e2, C, ~ϕ2〉,

there yield syntax-annotated phrasal paraphrase rules:

〈e1, e2, C, ~ϕ〉.

Madnani et al. [2007] extend the pivoting approach to unlabeled SCFGs. The

pivoting notion remains the same in their work, but instead of a translation phrase

table now builds on an unlabeled translation SCFG. They therefore pair up two rules

of the form:

X → 〈f, e1,∼1, ~ϕ1〉

X → 〈f, e2,∼2, ~ϕ2〉,

to generate a paraphrase rule:

X → 〈e1, e2,∼, ~ϕ〉,

where the nonterminal correspondency relation ∼ is been set to reflect the combined

nonterminal alignment:

∼ = ∼−11 ◦ ∼2 .

This composition reflects the way the nonterminal correspondence changes through

the pivot. Since ∼ is defined from source to target, ∼1 is reversed (going from e1 to

f) and composed with ∼2 (going from f to e2).
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In our work we use a bitext in which the English side is syntactically parsed.

However, we aim to syntactically labeled SCFGs. This expands on both Madnani

et al. [2007] and Callison-Burch [2008]. Our extraction method uses a syntactically

labeled translation SCFG learned from the bitext as its basis. To create a paraphrase

grammar from a translation grammar, we use syntax as a constraint for pivoting. For

each pair of translation rules with English strings e1 and e2, where the left-hand side

label C and the foreign string f match:

C → 〈f, e1,∼1, ~ϕ1〉

C → 〈f, e2,∼2, ~ϕ2〉,

we create a paraphrase rule:

C → 〈e1, e2,∼, ~ϕ〉.

The nonterminal correspondency ∼ is computed analogously to Madnani et al. [2007].

To illustrate the pivoting process, we consider the following German-English trans-

lation rules with matching source sides:

NN → rede | address

NN → rede | presentation

VP\PP → rede | am discussing .

Even though all source phrases match, we may only combine the first two of the

translation rules. The third rule’s left-hand side doesn’t match, and in this case that

is indeed indicative of a syntactic mismatch on the English side – “am discussing” is

not a valid substitute for either “presentation” or “address.” By pivoting over the

matching rules, we thus obtain the following paraphrases:
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NN → address | presentation

NN → presentation | address.

Similarly, we can mutually combine the syntactic translation rules

VP → NP1 NP2 geben | give NP1 NP2

VP → NP1 NP2 geben | give NP2 to NP1

VP → NP1 NP2 geben | provide NP1 with NP2

to generate the paraphrase rules. Because the translation grammar is synchronous,

our use of matching foreign sides as a constraint guarantees that the nonterminal

labels between the three English sides will match: each above English target phrase

is guaranteed to have two NP -labeled nonterminals. Through pivoting, we obtain the

following paraphrase rules:

VP → give NP1 NP2 | give NP2 to NP1

VP → give NP1 NP2 | provide NP1 with NP2

VP → give NP1 to NP2 | give NP2 NP1

VP → give NP1 to NP2 | provide NP2 with NP1

VP → provide NP1 with NP2 | give NP1 NP2

VP → provide NP1 with NP2 | give NP2 to NP1 .

Note that in our notation the source phrase determines the indexing of the non-

terminals in order of appearance, while the indexing on the target phrase indicates

whether a reordering is taking place. When compared to the others, the phrase “give

NP1 to NP2” reverses the order of the direct and indirect object. The paraphrases

that include it therefore are reordering ones, while the phrases with matching order

maintain the nonterminal order without reordering.
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3.2.2 Assigning Syntactic Labels to SCFG Rules

As described above, our syntactic paraphrase rules are obtained from an interme-

diate syntactically labeled translation SCFG. The types of labels we will see in the

paraphrase grammar therefore are fully determined by the labeling in the extraction

of the translation grammar. While considerable efforts have been made to compare

syntactic rule extraction and labeling strategies for machine translation, the same

conclusions cannot be assumed to hold for paraphrasing. We therefore consider and

compare a variety of labeling strategies for our syntactic paraphrases.

Typically, during the initial rule extraction we are considering a span and seek

to produce a label for it. If it is possible to label the span in accordance with our

labeling strategy, we can replace the span with the corresponding nonterminal symbol

and proceed. If no valid label is found, we reject the rule.

For our paraphrases, we seek a labeling strategy that strikes a balance between

having a well-formed and not overly sparse set of nonterminals, and maintaining good

coverage of the data (i.e. not throwing away too many rules).

To this end, we evaluate a tiered approach. First we only allow full Penn Treebank

constituents as nonterminal labels. If the span is exactly dominated by a node in the

constituency parse tree, we will use that node as our label. Next, we expand to

CCG-style slashed categories. If a full constituent cannot be found, we consider if

the span can be labeled as a constituent subtraction, for example “an VP missing

a NP to its right.” Finally, we can add concatenations of constituent spans to our
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是与北韩有邦
交
的少
数
国
家
之
一

澳
洲

Australia
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one
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countries

have

NP+WHNP 

have diplomatic relations 

有邦交

WHNP

NP

PP

PP

VP

NP

VP

S

SBAR

NP

NP

的少数国家
the  few countries that  

VP/PP

with North Korea one of NP+WHNP VP/PP

与北韩 之一NP+WHNP VP/PP

relations

North

Korea

that

diplomatic

Figure 3.4: Another example of the extraction of syntactically labeled rules from an

aligned bitext. The phrase “the few countries that” is extracted along with its trans-

lation. Since no one constituent covers this span, it is labeled with a concatenative

nonterminal symbol, NP + WHNP . Similarly, “have diplomatic relations” is labeled

VP/PP . Both these phrase can be cut out of the enveloping NP “one of the few

countries that have diplomatic relations with North Korea” and replaced by their

respective left-hand side nonterminals to form a complex rule.
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pool of valid labels. If neither full nor slashed constituents suffice to label a span,

we consider concatenations of up to three constituents as a label. This follows the

SAMT labeling algorithm [Zollmann and Venugopal, 2006].

Figure 3.4 illustrates this extraction and labeling process: when possible, we

choose simple single-constituent labels. If a nonterminal’s span does not match a

full constituent we back off to more complex labels to maintain high coverage.

3.2.3 Feature Functions

Having extracted a paraphrase rule, we next turn to computing the rule features ~ϕ.

The feature vector can contain different types of features, as described in Section ??.

Broadly, we can distinguish three feature types: rule type features, features that

quantify goodness, and task-centric utility features.

The features that describe the rule type are primarily useful in helping the para-

phrasing system learn to guide its search on a global level: are longer rules preferable

to shorter rules? Are more complex derivations better than simple left- or right-

branching trees? Do we trust rare rules? As such, the rule type features can include

information such as the number of lexical tokens in e1 or e2, the rule’s arity, or the

number of times the rule has occurred in the supporting data. In addition to the

type-centric features commonly used in translation systems, we add a boolean indica-

tor for whether the rule is an identity paraphrase, δidentity . Another indicator feature,

δreorder , fires if the rule swaps the order of two nonterminals, which enables us to
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promote more complex paraphrases that require structural reordering.

Utility-centric features for a paraphrase rule will quantify the rule’s contribution to

achieving a specific quality in the paraphrasing task at hand. This group of features

depends on the specific text-to-text generation task. We discuss a set of example

features for sentence compression in Section 4.2.1.

The main concern of this section is to find a way to reliably quantify the goodness

of a paraphrase rule, i.e. the meaning preservation between e1 and e2. To achieve

this, we look to estimate a conditional phrasal paraphrase probability p(e2|e1) for the

paraphrase rule, i.e. the probability that given e1 we can substitute e2 without altering

the sentence’s meaning. This is analogous to the phrasal translation probability

feature p(e|f) used in machine translation.

Additionally, incorporating syntactic information into our paraphrases (by way

of the rule label C) allows us to consider features that quantify syntactic well-

formedness, like p(e1|C) and p(C|e1). Furthermore, by conditioning on both C and e1,

we can use the syntax to disambiguate: the syntactic paraphrase probability p(e2|e1, C)

quantifies the likelihood of e1 paraphrasing as e2 when it is labeled C.

While it is trivial to look up the p(ei|C) and p(C|ei) from the translation grammar,

estimating the phrasal and syntactic paraphrase probabilities is a more challenging

task. We consider two approaches: pivot-based probability estimation, and probabil-

ity estimation via virtual counts.
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3.2.3.1 Feature Overview

The features we estimate for each paraphrase rule are related to features typically

used in machine translation systems. As such, we follow traditional SMT notation

in designating the input phrase as f and its paraphrase as e. To estimate the count-

and probability-based features, we rely on Equation 3.3. Following the log-linear

feature model, the resulting (un-normalized) probability estimates, like p(e|f), are

stored as their negative logarithm − log p(e|f). In detail, the features computed for

our paraphrases are as follows:

3.2.3.1.1 Goodness features:

• Lex(e|f) – the “lexical translation” probability of the paraphrase given the orig-

inal phrase. This feature is estimated as defined by Koehn et al. [2003].

• Lex(f|e) – the lexical translation probability of the phrase given the paraphrase.

• LogCount – the log of the frequency estimate for this paraphrase pair.

• RarityPenalty – this feature marks rules that have only been seen a handful of

times. It is calculated as exp(1 − c(e, f)), where c(e, f) is the estimate of the

frequency of this paraphrase pair.

• p(LHS|e) – the probability of the lefthand side nonterminal symbol given the

paraphrase.
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[VP] [NP\DT]

accord [NP,1] to [NP,2] member states of the european union

grant [NP,2] [NP,1] union countries

Abstract=0 Abstract=0

Adjacent=0 Adjacent=0

GlueRule=0 GlueRule=0

Identity=0 Identity=0

Lex(e|f)=10.68194 Lex(e|f)=19.48047

Lex(f|e)=7.00455 Lex(f|e)=8.36812

Lexical=0 Lexical=1

Monotonic=0 Monotonic=1

p(e|f)=5.13580 p(e|f)=7.24783

p(e|f,LHS)=4.61512 p(e|f,LHS)=8.51143

p(e|LHS)=13.51532 p(e|LHS)=15.06318

p(f|e)=6.23441 p(f|e)=4.87293

p(f|e,LHS)=5.71373 p(f|e,LHS)=3.88156

p(f|LHS)=16.34853 p(f|LHS)=10.43332

p(LHS|e)=0.65678 p(LHS|e)=2.56495

p(LHS|f)=0.51083 p(LHS|f)=0.30999

PhrasePenalty=1 PhrasePenalty=1

RarityPenalty=0.36788 RarityPenalty=0.36788

SourceTerminalsButNoTarget=0 SourceTerminalsButNoTarget=0

SourceWords=2 SourceWords=6

TargetTerminalsButNoSource=0 TargetTerminalsButNoSource=0

TargetWords=1 TargetWords=2

UnalignedSource=1 UnalignedSource=2

UnalignedTarget=0 UnalignedTarget=0

Table 3.1: Two example paraphrase rules extracted using bilingual pivoting. Due to

the syntactic annotations, the first rule is capable of accurately capturing a reordering

between direct and indirect object. The second rule illustrates how CCG-style slashed

labels can help accurately fit larger spans into a syntactic parse.
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• p(LHS|f) – the probability of the lefthand side nonterminal symbol given the

original phrase.

• p(e|LHS) – the probability of the paraphrase given the lefthand side nonterminal

symbol (this is typically a very low probability).

• p(e|f) – the paraphrase probability of the paraphrase given the original phrase,

as defined in Equation 3.3.

• p(e|f,LHS) – the probability of paraphrase given the the lefthand side nonter-

minal symbol and the original phrase.

• p(f|LHS) – the probability of original phrase given the the lefthand side non-

terminal (this is typically a very low probability).

• p(f|e) – the paraphrase probability of the original phrase given the paraphrase,

as defined in Equation 3.3.

• p(f|e,LHS) – the probability of original phrase given the the lefthand side non-

terminal symbol and the paraphrase.

3.2.3.1.2 Type features:

• Abstract – a binary feature that indicates whether the rule is composed exclu-

sively of nonterminal symbols.
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• Adjacent – a binary feature that indicates whether rule contains adjacent non-

terminal symbols.

• ContainsX – a binary feature that indicates whether the nonterminal symbol

X is used in this rule. X is the symbol used in Hiero grammars Chiang [2007],

and is sometimes used by our syntactic SCFGs when we are unable to assign a

linguistically motivated nonterminal.

• GlueRule – a binary feature that indicates whether this is a glue rule. Glue rules

are treated specially by the Joshua decoder Post et al. [2013]. They are used

when the decoder cannot produce a complete parse using the other grammar

rules.

• Identity – a binary feature that indicates whether the phrase is identical to the

paraphrase.

• Lexical – a binary feature that says whether this is a single word paraphrase.

• Monotonic – a binary feature that indicates whether multiple nonterminal sym-

bols occur in the same order (are monotonic) or if they are re-ordered.

• PhrasePenalty – this feature is used by the decoder to count how many rules it

uses in a derivation. Turning helps it to learn to prefer fewer longer phrases, or

more shorter phrases. The value of this feature is always 1.
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• SourceTerminalsButNoTarget – a binary feature that fires when the phrase

contains terminal symbols, but the paraphrase contains no terminal symbols.

• SourceWords – the number of words in the original phrase.

• TargetTerminalsButNoSource – a binary feature that fires when the paraphrase

contains terminal symbols but the original phrase only contains nonterminal

symbols.

• TargetWords – the number of words in the paraphrase.

• UnalignedSource – a binary feature that fires if there are any words in the

original phrase that are not aligned to any words in the paraphrase.

• UnalignedTarget – a binary feature that fires if there are any words in the

paraphrase that are not aligned to any words in the original phrase.

3.2.3.2 Pivot-Based Probability Estimation

We can directly estimate the paraphrase probabilities from the translation proba-

bilities in the underlying translation SCFG by followingBannard and Callison-Burch

[2005]. The idea of pivot-based probability estimation is quite intuitive: we view

a French-English translation grammar as a directed bipartite graph. In this graph,

the vertices are English and French expressions, and we add a corresponding edge

for every translation rule in the grammar, labeled with its probability. To extract
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the paraphrases for a phrase e1, we fully explore the two-hop neighborhood of the

corresponding node. Figure 3.5 illustrates this idea.

To compute p(e2|e1), we thus start at e1, and consider an f it may translate into

along with the probability of doing so, p(f |e1). We then look up the probability of f

translating to e2, p(e2|f), and combine the two. By summing over all possible f , we

obtain our probability estimate:

p(e2|e1) =
∑

f

p(e2|f)p(f |e1). (3.7)

Similarly, we can apply this method to compute an estimate for p(e2|e1, C) by condi-

tioning the translation probabilities on C:

p(e2|e1, C) =
∑

f

p(e2|f, C)p(f |e1, C). (3.8)

The reverse probabilities, p(e1|e2) and p(e1|e2, C) are computed in analogous fashion.

The advantage of this approach is that we can straightforwardly extract para-

phrases and estimate their probabilities from any translation grammar given to us,

without needing explicit access to the bitext. In practice, however, a different problem

arises: due to the “long tail” of potential translations 〈e1, f〉 and back-translations

〈f, e2〉, we see a combinatorial explosion of the number of paraphrases extracted,

especially for frequently occurring f and ei.

A straightforward solution to this problem is quickly found – pruning away un-

likely translation grammar rules and thereby controlling the volume of paraphrases

extracted to only include the high-probability ones. Without proper renormalization
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Figure 3.5: An example of the graph representation that is implicit in pivot-based

probability estimation. From the source word, here “brings,” we pivot into French,

and then hop back into English. The edges are labeled with p(French | English)

and p(English | French), respectively. Aggregating over all possible two-hops, we

can estimate probabilities for the thusly obtained paraphrases from these translation

probabilities.
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Figure 3.6: A syntax-constrained view of the pivot graph, separating the paraphrases

into sub-graphs by syntactic label. Here, the edges are labeled with p(French |

English,LHS ) and p(English | French,LHS ). The links between the seed phrase

“brings” and its known syntactic labels indicate the probability of that syntactic

label within the data, p(LHS | English).
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of the probability estimates p(ei|f) and p(f |ei), however, this causes the paraphrase

probability estimates to become deficient. The conditional paraphrase probabilities

are no longer guaranteed to sum to one:
∑

j p(ej|e) ≥ 1 . For reasons of efficiency,

we choose to skip the renormalization step for paraphrase probabilities in our setup.

While this is not a problem for the paraphrases’ use in our text-to-text generation

setup – the log-linear model does not require its features to be normalized – however

other use cases may depend on the proper distributions.

3.2.3.3 Probability Estimation Via Virtual Counts

An alternative means of probability estimation that may offer higher flexibility for

the manipulation of paraphrase probabilities was proposed by Madnani et al. [2007].

Instead of relying on the the probability features obtained from the translation gram-

mar, we can use standard maximum-likelihood estimation based on virtual counts

c(e1, e2):

p(e2|e1) =
c(e1, e2)∑
e c(e1, e)

. (3.9)

The virtual counts, in turn, can be computed in a fashion similar to the probability

pivoting. For every f that the English paraphrases e1 and e2 have in common in the

translation grammar, we aggregate an estimate of many occurrences of 〈e1, e2〉 we

would see in a virtual paraphrase bitext, based on the counts c(e1, f) and c(e2, f).
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This estimate can be generalized to a function g(n,m):

c(e1, e2) =
∑

f

g(c(e1, f), c(e2, f)). (3.10)

Madnani et al. [2007] use an upper bound approximation here:

g(c(e1, f), c(e2, f)) = c(e1, f) · c(e2, f). (3.11)

This estimate states that after seeing the translation pair 〈f, e1〉 occur n times while

the pair 〈f, e2〉 is seen m times, we assume that in the virtual corpus described by

these counts the paraphrase pair 〈e1, e2〉 appears n ·m times.

The advantage of using virtual counts is two-fold: firstly, by using the notion of an

intermediate function g we can experiment with a variety of count estimation strate-

gies without having to worry about the rest of the paraphrase extraction pipeline.

The flexibility of count-based pivoting has the potential to be especially useful when

performing tasks like domain-adaptation. These tasks require a consideration of the

reliability or domain-appropriateness of the underlying data, or the similarity to a

given expected paraphrase probability distribution.

Secondly, when implementing a full paraphrase extraction pipeline the use of vir-

tual counts is simply more efficient. A standard map-reduce-based implementation

will extract translation rules with counts and perform several map-reduce steps to

calculate the conditional translation probabilities. When using pivot-base proba-

bility estimation with renormalization, these steps will have to be repeated on the

paraphrase grammar. With virtual count-based estimation, they only need to be
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Figure 3.7: The syntax-constrained view of the pivoting graph, this time relying on

occurrence counts as done when using virtual counts-based estimation. Note that the

inclusion of a extremely frequently occurring translation link, like est | is will heavily

influence the probability estimate of brings | is .
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performed once to yield a properly normalized paraphrase distribution in the output.

We discuss details of these implementation differences in Section ??.

We expect the virtual counts-based probability estimates to behave differently

from the pivot-based ones. As illustrated in Figure 3.7, when relying on virtual counts

frequently occurring phrases can have a stronger influence over the final paraphrase

probability estimate than they would in the normalized pivot-based estimate. We

present a qualitative and quantitative comparison of the two estimation techniques

in Section 3.4.

3.2.4 Decoding with Paraphrases

In this chapter, we have previously described a view of sentential text-to-text

rewriting tasks that restates them as a targeted English-to-English paraphrasing.

Applying the syntactic pivoting method described above to extract paraphrases yields

a featurized paraphrase SCFG. The formalism of this grammar is identical to the ones

used in syntactic machine translation. We therefore can adopt the search algorithm

commonly used in statistical machine translation to do paraphrasing:

When approaching a given sentential text-to-text generation task, we seek to find

the best paraphrase of the input sentence. Here, we define “best” as “most likely,

according to our log-linear model.” The log-linear model formulation allows us to

straightforwardly combine the features we attach to our paraphrase rules. For in-

stance, it allows us to find a balance between highly likely paraphrases, and para-
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phrases that may be less likely but are more appropriate for the rewriting task at

hand.

The problem of finding the most likely paraphrase for the whole input sentence

can be formulated analogously to the search problem in machine translation (c.f.

Equation 3.6):

êout ≈ yield(arg max
d∈D(eout ,ein )

p(d, eout |ein)).

Out of all possible paraphrase derivations d ∈ D(eout , ein) that rewrite the input ein

into some output eout , we choose the d estimated to be the most likely by our log-

linear model. The yield of this max-derivation, êout , is our paraphrasing system’s

output.

