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Abstract

In this work we adapt machine transla-
tion (MT) to grammatical error correction,
identifying how components of the statis-
tical MT pipeline can be modified for this
task and analyzing how each modification
impacts system performance. We evaluate
the contribution of each of these compo-
nents with standard evaluation metrics and
automatically characterize the morpholog-
ical and lexical transformations made in
system output. Our model rivals the cur-
rent state of the art using a fraction of the
training data.

1 Introduction

This work presents a systematic investigation for
automatic grammatical error correction (GEC) in-
spired by machine translation (MT). The task of
grammatical error correction can be viewed as
a noisy channel model, and therefore a MT ap-
proach makes sense, and has been applied to the
task since Brockett et al. (2006). Currently, the
best GEC systems all use machine translation in
some form, whether statistical MT (SMT) as a
component of a larger pipeline (Rozovskaya and
Roth, 2016) or neural MT (Yuan and Briscoe,
2016). These approaches make use of a great
deal of resources, and in this work we propose a
lighter-weight approach to GEC by methodically
examining different aspects of the SMT pipeline,
identifying and applying modifications tailored for
GEC, introducing artificial data, and evaluating
how each of these specializations contributes to
the overall performance.

Specifically, we demonstrate that

• Artificially generated rules improve perfor-
mance by nearly 10%.

• Custom features describing morphological
and lexical changes provide a small perfor-
mance gain.
• Tuning to a specialized GEC metric is

slightly better than tuning to a traditional MT
metric.
• Larger training data leads to better perfor-

mance, but there is no conclusive difference
between training on a clean corpus with min-
imal corrections and a noisy corpus with po-
tential sentence rewrites.

We have developed and will release a tool to au-
tomatically characterize the types of transforma-
tions made in a corrected text, which are used as
features in our model. The features identify gen-
eral changes such as insertions, substitutions, and
deletions, and the number of each of these opera-
tions by part of speech. Substitutions are further
classified by whether the substitution contains a
different inflected form of the original word, such
as change in verb tense or noun number; if substi-
tution has the same part of speech as the original;
and if it is a spelling correction. We additionally
use these features to analyze the outputs generated
by different systems and characterize their perfor-
mance with the types of transformations it makes
and how they compare to manually written correc-
tions in addition to automatic metric evaluation.

Our approach, Specialized Machine translation
for Error Correction (SMEC), represents a sin-
gle model that handles morphological changes,
spelling corrections, and phrasal substitutions, and
it rivals the performance of the state-of-the-art
neural MT system (Yuan and Briscoe, 2016),
which uses twice the amount of training data, most
of which is not publicly available. The analy-
sis provided in this work will help improve fu-
ture efforts in GEC, and can be used to inform ap-
proaches rooted in both neural and statistical MT.
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2 Related work

Earlier approaches to grammatical error correc-
tion developed rule-based systems or classifiers
targeting specific error types such as prepositions
or determiners, (e.g., Eeg-Olofsson and Knutsson,
2003; Tetreault and Chodorow, 2008; Rozovskaya
et al., 2014), and few approaches were rooted in
machine translation, though some exceptions ex-
ist (Brockett et al., 2006; Park and Levy, 2011,
e.g.,). The 2012 and 2013 shared tasks in GEC
both targeted only certain error types (Dale et al.,
2012; Ng et al., 2013), to which classification
was appropriately suited. However, the goal of
the 2014 CoNLL Shared Task was correcting all
28 types of grammatical errors, encouraging sev-
eral MT-based approaches to GEC, (e.g., Felice
et al., 2014; Junczys-Dowmunt and Grundkiewicz,
2014). Two of the best CoNLL 2014 systems
used MT as a black box, reranking output (Felice
et al., 2014), and customizing the tuning algorithm
and using lexical features (Junczys-Dowmunt and
Grundkiewicz, 2014). The other leading system
was classification-based and only targeted certain
error types (Rozovskaya et al., 2014). Perform-
ing less well, Wang et al. (2014) used factored
SMT, representing words as factored units to more
adeptly handle morphological changes. Shortly
after the shared task, a system combining classi-
fiers and SMT with no further customizations re-
ported better performance than all competing sys-
tems (Susanto et al., 2014)

The current leading GEC systems all use MT
in some form, including hybrid approaches that
use the output of error-type classifiers as MT in-
put (Rozovskaya and Roth, 2016) or include a
neural model of learner text as a feature in SMT
(Chollampatt et al., 2016); phrase-based MT with
sparse features tuned to a GEC metric (Junczys-
Dowmunt and Grundkiewicz, 2016); and neural
MT (Yuan and Briscoe, 2016). Three of these
model have been evaluated on a separate test cor-
pus and, while the PBMT system reported the
highest scores on the CoNLL-14 test set, it was
outperformed by the systems with neural compo-
nents on the new test set (Napoles et al., 2017).