Figure 3.8 shows an example derivation produced as a result of applying our

paraphrase rules in the decoding process. Another advantage of using the decoder

from statistical machine translation is that n-gram language models, which have been

shown to be useful in natural language generation [Langkilde and Knight, 1998], are

already well integrated [Huang and Chiang, 2007].

Unlike in machine translation, the use of identity rules is a complex challenge in

paraphrasing. In most translation cases translating (or otherwise transliterating) in

input word will always be preferable to leaving it unchanged. Therefore identity rules,

unless explicitly present in the translation grammar, are typically heavily penalized.

For paraphrasing that is not the case: leaving key terms unchanged may be benefi-

cial to the overall output quality (although it decreases the diversity of the output
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twelve cartoons insulting the prophet mohammad
CD NNS JJ DT NNP

NP

NP

VP
NP

DT+NNP

12 the prophet mohammad
CD NNS JJ DT NNP

NP

NP
VP

NP

DT+NNP

cartoons offensive

Foreign Pivot PhraseParaphrase Rule

JJ → offensive  |   insulting
Lexical paraphrase:

NP → NP that VP  |  NP VP
Reduced relative clause:

NP → CD of the NNS  |  CD NNS
Partitive construction: 

VP → are JJ to NP  |  JJ NP
Pred. adjective copula deletion:

JJ -> beleidigend  |  offensive
JJ -> beleidigend  |  insulting

NP -> NP die VP  |  NP VP
NP -> NP die VP  |  NP that VP

NP -> CD der NNS  |  CD of the NNS
NP -> CD der NNS  |  CD NNS

VP → sind JJ für NP  |  are JJ to NP
VP → sind JJ für NP  |  JJ NP

of the that are to

Figure 3.8: An example of a synchronous paraphrastic derivation. A few of the rules

applied in the parse are show in the left column, with the pivot phrases that gave rise

to them on the right.
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paraphrases).

3.3 Analysis of Pivot-Based Syntactic Para-

phrases

A key motivation for the use of syntactic paraphrases over their phrasal counter-

parts is their potential to capture meaning-preserving linguistic transformations in

a more general fashion. A phrasal system is limited to memorizing fully lexicalized

transformations in its paraphrase table, resulting in poor generalization capabilities.

By contrast, a syntactic paraphrasing system intuitively should be able to address

this issue and learn well-formed and generic patterns that can be easily applied to

unseen data.

To put this expectation to the test, we investigate how our grammar captures a

number of well-known paraphrastic transformations.

3.3.1 Examples of Linguistic Transformations

Table 3.2 shows the transformations along with examples of the generic grammar

rules our system learns to represent them. When given a transformation to extract a

syntactic paraphrase for, we want to find rules that neither under- nor over-generalize.

This means that, while replacing the maximum number of syntactic arguments with
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nonterminals, the rules ideally will both retain enough lexicalization to serve as suf-

ficient evidence for the applicability of the transformation and impose constraints on

the nonterminals to ensure the arguments’ well-formedness.

Possessive rule
NP → the NN of the NNP | the NNP ’s NN

NP → the NNS 1 made by NNS 2 | the NNS 2’s NNS 1

Dative shift
VP → give NN to NP | give NP the NN

VP → provide NP1 to NP2 | give NP2 NP1

Adv./adj. phrase move
S/VP → ADVP they VBP | they VPB ADVP

S → it is ADJP VP | VP is ADJP

Verb particle shift VP → VB NP up | VB up NP

Reduced relative clause
SBAR/S → although PRP VBP that | although PRP VBP

ADJP → very JJ that S | JJ S

Partitive constructions
NP → CD of the NN | CD NN

NP → all DT\NP | all of the DT\NP
Topicalization S → NP , VP . | VP , NP .

Passivization SBAR → that NP had VBN | which was VBN by NP

Light verbs
VP → take action ADVP | to act ADVP

VP → TO take a decision PP | TO decide PP

Table 3.2: A selection of meaning-preserving transformations and hand-picked exam-

ples of syntactic paraphrases that our system extracts capturing these.

The paraphrases implementing the possessive rule and the dative shift shown

in Table 3.2 are a good examples of this: the two noun-phrase arguments to the

expressions are abstracted to nonterminals while each rule’s lexicalization provides

an appropriate frame of evidence for the transform. This is important for a good

representation of dative shift, which is a reordering transformation that fully applies

to certain ditransitive verbs while other verbs are uncommon in one of the forms:
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give decontamination equipment to Japan

give Japan decontamination equipment

provide decontamination equipment to Japan

? provide Japan decontamination equipment

Note how our method extracts a dative shift rule for to give and a rule that both

shifts and substitutes a more appropriate verb for to provide.

The use of syntactic nonterminals in our paraphrase rules to capture complex

transforms also makes it possible to impose constraints on their application. For

comparison, as Madnani et al. [2007] do not impose any constraints on how the non-

terminal X can be realized, their equivalent of the topicalization rule would massively

overgeneralize:

S → X1, X2 . | X2, X1 .

Additional examples of transforms our use of syntax allows us to capture are the ad-

verbial phrase shift and the reduction of a relative clause, as well as other phenomena

listed in Table 3.2.

Our survey shows that we are able to extract appropriately generic representations

for a wide range of paraphrastic transformations. This result shows that bilingual

parallel corpora can be used to learn sentential paraphrases, and that they are a

viable alternative to other data sources like monolingual parallel corpora, which more

obviously contain sentential paraphrases, but are scarce.
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3.3.2 Limitations of Syntactic SCFGs

Unsurprisingly, syntactic information alone is not sufficient to capture all trans-

formations. For instance it is hard to extract generic paraphrases for all instances of

passivization, since our syntactic model currently has no means of representing the

morphological changes that the verb undergoes:

the reactor leaks radiation

radiation is leaking from the reactor .

Still, for cases where the verb’s morphology does not change, we manage to learn a

rule:

the radiation that the reactor had leaked

the radiation which leaked from the reactor .

Another example of a deficiency in our synchronous grammar models are light verb

constructs such as:

to take a walk

to walk .

Here, a noun is transformed into the corresponding verb – something our synchronous

syntactic CFGs are not able to capture except through memorization.

3.3.3 Possible Extensions

The above examples illustrate a core deficiency of syntactic paraphrase SCFGs.

As the passivization example shows, our use of syntactic labels for nonterminals limits

us to matches only occurring between verbs with the exact same form. The light verb
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example generalizes this issue: syntactic SCFGs are unable to transfer conceptual

information across morphosyntactic boundaries. While the morphosyntactic changes

are small for passivization, they become more clear with light verbs, were the concept

of “walk” or “talk” may move from a verb form to a noun. Yet more generally, an

ideal paraphrase system would be able to generalize constructions like

is a lover of music | loves music

A possible way to extent the SCFG formalism and labeling would be by providing

the means to un-couple the a word’s stem, or a conceptual representation thereof,

from its concrete syntactic realization. It would be an interesting step towards more

semantically powerful paraphrase formalisms to extend the parse tree we use to pro-

duce labeling to the sub-word level and introducing a morphological component that

could reassemble a newly paraphrased stem and a morphological token into a surface

word. With this, the above phrasal paraphrase could be generalized to a paraphrase

rule like:

is a CC 1-NN of NP2 | CC 1-VBZ NP2 ,

wherein CC 1 represents a conceptual paraphrase, for instance love | adore, and the

suffixes -NN and -VBZ signify a morphological transform into the appropriate surface

words.

Another extension of the SCFG formalism that would increase the paraphrases’

versatility would be the a relaxation of the synchronousness constraint of the gram-
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mar. Many applications, like compression, summarization, or simplification, do not

call for strictly paraphrastic transforms. Rather, for these cases, judicious omission

of extraneous information may be of more use. This would expand the paraphrase

grammar away from strict meaning-equivalence and toward hypo- and hypernymy, in-

creasing its flexibility in real-world applications. One way to accomplish this, would

be to expand the formalism used towards quasi-synchronous grammars.

3.4 Impact of Probability Estimation for

Paraphrases

Here, we investigate the effect the chosen estimation method has on the resulting

paraphrase probability distributions (i.e. the allotment of probability mass onto the

paraphrases for one given phrase and syntactic label). Intuitively, the main difference

between pivot-probability estimation and the virtual counts method is in how high-

frequency words and phrases factor into the probability estimation. We present a

two-part analysis. In the first part, we use a human-labeled set of paraphrases to

quantitatively compare the predictive power of the two probability estimates. In the

second part we perform a qualitative analysis by looking at phrases for which the two

methods’ estimates diverge strongly.

To perform our analysis, we extract two paraphrase grammars with the same,

minimal pruning levels. In both cases we filter out translation rules that occur fewer

75



CHAPTER 3. PARAPHRASING AS MONOLINGUAL SYNTACTIC MACHINE
TRANSLATION

Europarl Fr-En v7 Sentences Words Word Types

English 1,738,895 40,328,159 102,114

French 1,738,895 44,133,219 123,711

Table 3.3: Corpus statistics for the French-English Europarl v7 bitext used for para-

phrase extraction in our experiments.

than twice in the corpus. With the pruning settings being identical, we guarantee

that each expression will have the same set of paraphrases in both grammars – the

differences will solely lie in how the probability mass is distributed.

The grammars are extracted from the French-English Europarl corpus (v7). The

bitext was aligned using the GIZA++ aligner and the English side was parsed with the

Berkeley parser [Petrov et al., 2006]. Table 4.3 gives an overview of corpus size and

statistics.

3.4.1 Human-Judged Paraphrase Set

To evaluate how well our features can predict paraphrase quality, we collected a

set of human judgments. Ganitkevitch et al. [2013] judged 1962 randomly sampled

paraphrases of Propbank [Kingsbury and Palmer, 2002] predicates. The scores are on

a scale of 1 to 5, 5 being a perfect paraphrase, and 1 signifying no semantic overlap

or substitutability at all. Table 3.4 shows a randomly selected set of paraphrase pairs

and their human judgments.
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Paraphrase Score

VBN → quoted | regarded 2

VBZ → involves | presupposes 3

VB → reject | overrule 4

VBN → replaced | substituted 5

VBZ → mentions | replies 1

VBD → helped | favoured 3

VBG → launching | boosting 2

VBN → privatized | privatised 5

VBZ → demonstrates | shows 5

VBZ → lets | ceases 1

Table 3.4: A selection of Propbank predicate paraphrase pairs and their manually

assigned scores.

3.4.2 Correlation With Human Judgments

We calculate the Pearson product-moment correlation coefficient, as well as Spear-

man’s rank coefficient between the human-assigned scores and the probability esti-

mates. As Table 3.5 shows, the pivot-based probability estimate consistently has a

slightly better correlation with the human scores than the virtual counts-based esti-

mate. However, the difference in between the two methods is rather small. In fact, the

correlation between the two estimates themselves is substantial, for both Pearson’s

(r = 0.925) and Spearman’s (ρs = 0.943) coefficients.
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Pearson’s ρ Spearman’s ρ

− log ppivot(e2|e1,LHS ) -0.622 -0.630

ppivot(e2|e1, LHS) 0.397 0.630

− log pcount(e2|e1,LHS ) -0.592 -0.597

pcount(e2|e1, LHS) 0.341 0.597

Table 3.5: Pearson’s and Spearman’s correlation coefficients with human-assigned

scores for pivot- and virtual counts-based estimation.

3.4.3 Divergent Phrases

We process the two paraphrase grammars to individually compare paraphrase

probability distributions for each phrase. Table 3.6 shows a few phrases e that exhibit

the greatest change as measured by reduction in entropy when going from pivot-based

estimation to virtual counts.

Looking at the translation probabilities and counts, respectively, that our esti-

mates are based on, we can see the reason for this divergence. Figure 3.9 shows the

highest-frequency links in the pivot graph for “stand.” Even though the translation

links to “rester” and “tre” are equally strong, the latter is an extremely frequent word

that near-unambiguously translates as “be.” The overwhelming weight of this pair

reshapes the final paraphrase distribution for “stand” to be heavily biased towards

“be” (Table 3.6). Comparatively, the probability-based pivot graph (Figure 3.10)

shows a more even distribution of link strength.

Our analysis suggests that the virtual counts based probability estimate is more
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volatile than the pivot-based one. However there is significant room for improvement,

considering that we have only considered a naive upper-bound virtual count approach.

Possible extensions could include weighing measures like TF/IDF, or more content

and domain-conscious methods for computing virtual counts from bitexts.

3.5 Conclusion

In this chapter we introduced a method to learn syntactically informed para-

phrases from bilingual parallel texts. We discussed the expressive power and limita-

tions of our formalism, and explored different approaches to estimation of paraphrase

probabilities from translation probabilities and counts over the bitext. In the follow-

ing, we will outline a straightforward adaptation strategy to enable the application

of syntactic paraphrases in text-to-text generation.

79



CHAPTER 3. PARAPHRASING AS MONOLINGUAL SYNTACTIC MACHINE
TRANSLATION

VBZ

brings

pcounts(e′ | e,LHS ) ppivot(e
′ | e,LHS )

is 0.855 is 0.186

has 0.100 brings 0.138

makes 0.005 provides 0.074

provides 0.004 makes 0.062

brings 0.003 has 0.054

does 0.002 leads 0.049

offers 0.002 gives 0.034

gives 0.002 offers 0.028

VB

stand

pcounts(e′ | e,LHS ) ppivot(e
′ | e,LHS )

be 0.846 be 0.226

take 0.0233 stand 0.148

support 0.020 remain 0.079

remain 0.017 take 0.049

have 0.014 support 0.038

make 0.009 have 0.024

become 0.005 defend 0.023

NP

the board

pcounts(e′ | e,LHS ) ppivot(e
′ | e,LHS )

the council 0.949 the council 0.331

the areas 0.008 the levels 0.069

council 0.004 the board 0.064

the european council 0.003 levels 0.060

the fields 0.003 the areas 0.055

the council’s 0.002 the executive board 0.037

the board 0.002 the line 0.033

the committee 0.002 the committee 0.030

Table 3.6: Some of the phrases with the largest shifts in entropy. The count-based

estimate, shown on the left, in these case is dominated by high-frequency translation

pairs. This results in heavily peaked distributions in the paraphrases.
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Figure 3.9: The virtual count-based pivot graph for “stand.” While several strong

links are present, the occurrence of “être” dominates the resulting probability esti-

mate.
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Figure 3.10: The probability-based pivot graph for “stand” is more balanced and

results in a less peaked paraphrase distribution for the phrase.
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Text-to-Text Generation with

Paraphrases

Many tasks in natural language processing can be characterized as text-to-text

generation: an NLP system takes as its input a snippet of text, and returns an-

other. This pattern is especially frequent in directly user-facing NLP systems. Tasks

like document summarization, text simplification, sentence compression, and machine

translation are all examples of text-to-text generation problems – and highly visible

representatives of NLP in the wild. Further instances of text-to-text generation in-

clude applications such as poetry generation, query expansion for search engines,

transforming declarative sentences into questions, and deriving additional hypotheses

for textual entailment recognition.

The generation of output in the above example tasks is typically strongly tied
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to the meaning of the input. In fact, the systems’ functionality can be seen as a

meaning-preserving text transformation. Therefore, in the monolingual case, we can

express text-to-text generation as a paraphrasing task. For instance, in abstractive

document summarization paraphrases are used to detect and collapse redundancies.

In both generative simplification and sentence compression paraphrases can be applied

to choose simpler or shorter rewrites of the input, respectively.

While the main concern of this thesis is with the extraction of paraphrases and

estimation of their quality, we use text-to-text generation as both a general motivation

and, in the evaluation of our systems, an example application.

In this chapter, we introduce sentential text-to-text generation, a class of text-

to-text generation tasks, and its relation to paradigms used in machine translation

(Section 4.1). To tackle text-to-text generation via paraphrasing, we outline and im-

plement a training paradigm that tailors syntactic, sentential paraphrase models to

different sentential text-to-text generation tasks. Our adaptation scheme takes into

account a paraphrase’s utility for the task at hand, and uses small, appropriately

selected data sets to tune the paraphraser (Section 4.2). We posit our framework’s

suitability for a variety of text-to-text generation tasks, and demonstrate this by ob-

taining competitive results on the example task of sentence compression (Section 4.3).
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4.1 Text-to-Text Generation as Paraphras-

ing

Many generally stated text-to-text generation tasks can be, with minor relax-

ations, restated as sentential processing problems. This means that the system no

longer processes arbitrarily-sized input, but is limited to looking at one sentence at a

time to generate a single output sentence. While this approach may sacrifice access

to a wider context, the limited scope helps reduce the computational difficulty of the

problem. It also allows for additional speed-up by reducing the task to an embar-

rassingly parallel setting: input sentences can be trivially processed simultaneously

in separate processes or on other machines. This property is important when scaling

text-to-text generation systems to perform in real world scenarios.

The broader, document-level context we drop when moving to sentential process-

ing can carry important information. For instance disambiguating signals such as the

topics occurring in a document, or entities that are mentioned initially and later only

referred to via pronouns. Still, much work in text-to-text generation – most notably

in machine translation – has been focussed on developing methods and machinery for

the sentence-to-sentence setting.

Limiting a given text-to-text task, for instance text compression, to its sentential

equivalent allows us to adopt the approaches developed in machine translation, and

interpret the problem as a kind of “monolingual translation.” For the compression
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case this means that we are now “translating” from English into English, however

with the express goal of shortening the input while preserving the meaning. It is

evident that the kind of monolingual translation rules used in such a system are

paraphrases, and the “monolingual translation” system, in fact, a paraphraser. In

this thesis, we set out to develop such a paraphrasing system that is able to tackle

text-to-text generation tasks.

An equivalent sentence-level specification is possible for a number of text-to-text

generation problems. Beyond text compression, any kind of task that does explicitly

require document-level context can be recast as a sentential paraphrasing task. As

such, sentential paraphrasing can be applied to text simplification, prose-to-poetry

generation, query expansion, reference generation for translation systems, error cor-

rection, and other tasks.

Each of these settings can impose specific constraints and objectives on the output

of the paraphrasing system. For example in sentence compression, the output may

need to be 30% shorter than the input. For simplification the system may be targeting

a specific grade level of English, while a domain-generalization task like lawyer-to-

English rewriting may strive to paraphrase technical jargon into layman’s terms and

untangle complex phrases. Finally, in poetry generation the style of poetry chosen

will impose constraints on length, meter, and rhyme.

The different kinds of constraints imposed by such tasks differ substantially in

type. Where tasks like simplification and domain-generalization are largely focussed
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on changes in vocabulary and style, others, like prose-to-poetry generation, impose

complex constraints on the output text that involve substantial extensions to the

state space and search during decoding [Genzel et al., 2010]. Our focus in this work

is on the extraction of high-quality paraphrases and the estimation of their good-

ness and utility for a given task to successfully capture stylistic changes. For more

complex constraints, we derive easy-to-implement heuristics and approximations that

will allow us to build paraphrase-based text-to-text generation systems in a matter

of days.

4.2 Task-Oriented Adaptation Schemes

We propose a paraphrasing framework that can be adapted to tackle many differ-

ent text-to-text generation tasks. The main parts of our framework are the paraphrase

grammar and decoder as described in Section 3.2, and a set of straightforward ex-

tensions that yield a paraphrase-based, task-specific text-to-text generation system

capable of producing competitive quality results. The major adaptation steps are:

• A mechanism for extracting synchronous grammar rules (we argue that pivot-

based paraphrasing is widely applicable).

• An appropriate set of rule-level features that capture information pertinent to

the task (e.g. whether a rule simplifies a phrase).

• An appropriate “objective function” that scores the output of the decoder, i.e.
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a task-specific equivalent to the Bleu metric in SMT.

• A development set with examples of the sentential transformations that we are

modeling.

• Optionally, a way of injecting task-specific rules that were not extracted auto-

matically.

In the remainder of this section, we illustrate how our bilingually extracted para-

phrases can be adapted to perform sentence compression, the task of reducing the

length of a sentence while preserving its core meaning. Most previous approaches to

sentence compression focused only on the deletion of a subset of words from the sen-

tence [Knight and Marcu, 2002]. By virtue of being paraphrase-centric, our approach

bears closer resemblance Cohn and Lapata [2008], who expand the task to include

substitutions, insertions and reorderings that are automatically learned from parallel

texts.

4.2.1 Feature Design

In Section 3.2 we discussed phrasal paraphrase probabilities as a measure of the

goodness of a paraphrase rule. While these features help quantify how well a para-

phrase application preserves meaning in general, they do not make any statement on

the task-specific utility of the paraphrase rule. Depending on the task, utility can

mean things such as the change in language complexity, text length, or style.
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For sentence compression, we are interested in paraphrase rules that affect the

sentence length. To make this information available to the decoder, we enhance our

feature set with compression-targeted features. Specifically, we add:

• The count features csrc and ctgt , indicating the number of words on either side

of the rule.

• The difference features cdcount = ctgt − csrc and the analogously computed dif-

ference in the average word length in characters, cdavg .

• CharCountDiff – a feature that calculates the difference in the number of char-

acters between the phrase and the paraphrase. This feature is used for our

sentence compression experiments [Napoles et al., 2011b].

• CharLogCR – the log-compression ratio in characters, log chars(e2)
chars(e1)

, another fea-

ture used in sentence compression. The feature is represented in log-space to

take advantage of the sign flipping between shortening and lengthening rules.

This enables the decoder to learn λCharLogCR as both a reward and penalty.

• WordCountDiff – the difference in the number of words in the original phrase

and the paraphrase.

• WordLenDiff – the difference in average word length between the original phrase

and the paraphrase.
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Task-specific features In this grant we will develop feature functions that show how well suited each
PPDB rule is for a specific T2T task. These feature functions serve to model the task. For example, in
sentence compression, we need to model how good a choice it would be to apply a rule that rewrites the
Islamic prophet as Mohammed. We can introduce features that quantify the lengths of the input and output
(in characters and words) and the difference in length that results from the rule application:

'1 : wordsinput = 3 (5)

'2 : wordsoutput = 1 (6)

'3 : diffwords = �2 (7)

'4 : charsinput = 17 (8)

'5 : charsoutput = 7 (9)

'6 : diffchars = �10 (10)

This allows the weights of the feature functions to be set in such a way that the model prefers selecting
rules that have longer inputs, shorter outputs, where the difference between them a larger negative number.
Note that these features interact in complex ways with other features, like the language model probability.
For instance, the LM may cause the model to select outputs that are slightly longer but which have much
higher LM scores. Similarly, the paraphrase probability may bias the model away from short but incorrect
paraphrases.

Although features for sentence compression are straightforward, for many of the T2T tasks, developing
features is a research task unto itself. For instance, for sentence simplification features should quantity how
much more readable the output is than the input. The functions could quantify the change in the number
of Basic English words (proposed by Ogden (1930)), the average number of syllables per word in the
output, and language model probabilities estimated from Simple English Wikipedia. Other features could be
drawn from the simplification/readability literature (Chandrasekar et al., 1996; Carroll et al., 1999; Canning
et al., 2000; Petersen and Ostendorf, 2007; Yatskar et al., 2010; Coster and Kauchak, 2011b; Woodsend and
Lapata, 2011; Zhu et al., 2010; Wubben et al., 2012).

Developing feature functions for other T2T tasks also involve interesting research challenges. Feature
functions will be evaluated based on how well they allow the monolingual translation system to produce
good outputs, measured by objective functions (described below) or human judgments.

3.3 Objective Functions
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Figure 5: PRÉCIS behaves differently than
BLEU, which has only a brevity penalty and
so gives full credit to outputs which match the
length of the reference. PRÉCIS allows a target
compression ratio to be set, and applies both a
brevity penalty and a verbosity penalty for out-
puts which are not short enough.

In SMT the weights ~� of feature functions are set to maximize
an objective function of translation quality like BLEU (Pap-
ineni et al., 2002) using a procedure called minimum error rate
training (MERT), originally developed by Och (2003). MERT
iteratively adjusts the weights until the decoder produces out-
put that best matches reference translations in a development
set, according to the objective function. Given our T2T sys-
tem’s connection to SMT, the obvious (but naive) choice for
parameter optimization would be to optimize for BLEU.

For a candidate C produced by the system and a reference
R produced by a person, BLEU is defined as:

BLEUN (C, R)

=

(
e(1�c/r) · e

PN
n=1 log wnpn if c/r  1

e
PN

n=1 log wnpn otherwise
,

9

Figure 4.1: An illustration of the difference in output length penalty terms between

Bleu and Précis. The graph plots the penalty factor against the ratio of achieved

to targeted compression ratio. While Bleu does not penalize outputs longer than the

reference length, Précis’s penalty term generates a sharp drop, effectively creating

a tapered window around the target compression ratio.

• WordLogCR – the log-compression ratio in words, estimated as log words(e)
words(f)

. This

feature is used for our sentence compression experiments.

All the additional features are local to the rule and can therefore be cheaply

computed in a single pass over the paraphrase grammar.

4.2.2 Objective Function

Given our paraphrasing system’s connection to SMT, the obvious choice for pa-

rameter optimization would be to optimize for Bleu over a set of paraphrases, for

90



CHAPTER 4. TEXT-TO-TEXT GENERATION WITH PARAPHRASES

instance parallel English reference translations for a machine translation task [Mad-

nani et al., 2007]. For a candidate C and a reference R, (with lengths c and r) Bleu

is defined as:

BleuN(C,R) =

{
e(1−c/r) · e

∑N
n=1 logwnpn if c/r ≤ 1

e
∑N

n=1 logwnpn otherwise
,

where pn is the modified n-gram precision of C against R, with typically N = 4 and

wn = 1
N

. The “brevity penalty” term e(1−c/r) is added to prevent short candidates

from achieving perfect scores.

Naively optimizing for Bleu, however, will result in a trivial paraphrasing system

heavily biased towards producing identity “paraphrases” (c.f. Section ??).1 This is

obviously not the desired output for a compression system. Moreover, Bleu does not

provide a mechanism for directly specifying a per-sentence compression rate, which

is desirable for the compression task.

Instead, we propose tuning the system to optimize Précis, an objective function

tailored to the text compression task:

Précisλ,ϕ(I, C,R) =

{
eλ(ϕ−c/i) ·Bleu(C,R) if c/i ≥ ϕ

Bleu(C,R) otherwise
.

For an input sentence I, an output C and reference compression R (with lengths i, c

and r), Précis combines the precision estimate of Bleu with an additional “verbosity

penalty” that is applied to compressions that fail to meet a given target compression

1Madnani et al. [2007] avoid this issue by disallowing identity paraphrases in their grammar.
While this is an appropriate choice for their task, for many applications retaining the capability to
self-paraphrase where appropriate is crucial.
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rate ϕ. Simultaneously, we rely on the Bleu brevity penalty to prevent the system

from producing overly aggressive compressions. The scaling term λ determines how

severely we penalize deviations from ϕ. In our experiments we use λ = 10.

It is straightforward to find similar adaptations for other tasks. For text simpli-

fication, for instance, the penalty term can include a readability metric. For poetry

generation we can analogously penalize outputs that break the meter [Greene et al.,

2010].

4.2.3 Development Data

To tune the parameters of our paraphrase system for sentence compression, we

need an appropriate corpus of reference compressions. Since our model is designed

to compress by paraphrasing rather than deletion, the commonly used deletion-based

compression data sets like the Ziff-Davis corpus are not suitable. We have thus created

a corpus of compression paraphrases.

Beginning with 9570 tuples of parallel English–English sentences obtained from

multiple reference translations for machine translation evaluation, we construct a

parallel compression corpus by selecting the longest reference in each tuple as the

source sentence and the shortest reference as the target sentence. We further retain

only those sentence pairs where the compression rate cr falls in the range 0.5 < cr ≤

0.8. From these, we randomly select 936 sentences for the development set, as well

as 560 sentences for a test set that we use to gauge the performance of our system.
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# words Reference Translations

21 He hoped that the Middle Asian region will maintain stability and

development while continuously improving the living standard of its

people.

20 He indicated that he hopes Central Asia will enjoy stability and devel-

opment and their people’s lives will be continuously improved.

15 He wished stability, development and better living standard

to the people in Central Asia region.

19 He hoped that middle Asian region’s situation would be stable, economy

developed and people’s living standard would be improved.

21 He expressed his wishes for the middle Asian region to remain stable

and develop further, while improving the region’s living standards.

21 He expressed his wishes for the stability and development of the central

Asia region with the people’s living standard increasing continuously.

22 He wished the Central Asian region stability and development, as well

as continuous improvement of the people’s living standards here, he

added.

17 He expected the stability and development of Middle Asia, and the

constant improvement of people’s living standards.

20 He expresses hope for the stability and development of Central Asia,

and the constant rise of people’s living standards here.

25 He expressed that he hoped the steady development in the

Region of Central Asia will continue and the peoples standards

of living will be higher.

Table 4.1: An example of a multi-reference set used. The left column lists sentence

length in words. By selecting the longest and shortest of the set, we can obtain a

human-generated pair of sentence compressions.
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CR Shortest Reference Longest Reference

0.6 He wished stability, development

and better living standard to the

people in Central Asia region.

He expressed that he hoped the

steady development in the Region

of Central Asia will continue and

the peoples standards of living will

be higher.

0.62 Most people guess the Board will

favor another cut to stabilize the

economy.

It is generally conjectured that the

Federal Reserve will decide to drop

interest rates again in order to

maintain economic stability.

0.74 It was stated that the two were

forced to serve as slaves in North

Korea before fleeing.

The statement said that the two

men were forced to work as slaves

in a coal mine in North Korea be-

fore they escaped.

0.65 Those countries were effected by the

low prices of export products.

These countries were for a large

part affected by the low prices of

their major export products.

0.73 The severely wounded man was

later rescued by an armored carrier.

Later, some soldiers arrived in an

armored personnel carrier and res-

cued the seriously wounded man.

0.46 Government leaders, specialists,

and users alike have applauded

Wangma Computer Company’s

selfless decision.

With regard to Wangma Computer

Company’s decision of an unselfish

contribution to the society, the

leaders, experts and users in the

conference had all given their high

appreciations.

0.61 Western Embassies said this num-

ber was very close to their estima-

tion

The embassies of some western

countries said that, this number is

very close to what they had esti-

mated,

0.67 The first and second sub-region eco-

nomic cooperation conferences were

held in Manila in Oct 1992 and Aug

1993.

The First and Second Conferences

on the Economic Cooperation in

the Subregion by Bank of Asia were

held in Manila respectively in Octo-

ber, 1992 and August, 1993.

0.8 Miyazawa indicated last Friday

that he would resign before the end

of this year but did not give exact

date.

Miyazawa said last Friday that he

possibly will resign from his posi-

tion at the end of the year, but he

did not give a date.

0.62 This shows that it is an urgent task

to strengthen their market compet-

itiveness.

This indicates that it has become

the most urgent task at present to

strengthen the market competive-

ness of the state-owned enterprises.

Table 4.2: An example of human compression pairs extracted from multi-reference

sets, along with the compression ratio (CR) they achieve. We are able to easily obtain

high quality compressions over a wide range of compression ratios to use as tuning

and testing datasets for our paraphrase-based compression system.
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4.2.4 Grammar Augmentations

As we discussed in Section 3.3, the paraphrase grammar we induce is capable of

representing a wide variety of transformations. However, the formalism and extraction

method are not explicitly geared towards a compression application. For instance,

the synchronous nature of our grammar does not allow us to perform deletions of

constituents as done by Cohn and Lapata [2007]’s tree transducers. One way to

extend the grammar’s capabilities towards the requirements of a given task is by

injecting additional rules designed to capture appropriate operations.

For the compression task, this could include adding rules to delete target-side

nonterminals:

JJ → JJ | ε

However, this would render the grammar asynchronous and require adjustments to

the decoding process. Alternatively, we can generate rules that specifically delete

particular adjectives from the corpus:

JJ → superfluous | ε .

In our experiments we evaluate the latter approach by generating optional deletion

rules for all adjectives, adverbs and determiners. Since these new rules are not backed

by data, we cannot estimate paraphrase probabilities for them. Instead, we annotate

them with two deletion indicator features. We add a feature for the syntactic label of

the deleted word, delC , corresponding to allowing the system to learn how helpful is
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it to delete (for example) an adverb. Another, sparser, deletion feature del e is added

for the word itself, permitting our paraphraser to learn that particular words, like

“very” or “new,” may often carry little content signal and can be safely deleted. We

also retain the parsing-based probability features p(C|e) and p(e|C). These provide

a means to tie the application of the deletion rule to the likelihood of e indeed falling

into the deletable category C.

The resulting newly generated rules have the form:

C → e | ε ,

with C ∈ {RB ,DET , JJ} and e being an exhaustive list of words we encountered

with the label C.

Furthermore, in our system, we implemented the injection of rules that improve

the handling of out-of-vocabulary words. Typically an SMT system will generate

heavily penalized identity translation rules for all words in an input sentence, to

assure that the OOV rules will only apply when there is no translation rule for a

particular word. For our paraphrasing approach however, encountering an unknown

word is not critical as long as we can assign it the proper syntactic label. To enable

our system to process unseen words in the input, we allow for syntactically parsed

input and for every input word w include rules of the form

T → w | w,

where T is the part-of-speech tag assigned to w in the input parse. To enable a proper
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inclusion into the paraphrasing model, we add a constant penalty feature ϕoov and

include its weight in our parameter estimation process.

4.3 Paraphrase-Based Sentence Compres-

sion

To evaluate the quality of the paraphrases our method extracts, as well as effec-

tiveness of our adaptation scheme, we conduct a series of experiments in paraphrase-

based sentence compression. In our experiments, we are interested in experimentally

answering the following questions:

• Does the inclusion of syntactic nonterminals and constraints in paraphrase ex-

traction help text-to-text performance?

• Does augmented the paraphrase grammar with deletion rules help the system

produce better compressions?

• How does our paraphrase-based text-to-text system compare to deletion-based

approaches to text compression?

In the following, we detail the corpora, tools, and parametrizations used as a

basis for constructing our fully adapted topline paraphrasing system (Section 4.3.1).

In Section 4.3.2 we then describe our evaluation methodology, followed by a series of

contrastive experiments conducted to provide insights into the above questions.
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Europarl Fr-En v5 Sentences Words Types

English 1,723,705 47,915,991 102,114

French 1,723,705 51,708,806 123,711

Table 4.3: Corpus statistics for the French-English Europarl v5 bitext used for para-

phrase extraction in our experiments.

4.3.1 Paraphrase-Based Compression Setup

The basis of our sentence-to-sentence paraphrasing system is formed by a syntacti-

cally informed pivot-extracted paraphrase grammar, and an n-gram language model.

The data sets and tools used to extract and estimate the latter two are detailed in

the following. On top of the paraphrase grammar we extract, we apply the full set of

compression-specific adaptations described in Section 4.2.

4.3.1.1 Paraphrase Grammar

The paraphrase grammars used in this chapter’s experiments are extracted from

the French-English Europarl corpus (v5). The bitext was aligned using the Berkeley

aligner and the English side was parsed with the Berkeley parser [Petrov et al., 2006].

We obtained the initial translation grammar using the SAMT toolkit Venugopal and

Zollmann [2009]. On top of CCG-style slashed constituents, the SAMT toolkit pro-

duces concatenated nonterminals (e.g. NP+VP). In Table 4.4 we list the number of

paraphrase rules, breaking out the number of identity paraphrases, as well as the

98



CHAPTER 4. TEXT-TO-TEXT GENERATION WITH PARAPHRASES

Grammar # Rules

total 42,353,318

w/o identity 23,641,016

w/o complex constituents 6,439,923

w/o complex const. & identity 5,097,250

Table 4.4: Number and distribution of rules in our paraphrase grammar. Com-

plex constituents include CCG-style nonterminals as well as concatenated labels like

NP+VP .

complex constituents.

The grammars we extract tend to be extremely large. To keep their size manage-

able, we only consider translation rules that have been seen more than 3 times and

whose translation probability exceeds 10−4 for pivot recombination. Additionally, we

only retain the top 25 most likely paraphrases of each phrase, ranked by a uniformly

weighted combination of phrasal and lexical paraphrase probabilities.

4.3.1.2 Language Model

The language model used in our paraphraser, as well in the Clarke and Lapata

[2008] baseline system is a Kneser-Ney discounted 5-gram model estimated on the

Gigaword corpus using the SRILM toolkit Stolcke [2002]. The corpus was cleared

of duplicate sentences, punctuation-normalized, tokenized, and lowercased (using the

tools provided with the Joshua Decoder Toolkit).
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4.3.1.3 System Tuning

For our experiments, we tuned the model parameters to maximize the Précis

score of the output. The optimizer used is the Z-MERT toolkit Zaidan [2009]. For

decoding, we used the Joshua Decoder 2.0 Li et al. [2010]. MERT was run for a

maximum of 10 iterations. We generated the 300 unique top-scoring paraphrases per

input sentence. The Précis metric was computed over 1-to-4-grams. We varied the

target compression ratio between 0.5 and 0.9 for different optimization runs.

4.3.2 Human Evaluation Setup

We solicit human judgments of the candidate compressions along two five-point

scales: grammaticality and meaning. Raters are instructed to decide how much the

meaning from a reference translation is retained in the compressed sentence, with a

score of 5 indicating that all of the important information is present, and 1 being that

the compression does not retain any of the original meaning. Similarly, a grammar

score of 5 indicates perfect grammaticality, and a grammar score of 1 is assigned to

sentences that are entirely ungrammatical. In this, we adopt a translation rating

guideline set by the Linguistic Data Consortium [2002], modified to fit the sentence

compression task.

To ensure fairness, we perform pairwise system comparisons with compression

rates strictly tied on the sentence-level. For any comparison, a sentence is only in-
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Figure 4.2: An example of the human intelligence task (HIT) the Turkers are pre-

sented with.

cluded in the computation of average scores if the difference between both systems’

compression rates is < 0.05. Because evaluation quality correlates linearly with com-

pression rate, the community-accepted practice of not comparing based on a closely

tied compression rate is potentially subject to erroneous interpretation [Napoles et al.,

2011a].

The human judgements are solicited on Amazon Mechanical Turk. We set the

evaluation to be three-fold redundant, i.e. every tuple of compressions is judged by

three different Turkers independently. For quality control, and to obtain upper-bound

scores for actual human-produced compressions, we include the human reference com-

pression with the candidates presented for judgement. Additionally, we use negative

controls generated by randomly deleting words until the desired compression rate is

achieved.
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CR Meaning Grammar

Hiero 0.56 2.57 2.35

Syntax 0.56 2.76 2.67

Syntax 0.53 2.70 2.49

Syntax+Feat. 0.53 2.71 2.54

Syntax+Feat. 0.54 2.79 2.71

Syntax+Aug. 0.54 2.96 2.52

Human Compressions 0.73 4.26 4.35

Table 4.5: Human evaluation for shorter compressions and for variations of our para-

phrase system. Syntax+Feat. includes the compression features from Section 4.2.1,

Syntax+Aug. includes optional deletion rules from Section 4.2.4.

4.3.3 Effects of Syntax and Task Adaptations

We evaluate the usefulness of syntactic information in paraphrases, as well as that

of our task-oriented adaptation steps (c.f. Section 4.2). To do this we perform a series

of contrastive experiments. Specifically, we compare paraphrase-based compression

systems starting with a Hiero-based paraphraser (Hiero), and successively adding

syntactic information into the paraphrases (Syntax), then task-specific features (Syn-

tax+Feat.), and finally compression-specific grammar augmentations (Syntax+Aug.).

Intuitively, we expect the different adaptations to have varying effects. For in-

stance, we cannot expect a paraphrasing system like Hiero or Syntax, that is not

aware of the impact a rule has on the input length, to successfully learn to compress

text. The Syntax-Feat. system, on the other hand, has access to informative features
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that reflect the task. It is therefore likely to produce good-quality compressions.

While we expect Syntax-Feat. to perform well especially at moderate compression

rates, it is likely to run into difficulties as we lower the target compression ratio to

levels that are hard to achieve without using deletion operations. Here, we expect

Syntax-Aug. to do better, at a cost to grammaticality due to the rather coarse nature

of the adaptations.

Table 4.5 shows a suite of pairwise system comparisons for compression rates

≈ 0.5. Each comparison is performed over a set of inputs for which both systems

produced outputs with highly comparable (δ < 0.05) compression rates.

We see that going from a Hiero-based to a syntactic paraphrase grammar yields a

significant improvement in grammaticality. This intuitively makes sense, as we expect

syntactic information to capture more well-formed rewrites. Adding our task-specific

features improves grammaticality even further. Further augmenting the grammar

with deletion rules (c.f. Section 4.2.4) significantly helps retain the core meaning at

compression rates this high, however compared to the un-augmented syntactic system

grammaticality scores drop.