2.1 GEC corpora

There are two broad categories of parallel data for
GEC. The first is error-coded text, in which an-
notators have coded spans of learner text contain-
ing an error, and which includes the NUS Cor-

pus of Learner English (NUCLE; 57k sentence
pairs) (Dahlmeier et al., 2013), the Cambridge
Learner Corpus (CLC; 1.9M pairs per Yuan and
Briscoe (2016)) (Nicholls, 2003), and a subset of
the CLC, the First Certificate in English (FCE;
34k pairs) (Yannakoudakis et al., 2011). MT sys-
tems are trained on parallel text, which can be
extracted from error-coded corpora by applying
the annotated corrections, resulting a clean cor-
pus with nearly-perfect word and sentence align-
ments.1 These corpora are small by MT train-
ing standards and constrained by the coding ap-
proach, leading to minimal changes that may re-
sult in ungrammatical or awkward-sounding text
(Sakaguchi et al., 2016).

The second class of GEC corpora are paral-
lel datasets, which contain the original text and
a corrected version of the text, without explic-
itly coded error corrections. These corpora need
to be aligned by sentences and tokens, and auto-
matic alignment introduces noise. However, these
datasets are cheaper to collect, significantly larger
than the error-coded corpora, and may contain
more extensive rewrites. Additionally, corrections
of sentences made without error coding are per-
ceived to be more grammatical. Two corpora of
this type are the Automatic Evaluation of Scien-
tific Writing corpus, with more than 1 million sen-
tences of scientific writing corrected by profes-
sional proofreaders (Daudaravicius et al., 2016),
and the Lang-8 Corpus of Learner English, which
contains 1 million sentence pairs scraped from an
online forum for language learners, which were
corrected by other members of the lang-8.com
online community (Tajiri et al., 2012). Twice that
many English sentence pairs can be extracted from
version 2 of the Lang-8 Learner Corpora (Tomoya
et al., 2011).

We will include both types of corpora in our ex-
periments in Section 4.

2.2 Evaluation

GEC systems are automatically evaluated by com-
paring their output on sentences that have been
manually annotated corpora. The Max-Match
metric (M2) is the most widely used, and calcu-
lates the F0.5 over phrasal edits (Dahlmeier and
Ng, 2012). Napoles et al. (2015) proposed a

1Alignment mistakes may occur when sentences are split
or joined, or when errors and corrections span multiple to-
kens, in which the automatic alignment within that span may
err.
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new metric, GLEU, which has stronger correlation
with human judgments. GLEU is based on BLEU
and therefore is well-suited for MT. It calculates
the n-gram overlap, rewarding n-grams that sys-
tems correctly changed and penalizing n-grams
that were incorrectly left unchanged. Unlike M2, it
does not require token-aligned input and therefore
is able to evaluate sentential rewrites instead of
minimal error spans. Since both metrics are com-
monly used, we will report the scores of both met-
rics in our results. A new test set for GEC was re-
cently released, JFLEG (Napoles et al., 2017), Un-
like the CoNLL 2014 test set, which is a part of the
NUCLE corpus, JFLEG contains fluency-based
edits instead of error-coded corrections. Like the
Lang-8 and AESW corpora, fluency edits allow
full sentence rewrites and do not constrain cor-
rections to be error coded, and humans perceive
sentences corrected with fluency edits to be more
grammatical than those corrected with error-coded
edits alone (Sakaguchi et al., 2016). Four leading
systems were evaluated on JFLEG, and the best
system by both automatic metric and human evalu-
ation is the neural MT system of Yuan and Briscoe
(2016) (henceforth referred to as YB16).

3 Customizing statistical machine
translation

Statistical MT contains various components, in-
cluding the training data, feature functions, and an
optimization metric. This section describes how
we customized each of these components.

3.1 Training data

A translation grammar is extracted from the train-
ing data, which is a large parallel corpus of un-
grammatical and corrected sentences. Each rule is
of the form

left-hand side (LHS)→ right-hand side (RHS)

and has a feature vector, the weights of which are
set to optimize an objective function, which in MT
is metric like BLEU. A limiting factor on MT-
based GEC is the available training data, which
is small when compared to the data available for
bilingual MT, which commonly uses 100s of thou-
sands or millions of aligned sentence pairs. We hy-
pothesize that artificially generating transforma-
tion rules may overcome the limit imposed by lack
of sufficiently large training data and improve per-
formance. Particularly, the prevalence of spelling

errors is amplified in sparse data due to the poten-
tially infinite possible misspellings and large num-
ber of OOVs. Previous work has approached this
issue by including spelling correction as a step in
a pipeline (Rozovskaya and Roth, 2016).