4.3.4 Compression Baselines

To assess the output quality of the resulting paraphrase-based sentence compres-

sion system, we compare it to two contemporary state-of-the-art sentence compres-

sion systems. Specifically, we contrast with our implementation of Clarke and Lapata
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[2008]’s compression model which uses a series of constraints in an integer linear

programming (ILP) solver, and the T3 tree transducer toolkit [Cohn and Lapata,

2007], which learns a synchronous tree substitution grammar (STSG) from paired

monolingual sentences. Unlike SCFGs, the STSG formalism allows changes to the

tree topology. Cohn and Lapata [2007] argue that this is a natural fit for sentence

compression, since deletions introduce structural mismatches. We trained the T3

software2 on the 936 〈full, compressed〉 sentence pairs that comprise our development

set. This is equivalent in size to the training corpora that Cohn and Lapata [2007]

used (their training corpora ranged from 882–1020 sentence pairs), and has the ad-

vantage of being in-domain with respect to our test set. Both these systems reported

results outperforming previous systems such as McDonald [2006].

Table 4.6 pits our fully adapted Syntax-Aug. system against the ILP and T3

systems at a high compression rate of ≈ 0.5. We can see that the paraphrase-based

system is able to achieve meaning retention results on par with the ILP system. How-

ever, ILP significantly outperforms the paraphraser in grammaticality. In part, we

can ascribe this result to the difference in difficulty between performing syntactically

informed deletions and producing a full rewrite of a sentence. At the same time, the

paraphrase-based approach manages to significantly outperform the T3 system, and

a trivial baseline that performs random deletions.

In Table 4.7 we compare our system to the ILP approach at a more modest

2www.dcs.shef.ac.uk/people/T.Cohn/t3/
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CR Meaning Grammar

Syntax+Aug. 0.52 2.87 2.40

ILP 0.52 2.83 3.09

Syntax+Aug. 0.50 2.41 2.20

T3 0.50 2.01 1.93

Random Deletions 0.50 1.94 1.57

Table 4.6: Comparison of human evaluation results against other compression ap-

proaches for short compressions.

compression rate of≈ 0.8. Here, we significantly outperform ILP in meaning retention

while achieving comparable results in grammaticality. This improvement is significant

at p < 0.0001, using the sign test, while the better grammaticality score of the ILP

system is not statistically significant (p < 0.088). These results indicate that, over a

variety of compression rates, our framework for text-to-text generation is performing

as well as or better than specifically tailored methods.

Overall, our paraphrase-based approach to compression compares favorably to the

T3 system [Cohn and Lapata, 2007], though further experiments at different compres-

sion ratios may be warranted. Our system is further performing roughly on par with

the ILP-based compression, a contemporary, specialized state-of-the-art system that

makes use of syntactic annotations and deletion heuristics. The paraphrase-based

approach trades off performs as one would intuit – trading grammaticality of rewrites

for better retention of meaning.

105



CHAPTER 4. TEXT-TO-TEXT GENERATION WITH PARAPHRASES

CR Meaning Grammar

Reference 0.73 4.26 4.35

Syntax+Feat. 0.80 3.67 3.38

ILP 0.80 3.50 3.49

Table 4.7: Results of the human evaluation on longer compressions: pairwise com-

pression rates (CR), meaning and grammaticality scores. Bold indicates a statistically

significance difference at p < 0.05.

4.3.5 Qualitative Analysis

Table 4.8 shows an example sentence drawn from our test set and the compres-

sions produced by the different systems. While we see that both the paraphrase and

ILP systems produce good quality results, with the paraphrase system retaining the

meaning of the source sentence more accurately.

4.4 Conclusions

Our experiments show that sentential paraphrasing presents a valid and, above

all, flexible approach to tackle text-to-text generation problems. We have:

• Shown that injecting syntactic information into paraphrases yields better qual-

ity text-to-text generation systems.

• Presented an analysis of pruning techniques to effectively reduce paraphrase

grammar size while retaining good quality paraphrases.
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Source

he also expected that he would have a role in the future at the level of the islamic

movement across the palestinian territories , even if he was not lucky enough to win

in the elections .

Reference
he expects to have a future role in the islamic movement in the palestinian territories

if he is not successful in the elections .

Syntax+Feat.
he also expected that he would have a role in the future of the islamic movement in

the palestinian territories , although he was not lucky enough to win elections .

ILP
he also expected that he would have a role at the level of the islamic movement , even

if he was not lucky enough to win in the elections .

Source
in this war which has carried on for the last 12 days , around 700 palestinians , which

include a large number of women and children , have died .

Reference
about 700 palestinians , mostly women and children , have been killed in the israeli

offensive over the last 12 days .

Syntax+Feat.
in this war has done for the last 12 days , around 700 palestinians , including women

and children , died .

ILP
in this war which has carried for the days palestinians , which include a number of

women and children died .

Source
hala speaks arabic most of the time with her son , taking into consideration that he

can speak english with others .

Reference hala speaks to her son mostly in arabic , as he can speak english to others .

Syntax+Feat.
hala speaks arabic most of the time with her son , considering that he can speak

english with others .

ILP
hala speaks arabic most of the time , taking into consideration that he can speak

english with others .

Table 4.8: Example compressions produced by the two systems in Table 4.7 for three

input sentences from our test data.
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• Empirically compared two different means of paraphrase probability estimation.

• Outlined and analyzed a four-part task adaptation scheme that allows us to

easily convert a general-purpose paraphraser into a specialized system.

• Compared our thusly adapted sentence compression system to specialized mod-

els and found that it performs on par with the state of the art.

With this, we have introduced a complete suite of syntactic paraphrase-based tools

for text-to-text generation. Our set of methods allows for easy adaptation to a text

to text task, and our experiments have given insight into the means to tailor the

system to other computational requirements (such as smaller, or less richly labeled

grammars).
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Chapter 5

Improving Paraphrase Quality

with Distributional Similarity

In the previous chapters we have introduced a pivot-based extraction and esti-

mation method for syntactically informed paraphrases. We have then shown that

by adapting an off-the-shelf machine translation decoder, we can use our syntactic

paraphrases to deliver state of the art text-to-text generation performance.

In this chapter, we set out to improve the quality of our extracted paraphrases. In

order to do so, we will extend our pivot-based paraphrase collection by incorporating

a new source of information. The signal we are adding to our model is based on

the notion of distributional similarity between two phrases: two phrases are judged

semantically similar when they occur in similar contexts over a large corpus of text.

Using distributional similarity significantly increases the amount of data we can use
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to improve our paraphrases. While the pivot-based approach is limited to parallel

(or made-parallel) corpora, distributional similarity can be computed from any text

corpus, specifically including monolingual ones.

Furthermore, we expect the addition of distributional similarity features to con-

tribute a signal that is largely orthogonal to the information leveraged in pivot-based

paraphrase estimation. This is due to us being able to use significantly larger mono-

lingual data sets and purely contextual cues for the new features.

Paraphrase collections for text-to-text generation have been extracted from a va-

riety of types of corpora. Several approaches rely on bilingual parallel data [Ban-

nard and Callison-Burch, 2005, Zhao et al., 2008a, Callison-Burch, 2008, Ganitke-

vitch et al., 2011], while others leverage distributional methods on monolingual text

corpora [Lin and Pantel, 2001, Bhagat and Ravichandran, 2008]. However, only pre-

liminary studies have been undertaken to combine the information from these two

sources [Chan et al., 2011].

In this chapter, we:

• Introduce the notion of distributional similarity (Section 5.1).

• Describe the data sets used for this work, and the contextual features we de-

fine and collect over them (Section 5.2). We incorporate a variety of different

types of features in our distributional similarity model, and show that they can

be used to achieve significant improvements in grammaticality in text-to-text

generation.
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• Elaborate on locality-sensitive hashing (LSH), a fast randomized approach to

dimensionality reduction that allows us to compactly represent the large feature

space used in our work. LSH is the context and feature encoding method used

in our experiments (Section 5.2.3).

• Discuss the incorporation of distributional similarity features into our existing

paraphrase grammar via paraphrase re-ranking (Section 5.3.1), and define a de-

compositional approach to scoring paraphrase patterns that contain constituent-

level gaps, e.g.

sim(one JJ instance of NP , a JJ case of NP).

This generalizes over distributional similarity for contiguous phrases, enabling

us to fully annotate our syntactic paraphrase grammar with monolingual infor-

mation (Section 5.3.2).

• Compare a distributional similarity-enhanced paraphrase system to several strong

baselines on the text-to-text generation task of sentence compression. Our

method shows results competitive with a contemporary custom-build compres-

sion system, significantly improving over our previous, purely bilingually sourced

paraphraser.
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5.1 Monolingual Distributional Similarity

Distributional similarity is defined between two textual expressions (or phrases),

e and e′. The similarity of the two phrases is computed based on comparing their

contextual features. To describe the phrase e, we define a set of features that capture

the context of an occurrence of e in our corpus. Writing the context vector for the

i-th occurrence of e as ~se,i, we can aggregate over all occurrences of e, resulting in a

distributional signature for e: ~se =
∑

i ~se,i. Following the intuition that phrases with

similar meanings occur in similar contexts, we can then quantify the similarity or

goodness of e′ as a paraphrase of e by computing the cosine similarity between their

distributional signatures:

sim(e, e′) =
~se · ~se′
|~se||~se′ |

.

A wide variety of features can be used to describe the distributional context of a

phrase. Rich, linguistically informed feature sets that rely on dependency and con-

stituency parses, part-of-speech tags, or lemmatization have been proposed in widely

known work such as by Church and Hanks [1991] and Lin and Pantel [2001]. In these

settings, a phrase could be described by the various syntactic relations it has with

lexical items in its context, such as: “for what verbs do we see with the phrase as the

subject?”, or “what adjectives modify the phrase?”.

However, when moving to vast text collections or collapsed representations of large

text corpora, linguistic annotations may become impractically expensive to produce.
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A straightforward and widely used solution is to fall back onto lexical n-gram features,

e.g. “what words or bigrams have we seen to the left of this phrase?” A substantial

body of work has focussed on using this type of feature-set for a variety of purposes

in NLP [Lapata and Keller, 2005, Bhagat and Ravichandran, 2008, Lin and Dyer,

2010, Van Durme and Lall, 2010].

In practice, distributional similarity approaches are implemented by first extract-

ing signatures for a set of expressions or phrases. To then extract paraphrases for

a given e one will then search the signature space for any close neighbors e′. Simi-

larly, given two phrases e and e′, one will compare their signatures to compute their

similarity. Our work follows this two-stage approach.

5.2 Distributional Similarity Model

We contrast two approaches to constructing our distributional signatures: a simple

feature set collected over a very large aggregated corpus, and a rich feature set taking

into account a variety of automated annotations that we collect over a smaller (but

still sizable) text corpus.

5.2.1 n-gram Model

The high-coverage model (from here on: n-gram model) is drawn from a web-

scale n-gram corpus [Brants and Franz, 2006, Lin and Dyer, 2010]. Since the Google

113



CHAPTER 5. IMPROVING PARAPHRASE QUALITY WITH
DISTRIBUTIONAL SIMILARITY

the long-term

achieve25
goals 23
plans 97

investment 10
confirmed64

revise43

Left Right

the long-term

the long-term
the long-term

the long-term
the long-term

..
..

L-achieve = 25

L-confirmed = 64
L-revise = 43

⇣
R-goals = 23
R-plans  = 97
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⇣
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⌘
=~signgram

⇣

Figure 5.1: An example of the n-gram feature extraction on an n-gram corpus. Here,

“the long-term” is seen preceded by “revise” (43 times) and followed by “plans”

(97 times). The corresponding left- and right-side features are added to the phrase

signature with the counts of the n-grams that gave rise to them.

n-grams consist of 1-to-5-grams with occurrence counts, we are limited in both the

type of phrases for which we can collect signatures, and in our choice of feature set.

We thus extract signatures for contiguous phrases up to a length of 4. For each

phrase p we look at n-grams of the form wp and pv, where w and v are single words.

We then extract the corresponding features wleft and vright . The feature count is set

to the count of the n-gram, reflecting the frequency with which p was preceded or

followed, respectively, by w and v in the data the n-gram corpus is based on. Fig-

ure 6.5 illustrates this feature extraction approach. The resulting collection comprises

distributional signatures for the 200 million most frequent 1-to-4-grams in the n-gram

corpus.

114



CHAPTER 5. IMPROVING PARAPHRASE QUALITY WITH
DISTRIBUTIONAL SIMILARITY

long-term investment holding on to

det
amod

the
JJ NN VBG IN TO DT

NP
PP

VP

⇣ ⇣
the long-term

⌘
=~sigsyntax

⇣
dep-det-R-investment

pos-L-TO 
pos-R-NN  

lex-R-investment 
lex-L-to 

dep-amod-R-investment

syn-gov-NP syn-miss-L-NN 

lex-L-on-to 
pos-L-IN-TO  

dep-det-R-NN dep-amod-R-NN

Figure 5.2: An example of the syntactic feature-set. The phrase “the long-term” is

annotated with position-aware lexical and part-of-speech n-gram features (e.g. “on

to” on the left, and “investment” and “NN” to its right), labeled dependency links

(e.g. amod − investment) and features derived from the phrase’s CCG label NP/NN .

5.2.2 Syntactic Model

For the syntactically informed signature model (from here on: syntax model),

we make use the constituency and dependency parses provided in the Annotated

Gigaword corpus [Napoles et al., 2012], as well as token-level annotations such as

parts of speech and named entity tags. To remain consistent with the n-gram model,

we limit ourselves to contiguous phrases up to a length of 4. The following feature

set is used to compute distributional signatures for the extracted phrases:

• n-gram based features for words seen to the left and right of a phrase.

• Position-aware lexical, lemma-based, part-of-speech, and named entity class
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unigram and bigram features, drawn from a three-word window to the right

and left of the phrase.

• Incoming and outgoing (wrt. the phrase) dependency link features, labeled with

the corresponding lexical item, lemmata and POS.

• Syntactic features for any constituents governing the phrase, as well as for CCG-

style slashed constituent labels for the phrase.

• Position-aware lexical and part-of-speech unigram and bigram features, drawn

from a three-word window to the right and left of the phrase.

• Features based on dependencies for both links into and out of the phrase, labeled

with the corresponding lexical item and POS. If the phrase corresponds to a

complete subtree in the constituency parse we additionally include lexical and

POS features for its head word.

• Syntactic features for any constituents governing the phrase, as well as for CCG-

style slashed constituent labels for the phrase. The latter are split in governing

constituent and missing constituent (with directionality).

Figure 6.6 illustrates the syntax model’s feature extraction for an example phrase oc-

currence. Using this method we extract distributional signatures for over 175 million

1-to-4-gram phrases.
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5.2.3 Locality Sensitive Hashing

Collecting distributional signatures for a large number of phrases quickly leads to

unmanageably large datasets. Storing the syntax model’s 175 million signatures in

a compressed readable format, for instance, would require over 290GB of disk space.

This is both due the number of phrases, but also to the high dimensionality of our

highly lexicalized feature space. To make the signature extraction computationally

viable, we therefore need to apply an effective dimensionality reduction technique.

A wide variety of viable approaches to dimensionality reduction exists. For our

setup, however, we favor a fast, trivially parallelizable method that also allows us to

bypass explicitly computing the feature vectors, which can be memory intensive for

frequent phrases. We therefore choose an online variant of locality sensitive hashing

(LSH), as described by Van Durme and Lall [2010]. LSH has been previously used

to enable the extraction of large collections of paraphrases from vast monolingual

corpora [Ravichandran et al., 2005, Bhagat and Ravichandran, 2008]. In our work,

we rely on the LSH implementation that is part of the Jerboa toolkit [Van Durme,

2012].

The online LSH variant is based on earlier work of Indyk and Motwani [1998]

and Charikar [2002]. It approximates the cosine similarity between two feature vec-

tors based on the Hamming distance between their projections in a dimensionality-

reduced, boolean-valued space. To compute this bit-vector representation from a

d-dimensional, real-valued input vector ~v ∈ Rd, we first project it through a random
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matrix P ∈ Rb×d, which is populated with draws from N (0, 1):

p(~v) = P~v. (5.1)

We then convert the resulting b-dimensional vector p(~v) ∈ Rb into a bit-vector r(~v) by

setting each bit conditioned on whether the corresponding projected value is less than

0. Given two bit signatures r(~u) and r(~v), we can approximate the cosine similarity

of ~u and ~v as:

sim ′(u, v) = cos
(D(r(~u), r(~v))

b
π
)
,

where D(·, ·) is the Hamming distance. Unless otherwise noted, we use 256-bit sig-

natures in our experiments. This reduces the memory requirements for the syntax

model to around 8.8GB.

The feature space dimensionality d varies with the input data and the feature

templates we choose to use. Since d tends to be very large, and in fact cannot be

known until the features have been extracted over the entirety of the input data,

it is impractical to hold a fully instantiated projection matrix P in memory. The

alternative is, given an input feature (i.e. a vi), to deterministically draw b samples

from N (0, 1). Computationally, this is a costly and (for frequently occurring features)

highly redundant operation. A key advantage of the LSH variant of Van Durme and

Lall [2010] is that it circumvents this issue. Instead of fully instantiating or on-

demand generating P , they precompute a pool of S = {s1 . . . sK | sk N (0, 1)} and

sample the pij by hashing into S.
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5.3 Incorporating Distributional Informa-

tion

5.3.1 Paraphrase Re-Ranking

Chan et al. [2011] presented an initial investigation into combining phrasal para-

phrases obtained through bilingual pivoting with monolingual distributional informa-

tion. Their work investigated a reranking approach and evaluated their method via

a substitution task, showing that the two sources of information are complementary

and can yield improvements in paraphrase quality when combined.

We aim to extend Chan et al. [2011]’s work by fully integrating the similarity

scores into our SCFG paraphraser, and evaluating on text-to-text generation.

5.3.2 Decompositional Scoring of Complex Para-

phrases

In order to incorporate distributional similarity information into the paraphrasing

system, we need to calculate similarity scores for the paraphrastic SCFG rules in our

grammar. For rules with purely lexical right-hand sides e1 and e2 this is a simple

task, and the similarity score sim(e1, e2) can be directly included in the rule’s feature

vector ~ϕ. However, if e1 and e2 are long, their occurrences become sparse and their
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Figure 5.3: Scoring a rule by extracting and scoring contiguous phrases consistent

with the alignment. The overall score of the rule is determined by averaging across

all pairs of contiguous subphrases.

similarity can no longer be reliably estimated. In our case, the right-hand sides of

our rules often contain gaps and computing a similarity score is less straightforward.

Figure 5.3 shows an example of such a discontinuous rule and illustrates our

solution: we decompose the discontinuous patterns that make up the right-hand sides

of a rule r into pairs of contiguous phrases P(r) = {〈e, e′〉}, for which we can look

up distributional signatures and compute similarity scores. This decomposition into

phrases is non-trivial, since our sentential paraphrase rules often involve significant

reordering or structural changes. To avoid comparing unrelated phrase pairs, we

require P(r) to be consistent with a token alignment a. The alignment is defined

analogously to word alignments in machine translation, and computed by treating

the source and target sides of our paraphrase rules as a parallel corpus.

We define the overall similarity score of the rule to be the average of the similarity
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scores of all extracted phrase pairs:

sim(r, a) =
1

|P(a)|
∑

(e,e′)∈P(a)
sim(e, e′).

Since the distributional signatures for long, rare phrases may be computed from only

a handful of occurrences, we additionally query for the shorter sub-phrases that are

more likely to have been observed often enough to have reliable signatures and thus

similarity estimates.

Our definition of the similarity of two discontinuous phrases substantially differs

from others in the literature. This difference is due to a difference in motivation. Lin

and Pantel [2001], for instance, seek to find new paraphrase pairs by comparing their

arguments. In this work, however, we try to add orthogonal information to existing

paraphrase pairs. Both our definition of pattern similarity and our feature-set (see

Section 5.2) are therefore geared towards comparing the substitutability and context

similarity of a pair of paraphrases.

Our two similarity scores are incorporated into the paraphraser as additional rule

features in ~ϕ, simngram and simsyn , respectively. We estimate the corresponding

weights along with the other λi as detailed in Section 5.4.
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5.4 Experiments in Text-to-Text-Generation

5.4.1 Task: Sentence Compression

To evaluate the impact of distributional information on paraphrase quality, we

again use the sentence compression task. While the datasets used to create our para-

phrase grammars are identical to Chapter 4, the extraction stack has been updated

to use the Thrax grammar extraction toolkit [Ganitkevitch et al., 2012a]. Due to

the resulting changes in heuristics applied during extraction and compression-centric

features (Section 5.4.2.1) added, the resulting paraphrase systems are not identical

to the ones used for our experiments in Chapter 4.

5.4.2 Experimental Setup

5.4.2.1 Base Paraphrase Grammar and Language Model

As in Chapter 4, we extract our paraphrase grammar from the French–English

portion of the Europarl corpus (version 5) [Koehn, 2005]. The Berkeley aligner [Liang

et al., 2006] and the Berkeley parser [Petrov et al., 2006] are used to align the bitext

and parse the English side, respectively. The paraphrase grammar is produced using

the Hadoop-based Thrax grammar extractor’s paraphrase mode [Ganitkevitch et al.,

2012a]. The syntactic nonterminal labels we allowed in the grammar were limited to

constituent labels and CCG-style slashed categories. Paraphrase grammars extracted
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via pivoting tend to grow very large. To keep the grammar size manageable, we

pruned away all paraphrase rules whose phrasal paraphrase probabilities p(e1|e2) or

p(e2|e1) were smaller than 0.001.

We extend the feature-set used in Chapter 4 with a number of features that aim to

better describe a rule’s compressive power. Here are the compression-specific features

we use in our experimental setup:

• Raw word count features wcount src and wcount tgt for either side of a paraphrase

rule.

• The net word count difference effected by applying the rule: wcountdiff .

• Character-count equivalents for the above features: ccount src, ccount tgt , and

ccountdiff .

• Features expressing the. log-compression ratio of each rule word cr = log wcount tgt
wcountsrc

and the analogously defined char cr = log ccount tgt
ccountsrc

.

The language model used in our paraphraser and the Clarke and Lapata [2008]

baseline system is a Kneser-Ney discounted 5-gram model estimated on the Gigaword

corpus using the SRILM toolkit [Stolcke, 2002].

5.4.2.2 Model Tuning

For model tuning and decoding we used the Joshua machine translation system

[Ganitkevitch et al., 2012a]. The model weights are estimated using an implemen-
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tation of the PRO tuning algorithm [Hopkins and May, 2011], with Précis as our

objective function.

5.4.2.3 Human Evaluation Setup

To rate the quality of our output, we solicit human judgments of the compressions

along two five-point scales: grammaticality and meaning preservation. Judges are in-

structed to decide how much the meaning from a reference translation is retained

in the compressed sentence, with a score of 5 indicating that all of the important

information is present, and 1 being that the compression does not retain any of the

original meaning. Similarly, a grammar score of 5 indicates perfect grammaticality,

while a score of 1 is assigned to sentences that are entirely ungrammatical. We ran

our evaluation on Mechanical Turk, where a total of 126 judges provided 3 redundant

judgments for each system output. To provide additional quality control, our HITs

were augmented with both positive and negative control compressions. For the pos-

itive control we used the reference compressions from our test set. Negative control

was provided by adding a compression model based on random word deletions to the

mix.

5.4.3 Evaluation Results

In Table 5.1 we compare our distributional similarity-augmented paraphrase-based

compression systems to the plain pivoting-based baseline and the ILP approach
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CR Meaning Grammar

Reference 0.80 4.80 4.54

ILP 0.74 3.44 3.41

Paraphases 0.78 3.53 2.98

Paraphases + n-gram 0.80 3.65 3.16

Paraphases + Syntax 0.79 3.70 3.26

Paraphases + Syntax + n-gram 0.79 3.57 3.14

Random Deletions 0.78 2.91 2.53

Table 5.1: Results of the human evaluation on longer compressions: pairwise com-

pression rates (CR), meaning and grammaticality scores. Bold indicates a statistically

significance difference at p < 0.05.

[Clarke and Lapata, 2008]. The compression ratios of the paraphrasing systems are

tuned to match the average compression ratio seen on the development and test set.

Similarly, the ILP system is configured to loosely match this ratio, as to not overly

constrain its search space.

Our results indicate that the paraphrase approach significantly outperforms ILP

on meaning retention. However, the baseline system shows notable weaknesses in

grammaticality. Adding the n-gram distributional similarity model to the paraphraser

recovers some of the difference in grammaticality while simultaneously yielding some

gain in the compressions’ meaning retention. Moving to distributional similarity

estimated on the syntactic feature-set yields additional improvement, despite the

model’s lower coverage.

Our results suggest that combining syntactic and n-gram based similarity scores
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Figure 5.4: A pairwise breakdown of the human judgments comparing the systems.

Dark grey regions show the number of times the two systems were tied, and light grey

shows how many times one system was judged to be better than the other.

does not yield better results, but causes the compressions to drop in quality below

either single similarity model. It is plausible to assume that for our newswire test set

the comparatively lower coverage of Annotated Gigaword is sufficient to fully sub-

sume the contributions of the n-gram model, and we thus need not expect significant

gains from adding the n-gram similarity features. However, dropping below the syn-

tactic similarity baseline clearly suggests issues with the model optimization. Further

experiments on the combined effect of n-gram and syntactic similarities are required.

It is known that human evaluation scores correlate linearly with the compression

ratio produced by a sentence compression system [Napoles et al., 2011a]. Thus, to

ensure fairness in our comparisons, we produce a pairwise comparison breakdown

that only takes into account compressions of almost identical length. We require the

compressions to be within ±10% length of one another. Figure 5.4 shows the results
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of this analysis, detailing the number of wins and ties in the human judgements.

We note that the Paraphrase + Syntax system’s gains in meaning retention over

both the baseline and the ILP system are still present in the pairwise breakdown. The

gains over the paraphrasing baseline, as well as the improvement in meaning over ILP

are statistically significant at p < 0.05, using the sign test. It is further interesting

to observe that there is more substantial overlap between the baseline paraphraser

and the n-gram model, while the syntax model appears to yield noticeably different

output more often.

5.4.3.1 Example Compressions

Table 5.2 shows two example sentences drawn from our test set and the compres-

sions produced by the different systems. It can be seen that both the paraphrase-based

and ILP systems produce good quality results, with the paraphrase system retaining

the meaning of the source sentence more accurately.

5.5 Conclusion

We presented a method to incorporate monolingual distributional similarity into

linguistically informed paraphrases extracted from bilingual parallel data. Having

extended the notion of similarity to discontiguous pattern with multi-word gaps,

we investigated the effect of using feature-sets of varying complexity to compute
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distributional similarity for our paraphrase collection. We conclude that, compared

to a simple large-scale model, a rich, syntax-based feature-set, even with significantly

lower coverage, noticeably improves output quality in a text-to-text generation task.

Our syntactic method significantly improves grammaticality and meaning retention

over a strong paraphrastic baseline, and offers substantial gains in meaning retention

over a contemporary state-of-the-art, deletion-based system.
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System Sentences

Source
should these political developments have an impact on sports ?

Reference
should these political events affect sports ?

Paraphrases + Syntax
should these events have an impact on sports ?

Paraphrases + n-gram
these political developments impact on sports ?

Paraphrases
should these events impact on sports ?

ILP
political developments have an impact

Source
now we have to think and make a decision about our direction and choose

only one way . thanks .

Reference
we should ponder it and decide our path and follow it , thanks .

Paraphrases + Syntax
now we think and decide on our way and choose one way . thanks .

Paraphrases + n-gram
now we have and decide on our way and choose one way . thanks .

Paraphrases
now we have and decide on our way and choose one way . thanks .

ILP
we have to think and make a decision and choose way thanks

Table 5.2: Example compressions produced by our systems and the baselines Table 5.1

for three input sentences from our test data.
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Chapter 6

Constructing the Paraphrase

Database

In this chapter we present the engineering details and data resources that allow us

to scale up our syntactic pivoting method. We generate a gargantuan, multilingual

collection of paraphrases, called the ParaPhrase DataBase, or PPDB.

This chapter reviews the creation of our paraphrase database draws on a large,

composite bitext assembled from various bilingual corpora between English and a

number of languages. We use even larger monolingual data to compute additional

features for our paraphrase pairs.

Paraphrase extraction on the scale of PPDB requires substantial amounts of en-

gineering, both for the extraction process itself, and to make very large paraphrase

SCFGs usable for applications that require quick access, like text-to-text generation.
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We present details on the engineering behind the extraction of PPDB. Both imple-

mentations are improvements on the state of the art, yielding substantial gains in

performance and reductions in memory use.

In Section 6.1 we discuss the 1.0 release of the English paraphrase database,1

which has 170 million paraphrase rules [Ganitkevitch et al., 2013] and is currently the

largest publicly available paraphrase corpus.

We further present the extension of our paraphrase extraction method to non-

English languages. Our multilingual paraphrase resource [Ganitkevitch and Callison-

Burch, 2014] massively expands on the initial PPDB release. It includes collections of

paraphrases for 23 additional languages: Arabic, Bulgarian, Chinese, Czech, Dutch,

Estonian, Finnish, French, German, Greek, Hungarian, Italian, Latvian, Lithuanian,

Polish, Portuguese, Romanian, Russian, Slovak, Slovenian, Spanish,2 Swedish, and

Urdu. The multilingual portion of the paraphrase database is freely available from

paraphrase.org. Section 6.5 discusses the extensions necessary to extract this mul-

tilingual paraphrase collection.

6.1 The Paraphrase Database

Collections of paraphrases and paraphrase-like expression pairs have been pre-

sented and released in the past. These resources include the DIRT database which

1Freely available at http://paraphrase.org.
2The Spanish PPDB was made available alongside the English version [Ganitkevitch et al., 2013].
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Identity Paraphrases Total

Lexical 0.6M 7.6M 8.1M

Phrasal 4.9M 68.4M 73.2M

Syntactic 46.5M 93.6M 140.1M

All 52.0M 169.6M 221.4M

Table 6.1: A breakdown of PPDB:Eng size by paraphrase type. We distinguish lexical

(i.e. one-word) paraphrases, phrasal paraphrases and syntactically labeled paraphrase

patterns.

contains 12 million paraphrase rules [Lin and Pantel, 2001], and the MSR paraphrase

phrase table which has 13 million rules [Dolan et al., 2004], among others. Although

several groups have independently extracted paraphrases using Bannard and Callison-

Burch [2005]’s bilingual pivoting technique (see Zhou et al. [2006], Riezler et al. [2007],

Snover et al. [2010], among others), there has never been an official release of their

resource.

Table 6.1 presents a breakdown of the English paraphrase database (PPDB:Eng),

by paraphrase type. As previously established, we distinguish lexical (a single word),

phrasal (a continuous string of words), and syntactic paraphrases (expressions that

may contain both words and nonterminals), and separate out identity paraphrases.

While we list lexical and phrasal paraphrases separately, it is possible that a single

word paraphrases as a multi-word phrase and vice versa – so long they share the same

syntactic label.
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6.1.1 Comparison to Related Resources

In this section we present a brief qualitative comparison of PPDB with similar

resources. We contrast the paraphrase database with WordNet [Fellbaum, 1998],

PATTY [Nakashole et al., 2012], and a collection of entailment rules produced by ap-

plying the approach of Berant et al. [2012] to the REVERB set of relation expressions

[Fader et al., 2011].

6.1.1.1 WordNet

WordNet [Fellbaum, 1998] is in many ways the ur-resource for language synonymy

and entailment hierarchies. It is a fully manually-created data set that groups words

and short multi-word expressions into synonym sets (synsets), where all member

expressions share the same meaning. The synsets are themselves organized in a

hierarchy of entailment and subsumption. An word can belong to multiple synsets (for

ambiguous or polysemous words). Words’ membership to synsets is further qualified

with part of speech tags. The word ”dog”, for instance belongs to at least two synsets

with distinct parts of speech, as 〈dog ,NOUN 〉 and 〈dog ,VERB〉.

PPDB 1.0 does not contain any entailment information, simply rendering every

pair as a quasi-paraphrase with an associated score (this is amended by Pavlick et al.

[2015b], who add automatically inferred entailment relations and improved quality

estimation to the resource). We therefore limit ourselves to an intersection experiment

between PPDB and the synsets of WordNet 3.0.
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Figure 6.1: The average coverage of WordNet in PPDB 1.0. We can see that PPDB

covers an average of about 50% of the touched WordNet synsets even for larger

synsets.

For this, we test each paraphrase pair in PPDB against WordNet – if the PPDB

source phrase e1 is present in any synsets Syn(e1), we check all of these synsets for

the presence of the PPDB paraphrase e2. Since WordNet’s synset entries are lemma-

tized, we use NLTK’s WordNet lemmatizer [Bird and Loper, 2004] to lemmatize the

ei for our queries. We respect the syntactic labels PPDB extracts for the paraphrases

when testing against WordNet, mapping the various forms of nouns and nounphrases

to WordNet’s noun tag etc. We count how many of the lemmas present in a Word-

Net synset are also covered by a PPDB paraphrase overlapping with said synset.

Since WordNet is largely limited to single word or short phrasal expressions, PPDB’s

syntactic paraphrases do not factor in this experiment.

Figure 6.1 visualizes the results for our intersection experiment. We find that of

134



CHAPTER 6. CONSTRUCTING THE PARAPHRASE DATABASE

Syntactic Label Source Paraphrase

NN freeze-drying lyophilization

NN clotting coagulation

JJ air-to-surface air-to-ground

NNS assailants attackers

NN foreword preface

NN uterus womb

VBN immunized vaccinated

JJ laudable praiseworthy

VBD interpreted construed

VBP disconnect unplug

Table 6.2: Examples of PPDB paraphrase pairs also found in WordNet synsets.

the 117,000 synsets that make up WordNet 3.0, PPDB overlaps with 52,891, or about

45%. Of these, 25,599 are singelton synsets, i.e. synsets with only a single member

which therefore do not have any paraphrastic information. For larger synsets, we

can see a pattern emerge: even as the size of the matched synset grows, PPDB quite

consistently covers about 50% of the lemmas in the set. Overall, 123,144 unique

paraphrase pairs in PPDB match synsets in WordNet 3.0. When we filter this set

to omit paraphrases that map to the same lemma, such as 〈e −mail , e −mails〉 or

have a character edit distance of less than 3 (to drop simple spelling variations like

〈sulfur , sulphur〉), we are still left with 86,635 unique paraphrase pairs. Table 6.2

shows a few examples from the overlap set.

Given the gold-standard quality of WordNet and its high recall over textual rep-

resentations for the concepts it covers, this is an encouraging result. It speaks to the
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presence of high-quality paraphrases in PPDB, as well as a good coverage of concepts

with a wide variety of lexicalizations.

We further investigate the non-overlap between PPDB contributes over WordNet,

using a few samples. For instance, for the adjective absurd WordNet’s synsets yield

the following 9 synonyms:

derisory, ludicrous, idiotic, preposterous, cockeyed, ridiculous, absurd,
laughable, nonsensical.

By comparison, PPDB’s proposed set of paraphrases for absurd as an adjectival ex-

pression (i.e. we allow for ADJP and JJ ) is missing cockeyed. It however contains 99

additional paraphrases given here in order of PPDB’s goodness estimate:

nonsense, senseless, quite absurd, unreasonable, pointless, so point-
less, perverse, irrational, aberrant, patently absurd, farcical, foolish, silly,
illogical, absolutely absurd, too absurd, grotesque, just nonsense, com-
pletely absurd, just absurd, pretty silly, plain absurd, insane, stupid, in-
congruous, bizarre, crazy, paradoxical, totally absurd, meaningless, coun-
terintuitive, quite ridiculous, wrong-headed, ungodly, fallacious, outra-
geous, injudicious, so stupid, surreal, odd, mad, abhorrent, wrong, ironic,
inconceivable, exorbitant, futile, unthinkable, undignified, so ridiculous,
rubbish, unwise, rather paradoxical, useless, unfair, incredible, madness,
just ridiculous, obscene, idiot, misguided, dumb, mindless, unwarranted,
excessive, inappropriate, repugnant, risible, strange, contradictory, re-
ally ridiculous, wild, unjust, pretty sappy, “ridiculous, huh,” “ridiculous,
jenkins,” extraordinary, disparate, unconscionable, pathetic, false, totally
ridiculous, stupid in this, really silly, ridiculous , okay, so silly, absolutely
stupid, absolutely ridiculous, that ridiculous, bloody ridiculous, morally
bankrupt, so dorky, completely ridiculous, ridiculously low, too ridiculous,
just stupid, kind of stupid, most ridiculous, so lame.

A cursory examination quickly shows that despite the large number of paraphrases,

the quality remains quite high throughout. The candidates produced by PPDB largely
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cover the relatively formal vocabulary and close semantic similarity in WordNet’s

synsets, but also expand into more casual and conversational variations. This holds

especially we get into the lower-scoring paraphrase candidates.

We see a similar difference in comparing the paraphrases for the noun contraction.

WordNet’s synsets offer 5 synonyms:

condensation, muscular contraction, muscle contraction, compression,
contraction.

Here, PPDB matches compression, and further contains 57 additional candidate para-

phrases (given in order of estimated quality):

contracture, shrinkage, downturn, shrinking, contractile, twitch, de-
flation, retrenchment, crunch, decline, slowdown, recession, tightening,
constriction, squeeze, contracting, reduction, the decline, decrease, cur-
tailment, narrowing, contract, austerity, stricture, a fall, collapse, slump,
drop, fall, convulsion, drawdown, meltdown, slowing, his contract, the re-
cession, downsizing, the reduction, shrink, celebration, weakening, retreat,
borrowing, stringency, contradiction, cut, contamination, setback, short-
ening, slow-down, compressive, a decrease, the conclusion, a recession,
atrophy, a slowdown, a decline, a reduction.

Again, the overall quality of the PPDB paraphrases is quite high. Only towards

the tail end do we see not entirely grammatical substitutions proposed, though they

remain semantically sound. It appears that in this case WordNet’s synonym sets

take into account only a few very specific (medical) semantics of contraction. Mean-

while PPDB benefits from a large amount of newswire data to extract high quality

paraphrases for economy-related semantics.

These examples highlight some weaknesses of manually curated resources such

as WordNet, and exemplify the advantages of large-scale datasets like PPDB. While
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the contents of WordNet is beyond reproach, it is limited to the vocabulary and the

senses its curators included. An NLP system replying on such a resource may run

into not only coverage issues, but also inadvertent bias stemming from a mismatch

between what senses and domains a manually curated resource contains, and the

actual domain distribution on application data.

At-scale, automatically extracted resources like PPDB help mitigate some of this

problem provided the resource extraction approach saw data similar to the application

domain. A further strength of data-driven resources is that common forms in which

concepts occur in text are being captured. Increasingly, the data processed by NLP

systems is informal text. Resources like PPDB, which connect a concept’s canonical

form with its more varied, in-the-wild textual expressions can greatly facilitate this

task.

6.1.1.2 REVERB Textual Entailment Rules

This (to the best of our knowledge not officially named) resource stems from

Berant [2012]’s application of their algorithms for inference of entailment relations

onto a large set of relation expressions stemming from the REVERB data set [Fader

et al., 2011].

The data set contains scored pairs of patterns b1, b2, where each bi is the (lemma-

tized) lexicalization of a relation between two entities. A high score means that the

predictive model estimated b1 to likely entail b2. An example relation in this data set
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is:

X accept Y → Y be worn by X,

here implying that X is a person and Y is an award (or otherwise an acceptable

wearable).

It is worth noting that the resources differ in both style and purpose: PPDB aims

to capture quasi-paraphrases: rewrites that strive to preserve the core meaning of

a text, while also being fully lexicalized and grammatically viable. The REVERB

entailment set expressly tries to capture entailment relationships where the entailed

expression may (and is intended to) causally stray from the meaning of the source ex-

pression (see above example, where the two phrases clearly describe distinct semantic

events). We therefore expect significant portions of the entailment relations set to be

out of scope for PPDB. In addition to this, PPDB’s extraction approach makes use of

sentence parallelism to acquire paraphrases, which is a weaker signal than temporal

closeness and entity co-occurrence. The stronger signals used for REVERB extraction

allow it to more confidently include rare, long phrases. Many such phrases are likely

to be dropped by the the thresholding heuristics used for PPDB, because it would be

hard to reliably estimate paraphrase probabilities for rarely occurring expression.

The patterns in the REVERB entailment sets are lemmatizedphrases and suggest

a bookending by entity slots, as shown above. We limit our comparison to PPDB’s

lexical and phrasal portions, since for any syntactic paraphrase with the nonterminals

bookending a phrasal paraphrase, PPDB’s alignment and extraction approach guar-
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Label Source Paraphrase

VP/VP make an important contribution to make a significant contribution to

VP/NP consider the relationship between examine the relationship between

VP/NP enhance the effectiveness of increase the efficiency of

VP/NP pays great attention to places great importance on

Table 6.3: Examples of PPDB paraphrase pairs matching entailment pairs in the

REVERB dataset.

antees that we have also extracted the phrasal portion by itself. As in Section 6.1.1.1,

we use NLTK’s WordNet lemmatizer to make the fully lexicalized PPDB phrases

comparable to the entailment set.