Our solution is to artificially generate grammar
rules for spelling corrections and morphological
changes. For each word in the input, we query
the Aspell dictionary with PyEnchant2 for spelling
suggestions and create new rules for each correc-
tion, e.g. publically→ public ally

publically→ publicly

Additionally, sparsity in morphological variations
may arise in datasets. Wang et al. (2014) ap-
proached this issue with factored MT, which trans-
lates at the sub-word level. Instead, we also gener-
ate artificial translation rules representing morpho-
logical transformations using RASP’s morpholog-
ical generator, morphg (Minnen et al., 2001). We
perform POS tagging with the Stanford POS tag-
ger (Toutanova et al., 2003) and create rules to
switch the plurality of nouns (e.g., singular ↔
plural). For verbs, we generate rules that change
that verb to every other inflected form, specifically
the base form, third-person singular, past tense,
past participle, and progressive tense (e.g., wake,
wakes, woke, woken, waking). Generated words
that did not appear in the PyEnchant dictionary
were excluded.

3.2 Features
Each grammar rule has scores assigned by several
feature functions ~ϕ = {ϕ1...ϕN} that are com-
bined in a log-linear model as that rule’s weight,
with parameters ~λ set during tuning.

w = −
N∑

i=1

λi logϕi

In SMT, these features typically include a phrase
penalty, lexical and phrase translation probabil-
ities, a language model probability, binary in-
dicators for purely lexical and monotonic rules,
and counters of unaligned words and rule length.
Previous work in other monolingual “translation”
tasks has achieved success in using features tai-
lored to that task, such as a measure of the rel-
ative lengths for sentence compression (Ganitke-
vitch et al., 2011) or lexical complexity for sen-
tence simplification (Xu et al., 2016). For GEC,

2https://pythonhosted.org/pyenchant/
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Junczys-Dowmunt and Grundkiewicz (2016) used
a large number of sparse features for a phrase-
based MT system that achieved state of the art per-
formance on the CoNLL-2014 test set. Unlike that
work, which uses a potentially infinite amount of
sparse features, we choose to use a discrete set of
feature functions that are informed by this task.
Our feature extraction relies on a variety of pre-
existing tools, including fast-align for word align-
ment (Dyer et al., 2013), trained over the parallel
FCE, Lang-8, and NUCLE corpora; PyEnchant for
detecting spelling changes; the Stanford POS tag-
ger; the RASP morphological analyzer, morpha
(Minnen et al., 2001); and the NLTK WordNet
lemmatizer (Bird et al., 2009).

Given a grammatical rule and an alignment be-
tween tokens on the LHS and RHS, we tag the to-
kens with their part of speech and label the lemma
and inflection of nouns and verbs with morpha
and the lemma of each adjective and adverb with
the WordNet lemmatizer. We then collect count-
based features for individual operations and rule-
level qualities. An operation is defined as a dele-
tion, insertion, or substitution of a pair of aligned
tokens (or a token aligned with ε). An aligned to-
ken pair is represented as (li, rj), where li is a to-
ken on the LHS at index i, and similarly rj for
the RHS. The operation features, below, are cal-
culated for each (un)aligned token and summed to
attain the value for a given rule.

• All operations
– CLASS-error(li) for deletions and sub-

stitutions
– CLASS-error(rj) for insertions

CLASS refers to the broad word class of a
token, such as noun or verb.
• Deletions

– is-deleted(li)
– TAG-deleted(li)

TAG is the PTB part-of-speech tag of a token
(e.g., NN, NNS, NNP, etc.),
• Insertions

– is-inserted(rj)
– TAG-inserted(rj)

• Substitutions
– is-substituted(rj)
– TAG-substituted(rj)
– TAG-substituted-with-TAG(li, rj)

Morphological features:
– inflection-change-same-lemma(li, rj)
– inflection-and-lemma-change(li, rj)

– lemma-change-same-inflection(li, rj)
Spelling features:

– not-in-dictionary(li)
– spelling-correction(li, rj)

Counts of spelling corrections are weighted
by the probability of rj in an English Giga-
word language model.