As intuitively expected, the overlap between PPDB and the entailment sets is rela-

tively low. We record only 0.59% overlap with the entailment set generated by Berant

[2012]’s local algorithm (91,455 phrase pairs matched of over 15 million, when using

the recommended thresholding for the set). However, the overlap with the smaller,

higher-quality sets extracted using Berant’s global algorithms are much higher: 6%

(16,792 of 275,682) for the HTL set, and 11% (11,596 of 102,565) for the TNCF data

set. A possible reading of this result is that the higher-precision global algorithms Be-

rant proposes weed out more far-fetched entailment pair candidates, leaving us with

a higher proportion of direct paraphrases of the kind that is more readily extracted

by PPDB’s approach.

In Table 6.3 we show a few examples of the overlapping phrase pairs extracted.
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Label Count

X 14,104

VP/NP 10,687

VP/PP 5,533

VP/VP 3,330

VP 2,790

VB 1,410

VP/SBAR 1,096

VP/PRP 641

VP/NN 538

VP/VB 531

Table 6.4: Most frequent labels in the PPDB overlap with the local algorithm RE-

VERB entailment set. The CCG-style slashed categories most frequently observed

are consistent with the expected X-phrase-Y bookending pattern. The large number

of fallback wildcard labels X reflects the often long and difficult-to-parse phrases.

It is notable that the phrases often differ in only a single word. For the purpose of

paraphrase extraction, these would be more robustly and generalizably by just that

particular lexical paraphrase, e.g. 〈important, significant〉 for the first example in the

table. These paraphrases exist in PPDB, but they are insufficient for the purpose of

the REVERB entailment set because they do not adequately express a full relation

between two entities.

In Table 6.4 we list the most common syntactic labels for the overlap paraphrases.

The high proportion of verb phrases missing a constituent to the right accurately

reflects the bookending pattern that underlies the entailment pairs data set. We
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find an uncommonly high proportion of wildcard-labeled phrases (X), a label PPDB

assigns when no full constituent or single-slashed CCG label could be found. This

is likely caused by the degradation in automated parsing quality on long, complex

sentences like the ones giving rise to phrases that match the REVERB data.

6.1.1.3 PATTY

PATTY [Nakashole et al., 2012] is a resource that offers automatically extracted

relational expressions that appear in conjunction with particular entity types, or

express particular relations. For a repository of entity and relation types, PATTY

draws on annotated resources like DBpedia [Auer et al., 2007] and YAGO [Suchanek

et al., 2007]. PATTY further groups synonymous relational expressions together in

sets, which gives us an interesting point of comparison to PPDB.

We focus our analysis on the Wikipedia and New York Times-based sets of text

patterns PATTY contains. The two sets contain 350,569 and 86,982 sets of relational

expressions, respectively. PATTY’s extraction method frequently applied general-

ization operations that replace not semantically portent words with part-of-speech

tags to improve generalization. For instance won five awards may be generalized to

won NUM awards. In the synonym clustering, these generalizations are not usually

synchronous: won NUM awards might be grouped with won ADJ awards and won

awards. While this pattern greatly improves PATTYs coverage and applicability, it

results in non-paraphrastic pattern groupings that PPDB cannot represent. We there-
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PPDB Label Source Paraphrase

– also written songs for artists has collaborated with artists

including

– has produced artists like has played bass including

with

– also gueststarred on televi-

sion shows including

made guest appearances on

series including

– also taught for recently retired professor

emeritus prior to had taught

at

– became head was head at

VP/NP was established under was established by

VP/NP become involved in been involved with

Table 6.5: Examples of PATTY relation pattern pairs missing from (top) and included

in (bottom) PPDB.

fore limit our analysis to patterns with no generalization placeholders. This severely

limits the overlap set we consider: of the Wikipedia-based patterns, only 12,216 sets

have more than one member without any patternization applied. For the NYT-based

data the number of remaining multi-element pattern sets is 2,950. Nonetheless, many

of the remaining pattern sets are highly fertile. Expanded into possible paraphrase

pairs this still leaves us with 357,598 paraphrase pairs to compare against for the

Wikipedia set, and 44,920 for the NYT patterns.
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Still, the overlap between PATTY and PPDB based on this comparison is quite

slim: PPDB only covers 0.39% of the expanded Wikipedia pattern pairs, and 1.9% of

the NYT pattern pairs. Table 6.5 shows a few examples of patterns included in and

missing from PPDB. Upon examining the PATTY pattern pairs missing from PPDB,

we find that indeed the textual expressions are frequently not directly substitutable

paraphrases. In other cases, however, the pattern pairs are paraphrastic and highly

interesting, but (as similarly encountered in Section 6.1.1.2) too specific and complex

to be reliably extracted with just our pivot approach.

Our cursory examination suggests that the apt use of strong entity relationship

signals, as demonstrated by both Nakashole et al. [2012] and Fader et al. [2011]

can yield complex paraphrases that are hard to recover with purely syntactic and

pivoting-based methods. Extending at-scale paraphrase extraction methods to use

entity annotations over large text corpora as a source for paraphrase candidates makes

for an interesting avenue of future work.

6.1.2 Propbank Coverage

To estimate the usefulness of PPDB as a resource for tasks like semantic role

labeling or parsing, we analyze its coverage of Propbank predicates and predicate-

argument tuples [Kingsbury and Palmer, 2002]. We use the Penn Treebank [Marcus

et al., 1993] to map Propbank annotations to patterns which allow us to search

PPDB:Eng for paraphrases that match the annotated predicate. Figure 6.2 illustrates
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expect

NNS VBP

NP

VP

the data

NP VP

S

to show

JJ

economistsfew ......

S

...

RelArg0 Arg1

Figure 6.2: To inspect our coverage, we use the Penn Treebank’s parses to map

from Propbank annotations to PPDB’s syntactic patterns. For the above annota-

tion predicate, we extract VBP → expect, which is matched by paraphrase rules

like VBP → expect | anticipate and VBP → expect | hypothesize. To search

for the entire relation, we replace the argument spans with syntactic nontermi-

nals. Here, we obtain S → NP expect S, for which PPDB has matching rules like

S → NP expect S | NP would hope S, and S → NP expect S | NP trust S. This

allows us to apply sophisticated paraphrases to the predicate while capturing its ar-

guments in a generalized fashion.

this mapping.

In order to quantify PPDB:Eng’s precision-recall tradeoff in this context, we per-

form a sweep over our collection, beginning with the full set of paraphrase pairs and

incrementally discarding the lowest-scoring ones. To guide our sweep, we use the

canonical score described in Section 6.2.

The top graph in Figure 6.3 shows PPDB’s coverage of predicates (e.g. VBP →
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expect) at the type level (i.e. counting over the set of distinct predicates that appear

in Propbank), as well as the token level (i.e. counting each predicate occurrence in the

corpus). We find that PPDB has a predicate type recall of up to 52% (which accounts

for 97.5% of the annotated predicates in Propbank). We can therefore conclude that,

while there is a substantial number of the predicate types not covered by PPDB:Eng,

they tend to be extremely rare. For practical applications (on data of domains similar

to Propbank), PPDB:Eng therefore appears to provide good coverage.

To gauge the quality of our paraphrases, we manually judged 1900 randomly

sampled predicate paraphrases on a scale of 1 to 5, 5 being the best. The bottom

graph in Figure 6.3 plots the resulting human score average against the sweep used

in the coverage experiment. It is clear that even with the simple weighing approach

we choose for our sweep, the PPDB scores show a clear correlation with human

judgements. Therefore they can be used to bias the collection towards greater recall

or higher precision.

We also keep track of average number of paraphrases per covered predicate type for

varying pruning levels, also shown in the top of Figure 6.3. When looking at the full

PPDB:Eng set, we average over 150 paraphrases per predicate. Naturally, as we cull

worse-scoring paraphrases from consideration, this number drops. However, the plots

demonstrate that even when using a demanding threshold for average human score,

we maintain good coverage of Propbank and a substantial number of paraphrases

per predicate type. For instance, when requiring an average human score of 3.5, we
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still cover 49.9% of predicate types, accounting for over 96% of predicate occurrences,

and average over 23 paraphrases per predicate. For an average score threshold of 4.0

this only slightly drops to a still-respectable 44.3% of types, 92.2% of tokens, and 8.8

paraphrases on average.

We further extend the experiment to full predicate-argument relations with up

to two arguments (e.g. S → NNS expect S). Here, we require that the syntactic

paraphrase rule cover the entire relation, with correctly labeled nonterminals for each

of the arguments. We limit ourselves to relations with two or less arguments, since

PPDB itself is limited to syntactic rules of arity 2. As shown in Figure 6.4, we

obtain a 27% type coverage rate that accounts for about 40% of tokens. As for the

predicate-only case, both coverage rates hold even as we prune the database down

to only contain high precision paraphrases. With the full PPDB:Eng set we achieve

about 60 paraphrases per predicate-argument expression. We still maintain around 10

paraphrases per predicate-argument expression and virtually undiminished coverage

at stricter pruning thresholds that retain only higher-quality paraphrases.

We can conclude that PPDB:Eng has a good coverage of the Propbank data

set, providing a rich diversity of high-quality paraphrases. This is indicative of the

resource’s usefulness in a wide variety of natural language processing work.
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[ADJP] ||| hard ||| pretty difficult ||| Abstract=0

Adjacent=0 CharCountDiff=12 CharLogCR=1.38629 ContainsX=0

GlueRule=0 Identity=0 Lex(e|f)=4.86514 Lex(f|e)=11.05531

Lexical=1 LogCount=0.69315 Monotonic=1 PhrasePenalty=1

RarityPenalty=0.00012 SourceTerminalsButNoTarget=0 SourceWords=1

TargetTerminalsButNoSource=0 TargetWords=2 UnalignedSource=0

UnalignedTarget=0 WordCountDiff=1 WordLenDiff=3.50000

WordLogCR=0.69315 p(LHS|e)=0 p(LHS|f)=1.84819 p(e|LHS)=15.47166

p(e|f)=10.47819 p(e|f,LHS)=8.36974 p(f|LHS)=8.42517

p(f|e)=1.58351 p(f|e,LHS)=1.32325 ||| 0-0 0-1

Table 6.6: An example line from the PPDB release files. The string “ ||| ” is used

as a field separator. Features and their values are given as a space-separated list of

key-value pairs. PPDB uses the features introduced in Chapters 4 and 5.
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6.2 Curating the PPDB Release

We release the paraphrase database as an SCFG in a gzipped text format, encoding

one paraphrase rule per line, along with the features extracted for it. Table 6.6 shows

an example line from PPDB. The fields, separated by “ ||| ” are:

1. The left-hand side (LHS) syntactic label of the paraphrase rule.

2. The source phrase, the expression being paraphrased. Following the terminology

of statistical machine translation, this side of the rule is denoted as f in the

feature names.

3. The target phrase, i.e. the paraphrase of the source. the target is referred to as

e in the feature names.

4. The features computed for the paraphrase rule, as a space-separated list of key-

value pairs. We use the conditional probability and utility features discussed in

Chapter 4, as well as the distributional scores introduced in Chapter 5.

5. The word alignment for the paraphrase rule, as a space-delimited list of zero-

indexed source-to-target pairs.

We recognize that our paraphrase collection can feel unwieldy large, especially for

Arabic, English, French, Chinese, Spanish, and Russian. We therefore divide the sets

into different sizes. These are named by size: S (small), M (medium), L (large), XL

(extra large), XXL (double extra large), and XXXL (Royale with cheese). Each step
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up in size is designed to roughly double the number of paraphrases across each type:

lexical, phrasal, and syntactic. The larger sizes subsume the smaller sizes.

Before partitioning, we sort the paraphrases according to a canonical score. This

helps to ensure that the higher quality paraphrases are included in the smaller sized

sets. The larger sized sets include these high precision paraphrases, but also contain

paraphrases that are not as high quality (but which do offer better coverage or higher

recall). The choice of which size to use will depend on the needs of a particular

application. The score used to sort PPDB is a lower-is-better cost. We compute it

heuristically as:

sppdb(e|f) = p(e|f) + p(f |e) + p(e|f,LHS ) + p(f |e,LHS )

+100 · RarityPenalty + 0.3 · p(LHS |e) + 0.3 · p(LHS |f). (6.1)

The selection of features and the values for their weights are chosen in an ad hoc

fashion, based on our intuitions about which features seem to be useful for sorting

higher quality paraphrases from lower quality paraphrases. A more principled ap-

proach would be to collect a set of judgments about the quality of a random sample

of the paraphrases, and then use linear regression to fit the weights to the human

judgments, for instance, in a similar fashion to [Malakasiotis and Androutsopoulos,

2011]. We leave that task to users of our resource. As we provide the full feature

set, users can re-sort the paraphrase database to fit native-speaker judgments or the

needs of a specific NLP task.

To distinguish between the multilingual variants of PPDB, we use language tags
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that are coded following ISO 639-2, using the terminology (“T”) code where applica-

ble.3 For instance, we refer to the English PPDB as PPDB:Eng, while the Spanish

and German PPDB versions are dubbed PPDB:Spa and PPDB:Deu, respectively. All

versions of PPDB are freely available online at paraphrase.org.

6.3 Data Sets Underlying the PPDB Re-

lease

Following the methods we introduced in the previous chapters, the English portion

of PPDB is derived by:

• Extracting lexical, phrasal, and syntactic paraphrases from large bilingual par-

allel corpora (with associated paraphrase probabilities). We rely on statistical

constituency parsers to generate syntactic parses for the English side of the

bitext. These parses are our basis for computing syntactic labels for our para-

phrases.

• Computing distributional similarity scores for each of the paraphrases using

monolingual data like the Google n-grams and the Annotated Gigaword [Brants

and Franz, 2006, ?]. corpus.

For the multilingual PPDB portions we rely solely on the bilingual data.

3For 21 languages, the ISO 639-2 standard lists two codes: the bibliographic (“B”) and terminology
(“T”) codes. We use the latter. The full list can be found at https://www.loc.gov/standards/

iso639-2.
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6.3.1 Bilingual Data

We obtain the paraphrases for both the English and the multilingual versions of

PPDB by pivoting through bilingual parallel corpora. The bitext collection we use

totals over 100 million sentence pairs between English and the various foreign lan-

guages. It combines several English-to-foreign data sets: Europarl v7 [Koehn, 2005],

consisting of bitexts for the 19 European languages, the 109 French-English corpus

[Callison-Burch et al., 2009], the Czech, German, Spanish and French portions of the

News Commentary data [Koehn and Schroeder, 2007], the United Nations French-

and Spanish-English parallel corpora [Eisele and Chen, 2010], the JRC Acquis corpus

[Steinberger et al., 2006], Chinese and Arabic newswire corpora used for the GALE

machine translation campaign,4 parallel Urdu-English data from the NIST transla-

tion task,5 the French portion of the OpenSubtitles corpus [Tiedemann, 2009], and

a collection of Spanish-English translation memories provided by TAUS.6 Table 6.7

shows a breakdown of the bitext sizes across the various languages, listing number

of parallel sentence pairs, English and foreign word counts, and the corpora that

contribute to the language’s portion in our data set.

The resulting composite parallel corpus has more than 106 million sentence pairs,

over 2 billion English words, and spans 23 pivot languages. To apply the pivoting

technique to this multilingual data, we treat the various pivot languages as a joint

4http://projects.ldc.upenn.edu/gale/data/Catalog.html
5LDC Catalog No. LDC2010T23
6http://www.translationautomation.com/
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Non-English language. This simplifying assumption allows us to share statistics across

the different languages and apply Equation 3.3 unaltered.

6.3.2 Monolingual Data

The bilingual pivoting approach anchors paraphrases that share an interpretation

because of a shared foreign phrase. Paraphrasing methods based on monolingual text

corpora, like DIRT [Lin and Pantel, 2001], measure the similarity of phrases based

on distributional similarity. This results in a range of different types of phrases,

including paraphrases, inference rules and antonyms. For instance, for thrown into

prison DIRT extracts good paraphrases like arrested, detained, and jailed. However,

it also extracts phrases that are temporarily or causally related like began the trial

of, cracked down on, interrogated, prosecuted and ordered the execution of, because

they have similar distributional properties. It can also contain distributionally re-

lated antonyms. Since bilingual pivoting rarely extracts these non-paraphrases, we

can use monolingual distributional similarity to re-rank paraphrases extracted from

bitexts (following Chan et al. [2011]) or incorporate a set of distributional similarity

scores as features in our log-linear model. For discontiguous paraphrase patterns we

introduce a novel method that decomposes the pattern into smaller aligned elements

and computes their distributional similarity [Ganitkevitch et al., 2012b].

Each similarity score relies on precomputed distributional signatures that describe

the contexts that a phrase occurs in. To describe a phrase e, we gather counts for a
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Language Sentence Pairs Foreign Words English Words Corpora

Arabic 9,542,054 205,508,319 204,862,233 GALE

Bulgarian 406,934 9,306,037 9,886,401 Europarl-v7

Chinese 11,097,351 229,364,807 244,690,254 GALE

Czech 596,189 12,285,430 14,277,300 Europarl-v7, News

Commentary

Dutch 1,997,775 49,533,217 50,661,711 Europarl-v7

Estonian 651,746 11,214,489 15,685,939 Europarl-v7

Finnish 1,924,942 32,330,289 47,526,505 Europarl-v7

French 52,004,519 932,475,412 821,546,279 Europarl-v7, 109

word parallel cor-

pus, JRC, News

Commentary, UN,

OpenSubtitles

German 1,720,573 39,301,114 41,212,173 Europarl-v7, News

Commentary

Greek 1,235,976 32,031,068 31,939,677 Europarl-v7

Hungarian 624,934 12,422,462 15,096,547 Europarl-v7

Italian 1,909,115 48,011,261 49,732,033 Europarl-v7

Latvian 637,599 11,957,078 15,412,186 Europarl-v7

Lithuanian 635,146 11,394,858 15,342,163 Europarl-v7

Polish 632,565 12,815,795 15,269,016 Europarl-v7

Portugese 1,960,407 49,961,396 49,283,373 Europarl-v7

Romanian 399,375 9,628,356 9,710,439 Europarl-v7

Russian7 2,376,138 40,765,979 43,273,593 CommonCrawl, Yan-

dex 1M corpus, News

Commentary

Slovak 640,715 15,442,442 12,942,700 Europarl-v7

Slovenian 623,490 12,525,860 15,021,689 Europarl-v7

Spanish 15,074,434 339,957,943 297,440,364 Europarl-v7, News

Commentary, TAUS,

UN

Swedish 1,862,234 45,767,032 41,602,279 Europarl-v7

Urdu 33,798 615,635 485,367 NIST

Table 6.7: The sizes of the bilingual training data portions that make up the composite

bitext PPDB is based on.
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set of contextual features for each occurrence of e in a corpus. Writing the context

vector for the i-th occurrence of e as ~se,i, we can aggregate over all occurrences of

e, resulting in a distributional signature for e, ~se =
∑

i ~se,i. Following the intuition

that phrases with similar meanings occur in similar contexts, we can then quantify

the goodness of e′ as a paraphrase of e by computing the cosine similarity between

their distributional signatures:

sim(e, e′) =
~se · ~se′
|~se||~se′ |

. (6.2)

A wide variety of features have been used to describe the distributional context

of a phrase. Rich, linguistically informed feature-sets that rely on dependency and

constituency parses, part-of-speech tags, or lemmatization have been proposed in

work such as by Church and Hanks [1991] and Lin and Pantel [2001]. For instance,

a phrase is described by the various syntactic relations such as: “what verbs have

this phrase as the subject?”, or “what adjectives modify this phrase?”. Other work

has used simpler n-gram features, e.g. “what words or bigrams have we seen to the

left of this phrase?”. A substantial body of work has focussed on using this type of

feature-set for a variety of purposes in NLP [Lapata and Keller, 2005, Bhagat and

Ravichandran, 2008, Lin et al., 2010, Van Durme and Lall, 2010].

For PPDB, we compute n-gram-based context signatures for the 200 million most

frequent phrases in the Google n-gram corpus [Brants and Franz, 2006, Lin et al.,

2010]. For each phrase we note the word to its immediate left and right. The extracted

context vectors are illustrated in Figure 6.5. We generate 256-bit signatures for the
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Google n-gram-based phrases.

We also extract richer linguistic signatures for 175 million phrases in the Anno-

tated Gigaword corpus [?]. Our features extend beyond those previously used in the

work by Ganitkevitch et al. [2012b]. They are:

• n-gram based features for words seen to the left and right of a phrase. Here, we

consider position-aware lexical, lemma-based, part-of-speech, and named entity

class unigram and bigram features, drawn from a three-word window to the

right and left of the phrase.

• Incoming and outgoing (wrt. the phrase) dependency link features, labeled with

the corresponding lexical item, lemmata and POS. These are generated for basic

Stanford dependencies, as well as for the collapsed and collapsed-propagated

variants.

• Syntactic features for any constituents governing the phrase, as well as for CCG-

style slashed constituent labels for the phrase.

Figure 6.6 illustrates the feature extraction for an example phrase. For PPDB, all

features collected on Annotated Gigaword are combined into a single 256-bit signa-

ture.
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6.4 Engineering Underlying the Paraphrase

Database

6.4.1 Efficient Paraphrase Extraction

Prior to the extraction of PPDB we have limited ourselves to fairly small source

corpora. The French-English portion of Europarl [Koehn, 2005] used in the previous

chapters, for instance, only counts 1.7 million sentence pairs. The initial paraphrase

extraction experiments on Europarl therefore were feasible with a simple pipeline

and ran on single machines. However, even with such a moderately proportioned

data set strict pruning quickly becomes necessary to control the computational cost

and intermediate output sizes.

In order to scale up to larger corpora, we need to more systematically exploit

parallelism, and ideally implement the extraction in a flexibly scalable framework

to adjust to increasing data size and fully exploit available computational resources.

The Hadoop framework offers a widely-used solution for this. Based on the Map-

Reduce paradigm [Dean and Ghemawat, 2008], Hadoop can be used for distributed

batch processing of large data sets. It has been successfully used for natural language

processing in both industry and academic environments [Lin and Dyer, 2010].

To implement pivot-based paraphrase extraction in Hadoop, we build on the

Joshua decoder’s Thrax toolkit [Weese et al., 2011]. Thrax implements the extrac-
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tion of hierarchical and syntactic SCFGs for translation in Hadoop. We present an

extended version of Thrax that implements distributed, Hadoop-based paraphrase

extraction of syntactic SCFGs via the pivoting approach [Ganitkevitch et al., 2012a].

Our toolkit is capable of extracting syntactically informed paraphrase grammars at a

large scale. We further present an optimized version of Thrax’s paraphrase extraction

that streamlines the entire toolkit [Post et al., 2013].

6.4.1.1 Pivot-Based Paraphrase Extraction in Map-Reduce

Pivot-based paraphrase extraction is a natural fit for the map-reduce paradigm.

We can divide the paraphrase extraction process into two steps: pivoting, and aggre-

gation. We outline the map-reduce implementation of our method on the example of

extracting English paraphrases from a French-English bitext. Initially, we simply run

the standard translation grammar extraction process that Thrax implements. From

there, now given a collection of syntactically labeled French-English translation rules

and their probability estimates, we begin the paraphrase extraction.

6.4.1.1.1 The Pivoting Step

This stage will start with the given translation SCFG, and seeks to look at all

English expressions that share a given French translation. The map-reduce frame-

work’s reduce step straightforwardly implements this: we define a key for each datum

(in this case: the translation rules), and Hadoop guarantees that all rules sharing
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the same key will be processed en bloc on a single worker machine. By defining the

reducer key to be the French source side of a translation rule plus the rule’s left-hand

side label, we achieve this effect. The group of rules is then processed by recombining

the various English translations into paraphrase rules and estimating their associated

paraphrase probabilities from the translation probabilities.

Due to the long tail of translations in unpruned translation grammars and the

combinatorial effect of pivoting, paraphrase grammars, and especially the intermedi-

ate output of the pivoting step can easily grow very large. We implement a simple

feature-level pruning approach that allows the user to specify upper or lower bounds

for any pivoted feature. If a paraphrase rule is not within these bounds, it is dis-

carded. Furthermore, knowing the paraphrase probability threshold we can pre-prune

the translation rules before recombination. The multiplicative estimation we use for

our paraphrase probabilities,

pf (e1|e2) ≈ p(e1|f)p(f |e2), (6.3)

guarantees that pf (e1|e2) ≤ p(f |e2) and pf (e1|e2) ≤ p(e1|f). We can therefore drop

weak translation rules early and achieve an additional reduction in processing load

without impacting the outcome of our pruning heuristic.

The output of the pivoting step is a list of paraphrase rules estimated from single

translation-pivot links. Since the same paraphrase rule can be obtained by pivoting

through different foreign phrases f , this list is highly likely to contain duplicates.
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6.4.1.1.2 The Aggregation Step

In the aggregation stage we combine all duplicate paraphrase rules that were

generated in the pivoting step and aggregate their probabilities to compute the final

paraphrase probability estimates. Here, the key is simply the entire paraphrase rule.

For the probability-based features we typically will, following Equation 3.3, sum over

the links. For other features we can define a different kind of aggregative behavior:

• For our estimate of the paraphrase rule’s rarity penalty we choose the min of

the individual links, and the max of the translation turtles.

As outlined in Chapter 3, the feature set we define for our paraphrase grammars

mirrors that of translation SCFGs. For every supported translation feature, Thrax

implements a corresponding pivoted feature for paraphrases. The pivoted features

are set up to be aware of the prerequisite translation features they are derived from.

This allows Thrax to automatically detect the needed translation features and spawn

the corresponding map-reduce passes to compute conditional probabilities before the

pivoting stage takes place. In addition to features useful for translation, Thrax also

implements a number of features geared towards text-to-text generation tasks such

as sentence compression or text simplification.

The Hadoop-based implementation allows us to easily scale up paraphrase gram-

mar extraction to larger corpora. Table 6.8 gives a few examples of large paraphrase

grammars extracted from WMT training data. With appropriate pruning settings,
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Source Bitext Sentences Words Pruning Rules

Fr – En 1.6M 45M p(e1|e2), p(e2|e1) > 0.001 49M

{Da + Sv + Cs + De + Es + Fr} – En 9.5M 100M
p(e1|e2), p(e2|e1) > 0.02 31M

p(e1|e2), p(e2|e1) > 0.001 91M

Table 6.8: Large paraphrase grammars extracted from EuroParl data using Thrax.

The sentence and word counts refer to the English side of the bitexts used.

we are able to obtain paraphrase grammars estimated over bitexts with more than

100 million words. An additional benefit is that Hadoop-based toolkits like Thrax

can be easily deployed on arbitrarily large on-demand clusters provided by platforms

like Amazon Web Services.

6.4.1.2 Compact Map-Reduce Representations for Grammar

Extraction

The Hadoop-based implementation of paraphrase and translation grammar ex-

traction in Thrax enables us to process bilingual corpora on the order of 100 million

words. Beyond that, however, we find that the extractions generate a volume of inter-

mediate data that quickly grows to outpace our computing cluster’s resources. This

problem is mainly due to the toolkit’s verbose, naively string-based data structures.

We therefore implemented a full overhaul of Thrax for its 2.0 release [Post et al.,

2013]. The core of Thrax 2.0 is a newly optimized data representation. In a first dis-

tributed map-reduce pass over the bitext, we collect a vocabulary that then enables us
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Cs-En Fr-En De-En Es-En

Rules 112M 357M 202M 380M

Space Time Space Time Space Time Space Time

Thrax 1.0 120GB 112 min 364GB 369 min 211GB 203 min 413GB 397 min

Thrax 2.0 31GB 25 min 101GB 81 min 56GB 44 min 108GB 84 min

Difference -74.1% -77.7% -72.3% -78.0% -73.5% -78.3% -73.8% -78.8%

Table 6.9: Comparing Hadoop’s intermediate disk space use and extraction time on

a selection of Europarl v.7 Hiero grammar extractions. Disk space was measured at

its maximum, at the input of Thrax’s final grammar aggregation stage. Runtime was

measured on our Hadoop cluster with a capacity of 52 mappers and 26 reducers. On

average Thrax 2.0, bundled with Joshua 5.0, is up to 300% faster and more compact.

to encode the extracted rules and features in compact integer arrays. Replacing the

data structure underpinnings of Thrax’s map-reduce framework resulted in greater

compactness and speed, yielding a 300% increase in extraction speed and an equiv-

alent reduction in disk I/O. Table 6.9 shows time and memory use for translation

grammar extractions with Thrax 2.0 at differing pruning levels.

The gains achieved with this optimization enable us to extract a syntactically

labeled German-English SAMT-style translation grammar from a bitext of over 4

million sentence pairs in just over three hours. Furthermore, Thrax 2.0 is capable

of scaling to very large data sets, like the composite bitext used in the extraction of

our paraphrase collection PPDB [Ganitkevitch et al., 2013], which counts 106 million

sentence pairs and over 2 billion words on the English side.
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Further additions to Thrax 2.0 include a module focused on the extraction of com-

pact distributional signatures over large datasets. This distributional mode collects

contextual features for n-gram phrases, such as words occurring in a window around

the phrase, as well as dependency-based and syntactic features. We then compute

a bit signature from the resulting feature vector via a randomized locality-sensitive

hashing projection. This yields a compact representation of a phrase’s typical con-

text. To perform this projection Thrax relies on the Jerboa toolkit [Van Durme,

2012]. As part of the PPDB effort, Thrax has been used to extract rich distributional

signatures for 175 million 1-to-4-gram phrases from the Annotated Gigaword corpus

[?], a parsed and processed version of the English Gigaword, Fifth Edition [Parker

et al., 2011].

Thrax is distributed with Joshua and is also available as a separate download.8

6.4.2 A Memory-Efficient SCFG Representation Us-

ing Packed Tries

Both statistical machine translation systems, and paraphrasers tend to perform

better when the system is trained on larger amounts of bilingual parallel data. Using

tools such as Thrax, synchronous context-free grammars (SCFGs) are extracted and

their parameters estimated from the data.

8github.com/joshua-decoder/thrax
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To recapitulate, an SCFG is a collection of rules {ri} that take the form:

ri = Ci → 〈αi, γi,∼i, ~ϕi〉, (6.4)

where left-hand side Ci is a nonterminal symbol, the source side αi and the target

side γi are sequences of both nonterminal and terminal symbols. Further, ∼i is a

one-to-one correspondence between the nonterminal symbols of αi and γi, and ~ϕi is a

vector of features quantifying the probability of αi translating to γi, as well as other

characteristics of the rule [Weese et al., 2011]. At decoding time, typical decoders

like Joshua load the grammar rules into memory in their entirety, and store them

in a trie data structure indexed by the rules’ source side. This allows the decoder

to efficiently look up rules that are applicable to a particular span of the (partially

translated) input.

As the size of the training corpus grows, so does the resulting translation gram-

mar. Using more diverse sets of nonterminal labels – which can significantly improve

translation performance – further aggravates this problem. As a consequence, the

space requirements for storing the grammar in memory during decoding quickly grow

impractical. In some cases grammars may become too large to fit into the memory

on a single machine.

As an alternative to the commonly used trie structures based on hash maps, we

propose a packed trie representation for SCFGs. The approach we take is similar to

work on efficiently storing large phrase tables by Zens and Ney [2007], and language

models by Heafield [2011] as well as Pauls and Klein [2011].
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6.4.2.1 Packed Synchronous Tries

For our grammar representation, we break the SCFG up into three distinct struc-

tures. As Figure 6.7 indicates, we store the grammar rules’ source sides {αi}, target

sides {γi}, and feature data {~ϕi} in separate formats of their own. Each of the

structures is packed into a flat array, and can thus be quickly read into memory.

All terminal and nonterminal symbols in the grammar are mapped to integer sym-

bol identifiers using a globally accessible vocabulary map. We will now describe the

implementation details for each representation and their interactions in turn.

6.4.2.1.1 Source-Side Trie

The source-side trie (or source trie) is designed to facilitate efficient lookup of

grammar rules by source side, and to allow us to completely specify a matching set

of rule with a single integer index into the trie. We store the source sides {αi} of

a grammar in a downward-linking trie, i.e. each trie node maintains a record of its

children. The trie is packed into an array of 32-bit integers. Figure 6.7 illustrates

the composition of a node in the source-side trie. All information regarding the node

is stored in a contiguous block of integers, and decomposes into two parts: a linking

block and a rule block.

The linking block stores the links to the child trie nodes. It consists of an integer

n, the number of children, and n blocks of two integers each, containing the symbol id

aj leading to the child and the child node’s address sj (as an index into the source-side
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array). The children in the link block are sorted by symbol id, allowing for a lookup

via binary or interpolation search.

The rule block stores all information necessary to reconstruct the rules that share

the source side that led to the current source trie node. It stores the number of rules,

m, and then a tuple of three integers for each of the m rules: we store the symbol id

of the left-hand side, an index into the target-side trie and a data block id. The rules

in the data block are initially in an arbitrary order, but are sorted by application cost

upon loading.

6.4.2.1.2 Target-Side Trie

The target-side trie (or target trie) is designed to enable us to uniquely identify

a target side γi with a single pointer into the trie, as well as to exploit redundancies

in the target side string. Like the source trie, it is stored as an array of integers.

However, the target trie is a reversed, or upward-linking trie: a trie node retains a

link to its parent, as well as the symbol id labeling said link.

As illustrated in Figure 6.7, the target trie is accessed by reading an array index

from the source trie, pointing to a trie node at depth d. We then follow the parent

links to the trie root, accumulating target side symbols gj into a target side string gd1

as we go along. In order to match this traversal, the target strings are entered into

the trie in reverse order, i.e. last word first. In order to determine d from a pointer

into the target trie, we maintain an offset table in which we keep track of where each
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new trie level begins in the array. By first searching the offset table, we can determine

d, and thus know how much space to allocate for the complete target side string.

To further benefit from the overlap there may be among the target sides in the

grammar, we drop the nonterminal labels from the target string prior to inserting

them into the trie. For richly labeled grammars, this collapses all lexically identical

target sides that share the same nonterminal reordering behavior, but vary in nonter-

minal labels into a single path in the trie. Since the nonterminal labels are retained

in the rules’ source sides, we do not lose any information by doing this.

6.4.2.1.3 Features and Other Data

We designed the data format for the grammar rules’ feature values to be easily

extended to include other information that we may want to attach to a rule, such as

word alignments, or locations of occurrences in the training data. In order to that,

each rule ri has a unique block id bi associated with it. This block id identifies the

information associated with the rule in every attached data store. All data stores

are implemented as memory-mapped byte buffers that are only loaded into memory

when actually requested by the decoder. The format for the feature data is detailed

in the following.

The rules’ feature values are stored as sparse features in contiguous blocks of

variable length in a byte buffer. As shown in Figure 6.7, a lookup table is used to

map the bi to the index of the block in the buffer. Each block is structured as follows:
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a single integer, n, for the number of features, followed by n feature entries. Each

feature entry is led by an integer for the feature id fj, and followed by a field of

variable length for the feature value vj. The size of the value is determined by the

type of the feature. Joshua maintains a quantization configuration which maps each

feature id to a type handler or quantizer. After reading a feature id from the byte

buffer, we retrieve the responsible quantizer and use it to read the value from the

byte buffer.

Joshua’s packed grammar format supports Java’s standard primitive types, as

well as an 8-bit quantizer. We chose 8 bit as a compromise between compression,

value decoding speed and translation performance [Federico and Bertoldi, 2006]. Our

quantization approach follows Federico and Bertoldi [2006] and Heafield [2011] in par-

titioning the value histogram into 256 equal-sized buckets. We quantize by mapping

each feature value onto the weighted average of its bucket. Joshua allows for an easily

per-feature specification of type. Quantizers can be share statistics across multiple

features with similar value distributions.

6.4.2.2 Decoding Performance

We assess the packed grammar representation’s memory efficiency and impact

on the decoding speed on the WMT12 French-English task. Table 6.10 shows a

comparison of the memory needed to store our WMT12 French-English grammars

at runtime. We can observe a substantial decrease in memory consumption for both
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Grammar Format Memory

Hiero (43M rules)
Baseline 13.6G

Packed 1.8G

Syntax (200M rules)
Baseline 99.5G

Packed 9.8G

Packed 8-bit 5.8G

Table 6.10: Decoding-time memory use for the packed grammar versus the standard

grammar format. Even without lossy quantization the packed grammar representa-

tion yields significant savings in memory consumption. Adding 8-bit quantization for

the real-valued features in the grammar reduces even large syntactic grammars to a

manageable size.

Hiero-style grammars and the much larger syntactically annotated grammars. Even

without any feature value quantization, the packed format achieves an 80% reduction

in space requirements. Adding 8-bit quantization for the log-probability features

yields even smaller grammar sizes, in this case a reduction of over 94%.

In order to avoid costly repeated retrievals of individual feature values of rules, we

compute and cache the stateless application cost for each grammar rule at grammar

loading time. This, alongside with a lazy approach to rule lookup allows us to largely

avoid losses in decoding speed.

Figure shows a translation progress graph for the WMT12 French-English devel-

opment set. We graph number of sentences translated over time – the first portion of

the graph represents the time it takes to load the translation and language models.
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Grammar Peak Memory (GB) Loading Time (s) Decoding Time (s) Total Time

PPDB Baseline 295.9 10,920 2081 13001

PPDB Packed 18.8 8 2170 2442

Difference -93.6% -99.9% +4.3% -81.2%

Table 6.11: Using PPDB:Eng to decode our sentence compression test set (1000

sentences). The packed representation provides a staggering improvement over the

unpacked, in both memory use and time taken for the decoding run.

Both systems load a Hiero-style grammar with 43 million rules, and use 16 threads

for parallel decoding. The initial loading time for the packed grammar representation

is dramatically shorter than that for the baseline setup (a total of 176 seconds for

loading and sorting the grammar, versus 1897 for the standard format). Even though

decoding speed is slightly slower with the packed grammars (an average of 5.3 seconds

per sentence versus 4.2 for the baseline), the effective translation speed is more than

twice that of the baseline (1004 seconds to complete decoding the 2489 sentences,

versus 2551 seconds with the standard setup).

We repeat a similar experiment with PPDB:Eng, using the entire, full-sized XXXL

version to paraphrase a set of 1000 sentences. The PPDB grammar has over 169

million paraphrase rules. We decode with 4 concurrent threads, using the Joshua

Decoder. Key figures of the comparison are summarized in Table 6.11. When used

with in the standard text-based storage format and read into the hash-based trie, the

model peaks at over 295GB of memory. This figure encompasses the memory used
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for grammar storage, and up to 4 decoding charts. The loading of the grammar from

local hard drive storage takes just over three hours. The packed version lazily loads

near instantly at 8 seconds, and at peak usage takes up just 18.8 GB of RAM. This

corresponds to a 93.6% reduction in memory use, and a 99.9% reduction in loading

time.

The substantial differences are due to a number of factors that go beyond the

more compact, memory-friendly nature of the packed trie structure. For one, the

packed representation does not in fact load the entirety of the grammar into memory

upon startup. Only the source and target tries are loaded fully, the feature data on

the other hand is accessed only on-demand. In addition to that, Joshua 5.0 uses an

amortized sorting strategy. Previously the decoder would traverse the entire grammar

upon loading to compute rule cost and sort the rules at each trie node. Joshua 5.0

adopts a lazy approach to grammar sorting. Upon accessing a trie node, we check

if it has been visited before. Only if it is untouched do we compute the rule cost

and perform a sort. These two optimizations combined allow Joshua 5.0 to jump

into text generation near instantaneously, when compared to the standard approach.

Figure 6.10 illustrates this in a progress graph, with the packed PPDB:Eng curve

rising almost immediately. Figure 6.9 visualizes the memory use over time for the

baseline representation and the packed PPDB. Here, we can see the memory use

slowly growing and plateauing as the decoder on-demand loads the relevant portions

of the grammar.

171



CHAPTER 6. CONSTRUCTING THE PARAPHRASE DATABASE

6.5 The Multilingual Paraphrase Database

There have been several prior efforts to extract non-English paraphrases for use

in natural language processing applications. For example, paraphrase tables across

five different languages were extracted as a part of METEOR-NEXT, a multilingual

extension of the METEOR metric for machine translation evaluation [Denkowski and

Lavie, 2010]. Similarly, automatically extracted paraphrases in Arabic and Chinese

have been used to improve English-Arabic [Denkowski et al., 2010] and Chinese-

Japanese [Zhang and Yamamoto, 2002, 2005] machine translation systems. Other

individualized efforts have sought to create paraphrase resources for single languages,

like Mizukami et al. [2014]’s efforts to create a Japanese version of PPDB. While

achieving good results, many of the paraphrase collections used in these efforts have

remained unavailable to the community.

While most work in natural language processing is still focussed on English, efforts

to extend NLP systems’ coverage and functionality to other languages are quickly

becoming ubiquitous. As with English-language systems, we strongly believe that

the availability of paraphrase resources can significantly help with the development

of multilingual NLP solutions. Paraphrase collections can easily provide a boost in

coverage for the input and output of an NLP system. Beyond that, paraphrases can

form a basis for more complex work on tasks like entailment recognition or natural

language understanding. The multilingual release of PPDB aims to provide a first

iteration of such a paraphrase resource.
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6.5.1 Pivoting over English

Pivoting over foreign language phrases for paraphrase extraction is language-

independent. We can apply the exact same procedure to extract German, French, or

Arabic paraphrases. In fact, as we have seen on the example of PPDB:Eng, para-

phrases need not be extracted from a single pivot language. They can be obtained

from multiple bitexts where the language of interest is contained on one side of the

parallel corpus. Thus, instead of extracting German paraphrases just by pivoting

over English, we could extract additional paraphrases from a German-French or a

German-Spanish bitext. Although it is easy to construct parallel corpora for all pairs

of languages in the European Union using existing resources like the Europarl parallel

corpus [Koehn, 2005] or the JRC corpus [Steinberger et al., 2006], we only pivot over

English for this release of the multilingual PPDB.

The reason that we limit ourselves to pivoting over English, is that we extend

the bilingual pivoting method to incorporate syntactic information. Abundant NLP

resources, such as statistical parsers, are available for English. By using annotations

from the English side of the bitext, we are able to create syntactic paraphrases for

languages for which we do not have syntactic parsers.

Syntactic information can be incorporated into the paraphrase process in a variety

of ways. Callison-Burch [2008] showed that constraining paraphrases to be the same

syntactic type as the original phrase significantly improved their quality. Ganitkevitch

et al. [2011] showed how paraphrases could be represented using synchronous context
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free grammars (SCFGs).

We project the English syntax onto the foreign sentence via the automatic word

alignments. The notion of projecting syntax across aligned bitexts has been explored

for bootstrapping parsers [Hwa et al., 2005]. The method that we use to find the

syntactic labels for the foreign phrases is described in Zollmann and Venugopal [2006]

and Weese et al. [2011]. Only the English side of each parallel corpus needs to be

parsed, which we do with the Berkeley Parser [Petrov et al., 2006].

As with the English PPDB, each of the paraphrase databases in our multilingual

set comes in the form of a syntactically labeled SCFG. Again, we distinguish three

types of paraphrases:

• Lexical paraphrases – single word paraphrases or synonyms.

• Phrasal paraphrases – multi-word paraphrases, including cases where a single

word maps onto a multi-word paraphrase and many-to-many paraphrases.

• Syntactic paraphrases – paraphrase rules that contain a placeholder symbol.

These allow any paraphrase that matches that syntactic types of placeholder

symbol to be substituted into that site.

The labels for the left-hand sides of our paraphrase rules and for the nonterminals in

the syntactic paraphrase pairs are obtained by projecting the English parses across

the bilingual word alignments. Figure 6.11 illustrates this projection on the example

of a phrasal paraphrase being generalized into a syntactic paraphrases. This is done
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by replacing words and phrases that are themselves paraphrases with appropriate

nonterminal symbols.

The syntactic paraphrases can be used in conjunction with our Joshua decoder

[Post et al., 2013] for monolingual text-to-text (T2T) generation applications, like

sentence compression [Ganitkevitch et al., 2011, Napoles et al., 2011b]. This opens

up the possibilities of developing new natural language generation (NLG) applications

for the languages in our PPDB release.

6.5.2 Resource Size

We extract significantly different numbers of paraphrases for each the 23 non-

English languages. The number of paraphrases is roughly proportional to the size of

the bitext that was used to extract the paraphrases for that language. Figure 6.12

sorts the languages in order of how many paraphrases we extract for them. Unsurpris-

ingly, we observe a large difference in size between the French, Arabic, and Chinese

paraphrase sets, and the others. This is due to the comparatively large bilingual

corpora that we used for these three languages, versus the smaller bitexts that were

available for the other languages. Table 6.12 gives a detailed breakdown of the num-

ber of each kind of paraphrases (lexical, phrasal, syntactic) that we have extracted

for each language.
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Language Code
Number of Paraphrases

Lexical Phrasal Syntactic Total

Arabic Ara 119.7M 45.1M 20.1M 185.7M

Bulgarian Bul 1.3M 1.4M 1.2M 3.9M

Czech Ces 7.3M 2.7M 2.6 12.1M

German Deu 7.9M 15.4M 4.9M 28.3M

Greek Ell 5.4M 9.4M 7.4M 22.3M

Estonian Est 7.9M 1.0M 0.4M 9.2M

English Eng 7.6M 68.4M 93.6M 169.6M

Finnish Fin 41.4M 4.9M 2.3M 48.6M

French Fra 78.8M 254.2M 170.5M 503.5M

Hungarian Hun 3.8M 1.3M 0.2M 5.3M

Italian Ita 8.2M 17.9M 9.7M 35.8M

Lithuanian Lit 8.7M 1.5M 0.8M 11.0M

Latvian Lav 5.5M 1.4M 1.0M 7.9M

Dutch Nld 6.1M 15.3M 4.5M 25.9M

Polish Pol 6.5M 2.2M 1.4M 10.1M

Portuguese Por 7.0M 17.0M 9.0M 33.0M

Romanian Ron 1.5M 1.8M 1.1M 4.5M

Russian Rus 81M 46M 16M 144.4M

Slovak Slk 4.8M 1.8M 1.7M 8.2M

Slovenian Slv 3.6M 1.6M 1.4M 6.7M

Spanish Spa 33.1M 73.2M 55.3M 161.6M

Swedish Swe 6.2M 10.3M 10.3M 26.8M

Urdu Urd 32.6k 22.4k 1k 56.0k

Chinese Zho 52.5M 46.0M 8.9M 107.4M

Table 6.12: An overview over the sizes of the multilingual PPDB. The number of

extracted paraphrases varies by language, depending on the amount of data available

as well as the languages morphological richness. The language names are coded

following ISO 639-2.
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6.5.3 Morphological Variants as Paraphrases

Many of the languages covered by our resource are more morphologically complex

than English. Since we are using English pivot phrases and English syntactic labels,

the pivoting approach tends to group a variety of morphological variants of a foreign

word into the same paraphrase cluster. For example, French adjectives inflect for

gender and number, but English adjectives do not. Therefore, the French words grand,

grande, grands and grandes would all share the English translation tall, and would

therefore all be grouped together as paraphrases of each other. It is unclear whether

this grouping is desirable or not, and the answer may depend on the downstream

task. It is clear that there are distinctions that are made in the French language that

our paraphrasing method currently does not make. All of the morphological variants

of grand are given the label JJ, since it is projected from the English parse. If we had

a French parser that produced distinct labels for each of the morphological variants,

they would be separated from each other.

This effect is also observable in verbs. Other languages often have more inflectional

variation than English does. Whereas English verbs only distinguish between past

versus present tense and 3rd person singular versus non-3rd person singular, other

languages exhibit more forms. For instance, the English verb go, aligns to a variety

of present forms of the French irregular verb aller. The high-ranking paraphrases of

vais, the first person singular form of aller, are all other forms of the verb. These are

shown in Table 6.13. Similar effects can be observed across other verb paraphrases,
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Tag Phrase Paraphrases

VB

vais va, vas, irai, vont, allons, ira, allez, irons

vas va, vont, allez, vais, allons, aller

vont vas, va, allons, allez, vais, aller

VBD allais allait, alliez, allaient, allions

VB denke denken, denkt

Table 6.13: Top paraphrases extracted for forms of the French aller and the German

denken. The English part-of-speech label we use preserves the unifying morphological

characteristic quite well: present tense forms of aller dominate the ranking for the

VB label (which best corresponds with present tense usage in English). Similarly,

imperfect forms are reliably captured for the past tense VBD tag.

both in French and other languages. The minimal distinction in the Penn Treebank

tags between past tense verbs (VBD), base form verbs (VB), and present tense verbs

(VBN/VBP) partitions the foreign verbs to some extent. But clearly there is a

semantic distinction between verb forms that are marked for person and number

which pivoting constrained by English syntactic labels fails to make.

In fact, the interaction between our bilingual pivoting method and the impover-

ished morphologic system of English opens up avenues for improving the quality of the

multilingual paraphrases. Our method makes distinctions between paraphrases when

they have different syntactic labels. This does a good job of separating out things

that make a sense distinction based on part of speech (like squash which paraphrases

as racquetball as a noun and crush as a verb). It also limits different paraphrases
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based on which form the original phrase takes. For instance, divide can paraphrase

as fracture or split in both noun and verb forms, but it can only paraphrase as gap

when the original phrase is a noun. Currently we use Penn Treebank tags, which are

rather English-centric. This tag set could be replaced or refined to make finer-grained

distinctions that are present in the foreign language. Refined, language-specific tag

sets would do a better job at partitioning paraphrase sets that should be distinct.

Overall, the multilingual PPDB is a first-effort resource that breaks new ground in

NLP. For most of the languages covered, PPDB is the first freely available paraphrase

resource, providing a boost to NLP efforts in less common languages. Simultaneously,

it shows up a number of interesting avenues for improvement in coverage, syntactic

granularity, and semantic precision.

6.6 Conclusion

In this chapter we presented the 1.0 release of the paraphrase database PPDB,

a large-scale collection of syntactically labeled paraphrases in English and 23 more

languages. We have illustrated the resource’s utility with an analysis of its coverage

of Propbank predicates and relations. Our results suggest that PPDB will be useful

in a variety of NLP applications.

We also elaborated on the engineering-heavy improvements to our extraction and

decoding toolkit that were necessary to create and handle a resource the size of
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PPDB. Both in extraction and in decoding we presented multi-fold gains in memory

use and computation time, significantly improving over contemporary state-of-the-art

techniques in the field.

One focal point for future releases of PPDB may be expanding the paraphrase

collection’s coverage with regard to both data size and languages supported. For one,

larger parallel corpora can be included in the extraction, taking advantage of improved

bitext mining techniques [Smith et al., 2013]. Especially for the multilingual release

incorporating other pivot languages in addition to English could yield improvements

in coverage. These expansions have the potential to significantly improve the coverage

and quality of our paraphrase sets, especially for the lower-resource languages.

Furthermore, as we have shown in Chapter 5, paraphrase scoring can be im-

proved by incorporating additional sources of information. Since large amounts of

monolingual data are readily available, we expect a significant improvement in para-

phrase quality by re-ranking our non-English paraphrases, especially for languages for

which we only have small amounts of bitexts, such as Bulgarian, Romanian, or Urdu.

PPDB could also be improved by incorporating second-degree information present

in the data, like domain or topic signals. Additional points of refinement may be a

better handling of phrase ambiguity, and accounting for the reliability of, and effects

specific to, individual pivot languages.

Finally, PPDB offers a starting point for the exploration and extension towards as-

pects of related large-scale resources such as lexical-semantic hierarchies [Snow et al.,
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2006], textual inference rules [Berant et al., 2011], relational patterns [Nakashole

et al., 2012], and (lexical) conceptual networks [Navigli and Ponzetto, 2012]. Ex-

panding from a plain collection of paraphrases to a more precisely semantically an-

notated resource would further increase the usefulness and importance of PPDB for

natural language processing. Our aim is for PPDB to be a continuously updated and

improving resource.

181



CHAPTER 6. CONSTRUCTING THE PARAPHRASE DATABASE

��

��

��

��� ��� ��� ��� ��� �� ��

�
�
�
��
�
�
�
��

�����������������

����������

��

����

��

��� ��� ��� ��� ��� �� ��
��

���

����

����

�
�
�
�
��
�
�

�
�
��
��
�
�
�

������������������������
���������������������

�����������������������

Figure 6.3: An illustration of PPDB:Eng’s coverage of the manually annotated Prop-

bank predicate phrases (top), and the average human judgment score (bottom) for

varying pruning thresholds. The solid curve indicates the coverage on tokens, i.e. it

shows what proportion of the predicates occurring in the Propbank corpus we can

paraphrase. We also show coverage on types (dotted line), reflecting the proportion of

the distinct predicates paraphrased, regardless of number of occurrences. The dashed

line shows the average number of paraphrases per covered type at the given pruning

level.
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Figure 6.4: PPDB:Eng’s coverage of full Propbank relations with up to two argu-

ments. Here we consider rules that paraphrase the entire predicate-argument expres-

sion, matching the syntactic labels for both the entire predicate span, as well as those

of each argument. The solid curve indicates the coverage on tokens, i.e. it shows what

proportion of the relations occurring in the Propbank corpus we can paraphrase. We

also show coverage on relation types (dotted line), reflecting the proportion of the

distinct predicate-argument expressions paraphrased, regardless of its number of oc-

currences. The dashed line shows the average number of paraphrases per covered

relation type at the given pruning level.
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Figure 6.5: Features extracted for the phrase the long term from the n-gram cor-

pus. The n-gram corpus records the long-term as preceded by revise (43 times),

and followed by plans (97 times). We add corresponding features to the phrase’s

distributional signature retaining the counts of the original n-grams.
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Figure 6.6: Features extracted for the phrase the long term from Annotated Gigaword.

Here, position-aware lexical and part-of-speech n-gram features, labeled dependency

links , and features reflecting the phrase’s CCG-style label NP/NN are included in

the context vector.
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Figure 6.7: An illustration of our packed grammar data structures. The source sides

of the grammar rules are stored in a packed trie. Each node may contain n children

and the symbols linking to them, and m entries for rules that share the same source

side. Each rule entry links to a node in the target-side trie, where the full target

string can be retrieved by walking up the trie until the root is reached. The rule

entries also contain a data block id, which identifies feature data attached to the rule.

The features are encoded according to a type/quantization specification and stored

as variable-length blocks of data in a byte buffer.
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Figure 6.8: A visualization of the loading and decoding speed on the WMT12 French-

English development set contrasting the packed grammar representation with the

standard format. Grammar loading for the packed grammar representation is sub-

stantially faster than that for the baseline setup. Even with a slightly slower decoding

speed (note the difference in the slopes) the packed grammar finishes in less than half

the time, compared to the standard format.
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Figure 6.9: Memory use when decoding with the PPDB:Eng XXXL, on four threads.

The packed version uses over an order of magnitude less memory.
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Figure 6.10: Decoding progress when decoding with the PPDB:Eng XXXL, on four

threads. The baseline grammar takes a long time to load, while the packed version

of PPDB is available near-instantly.
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Figure 6.11: In addition to extracting lexical and phrasal paraphrases, we also extract

syntactic paraphrases. These have nonterminal symbols that act as slots that can be

filled by other paraphrases that match that syntactic type. The syntactic labels are

drawn from parse trees of the English sentences in our bitexts.

# 
pa

ra
ph

ra
se

 p
ai

rs

1M

10M

100M

1000M

Fra Ara Eng Esp Rus Zho
Fin Ita Por Deu Swe Nld
Ell Ces Lit Pol Est Lav
Slk Slv Hun Ron Bul Urd

Figure 6.12: A visualization of the paraphrase collection size per language, measured

in millions of paraphrase pairs. Languages are in order of PPDB size.
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Chapter 7

Conclusion

A key thesis of this work is that high-quality paraphrases can be derived, at

scale, from commodity data when combined with scalable automatic annotation. We

furthermore stated that, when made readily available, as well as easy and compu-

tationally cheap to use, paraphrase resources can enable and drive progress in NLP

work.

7.1 Summary of Contributions

In Chapter 3 we have shown that using widely available bilingual parallel corpora

and open-source toolkits for parsing and alignment we can extract rich paraphrases.

We build on the notion that two English phrases that translate to a shard foreign

phrase likely mean the same thing. We expand that notion by incorporating linguistic
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generalization our method uses word alignment techniques from machine translation

to project syntactic annotations from English into a foreign language. By pivoting

over foreign language phrases with matching projected syntax, we can extract syntac-

tically annotated English paraphrases from bilingual data that have better precision

and generalization capabilities than previous methods. We show that the paraphrase

expressions our method yields can capture a variety of linguistically well-motivated

paraphrastic rewrites. Our results indicate that it is possible to extract high-quality

monolingual resources from relatively noisy commodity data sources like bilingual

parallel texts and automated annotation.

Chapter 4 demonstrated that our syntactic paraphrases can be successfully applied

to text-to-text rewriting tasks, in our case text compression. We use a light-weight

adaptation scheme that extends statistical machine translation machinery to learn to

produce task-targeted sentential paraphrase rewrites. To this end, we derive a small

sample of development data reflecting the goal of our task, enrich our paraphrases with

simple task-appropriate features, and adjust the objective function in our parameter

tuning step. Our results show that the resulting system produces results comparable

to custom-built contemporary text compression systems. This suggests that targeted

sentential rewriting build on high-quality paraphrase resources can provide a viable

approach to a wide variety of NLP problems.

In Chapter 5 we expanded our paraphrase quality estimation approach to include a

new signal source: monolingual text. We investigate the incorporation of monolingual
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distributional similarity signal into our pivot-based paraphrase extraction scheme.

Experiments with paraphrastic text-to-text generation tasks show that the added

distributional features do indeed carry orthogonal signal and improve our system’s

output quality. Comparing different distributional signals we find that even when

extracted over a (relatively) smaller corpus, similarity signals help more when they are

built on richer, linguistically motivated distributional feature sets based on automated

text annotation. We can conclude that combining different resource types and large-

scale text annotation can further improve the paraphrase quality of our approach.

We condensed these insights in the efforts presented in Chapter 6, scaling up

our paraphrase extraction approach to generate and make available the paraphrase

database PPDB. PPDB is the largest English paraphrase resource to date, counting

over 170 million paraphrase expressions. It was published to be used as a general-

purposed paraphrase resource, a basis for paraphrastic text rewriting work, as well

as a foundation for next-generation work in paraphrase extraction. Our work also

included a scaled-up toolkit for the extraction of paraphrase collections of this scale,

and their application to text-to-text generation. The existence of this machinery

made it easy to scale and adjust our paraphrase extraction scheme to other languages

by pivoting over English. This enabled the extension of of PPDB to 23 different

languages.
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7.1.1 Subsequent Work

As we compile this thesis several years after the publication of its research contri-

butions, we have an opportunity to gauge the work’s impact on and contribution to

the field of NLP. The paraphrase database PPDB, has remained quite widely cited

in NLP, even as the field at large has moved away from the statistical methods and

model we used to generate and apply PPDB, and on to neural models relying more

on embeddings and network architecture.

For instance, a number of contributions have focussed on using PPDB to improve

word embeddings trained for large corpora, sharpening them towards representations

better suited for tasks like synonymy detection [Wieting et al., 2015, Faruqui et al.,

2014, Yu and Dredze, 2014]. Other efforts have leveraged PPDB as a black-box source

of features for semantic parsing, entailment recognition, or monolingual alignment

[Wang et al., 2015, Bjerva et al., 2014, Yao et al., 2013].

7.2 Discussion and Future Directions

In this thesis we laid out a study at-scale paraphrase extraction from a variety

of data sources, and made the case for the use of paraphrases as a general-purpose

resource in NLP. Since the publication of the work underlying this thesis, the core

models driving current NLP research have shifted towards neural approaches. Yet,

our focus on data-centric, scalable paraphrase extraction, as well as the notion that
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it is helpful to encapsulate the variety and nuance of natural language in paraphrase

collections remain highly relevant.

In fact, the direction we took in applying our paraphrases to text-to-text gen-

eration tasks bears strong similarities to state-of-the-art neural NLP. Oftentimes, a

neural NLP system will structurally separate the language grounding (pre-existing

embeddings) from the task-specific architectures and learning. This closely mirrors

our adaptive approach to use general-purpose paraphrases for a specific task.

The prevalence of embeddings-based approaches to NLP opens up a swath of in-

teresting research directions. Encoding the semantics underlying an expression as a

point in a high-dimensional space instead of as a set of pair-wise relations to other

expressions allows for a vastly more scalable and flexible representation of paraphrase

resources. There exists a substantial body of work on word embeddings, both mono-

and multi-lingual. Similarly, an increasing amount of interest is devoted to the extrac-

tion of meaningful phrasal embeddings. We believe that this work can be extended to

reflect the insights garnered from this thesis: that using commodity linguistic annota-

tions over large datasets can improve the quality of extracted embeddings, especially

in the case of finding meaningful encoding multiword-phrases.

Of further interest to us is the representation of syntactic paraphrase rules, multi-

word expressions with slots that are syntactically (or otherwise meaningfully) labeled.

Frequently these expressions act not just as meaning-bearing portions of a text, but

also modulate the meaning of their arguments. We believe that it would be worthwhile
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to investigate a representation that takes advantage of the structured, grammatical

nature of language while retaining the expressive power of high-dimensional tensor

representations.

Generally, we believe that rebuilding a dataset like the paraphrase database as

an embeddings corpus would both an interesting, ongoing research problem and of

tremendous use for the NLP community.
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