We also calculate the following rule-level features:

– character Levenshtein distance(LHS, RHS)
– token Levenshtein distance(LHS, RHS)

–
# tokens(RHS)
# tokens(LHS)

–
# characters(RHS)
# characters(LHS)

In total, we use 24 classes and 45 tags. The to-
tal number of features 2,214 but only 266 were
seen in training (due to unseen TAG-TAG sub-
stitutions). We additionally include 19 MT fea-
tures calculated during grammar extraction.3 Pre-
vious MT approaches to GEC, have included Lev-
enshtein distance as a feature for tuning (Felice
et al., 2014; Junczys-Dowmunt and Grundkiewicz,
2014, 2016), and Junczys-Dowmunt and Grund-
kiewicz (2016) also used counts of deletions, in-
sertions, and substitutions by word class. They ad-
ditionally had sparse features with counts of each
lexicalized operation, e.g. substitute(run, ran),
which we avoid by abstracting away from the lem-
mas and instead counting the operations by part
of speech and indicating if the lemmas matched or
differed for substitutions. An example rule with its
feature values is found in Table 1. For artificially
generated rules, the MT features are all assigned
a 0-value rather than estimating what that value
should be, since the artificial rules are unseen in
the training data.

3.3 Metric
The decoder identifies the most probable deriva-
tion of an input sentence from the translation
grammar. Derivations are scored by a combination
of a language model score and weighted feature
functions, and the weights are optimized to a spe-
cific metric during the tuning phase. Recent work
has shown that MT metrics like BLEU are not suf-
ficient for evaluating GEC (Grundkiewicz et al.,
2015; Napoles et al., 2015) or tuning MT systems
for GEC (Junczys-Dowmunt and Grundkiewicz,

3More details about the features can be found at https:
//github.com/cnap/smt-for-gec.
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Rule
argued that→ may argue that

Alignment
(ε, may), (argued, argue), (that, that)

Feature Value
Verb error 2
Substituted 1
Inserted 1
MD inserted 1
VB is substituted 1
VBD substituted with VB 1
Inflection change, same lemma 1
Token LD 2
Character LD 5

Table 1: An example rule from our grammar and
the non-zero feature values from Section 3.2.

2016). Fundamentally, MT metrics do not work
for GEC because the output is usually very sim-
ilar to the input, and therefore the input already
has a high metric score. To address this issue, we
tune to GLEU, which was specifically designed
for evaluating GEC output. We chose GLEU in-
stead of M2 because the latter requires a token
alignment between the input, output, and gold-
standard references, and assumes only minimal,
non-overlapping changes have been made. GLEU,
on the other hand, measures n-gram overlap and
therefore is better equipped to handle movement
and changes to larger spans of text.

4 Experiments

For our experiments, we use the Joshua 6 toolkit
(Post et al., 2015). Tokenization is done with
Joshua and token-level alignment with fast-align
(Dyer et al., 2013). All text is lowercased, and we
use a simple algorithm to recase the output (Table
2). We extract a hierarchical phrase-based transla-
tion model with Thrax (Weese et al., 2011) and
perform parameter tuning with pairwise ranked
optimization in Joshua. Our training data is from
the Lang-8 corpus (Tomoya et al., 2011), which
contains 1 million parallel sentences, and gram-
mar is extracted from the 563k sentence pairs that
contain corrections. Systems are tuned to the
JFLEG tuning set (751 sentences) and evaluated
on the JFLEG test set (747 sentences). We use an
English Gigaword 5-gram language model.

We evaluate performance with two metrics,
GLEU and M2, which have similar rankings and

1. Generate POS tags of the cased input sentence
2. Label proper nouns in the input
3. Align the cased input tokens with the output
4. Capitalize the first alphanumeric character of

the output sentence (if a letter).
5. For each pair of aligned tokens (li, rj), capital-

ize rj if li is labeled a proper noun or rj is the
token “i”.

Table 2: A simple recasing algorithm, which re-
lies on token alignments between the input and
output.

match human judgments on the JFLEG corpus
(Napoles et al., 2017). We use two baselines:
the first has misspellings corrected with Enchant
(Sp. Baseline), and the second is an unmodi-
fied MT pipeline trained on the Lang-8 corpus,
optimized to BLEU with no specialized features
(MT Baseline), and we compare our performance
to the current state of the art, YB16. While we
train on about half a million sentence pairs, YB16
had nearly 2 million sentence pairs for training.4

We additionally report metric scores for the hu-
man corrections, which we determine by evaluat-
ing each reference set against the other three and
reporting the mean score.

All systems outperform both baselines, and the
spelling baseline is stronger than the MT baseline.
The spelling baseline also has the highest preci-
sion except for the best automatic system, YB16,
demonstrating that spelling correction is an impor-
tant component in this corpus. There is a disparity
in the GLEU and M2 scores for the baseline: the
baseline GLEU is about 5% lower than the other
systems but the M2 is 30% lower. This can be at-
tributed to the lesser extent of changes made by
the baseline system which results in low recall for
M2 but which is not penalized by GLEU, which
is a precision-based metric. The human correc-
tions have the highest metric scores, and make
changes to 77% of the sentences, which is in be-
tween the number of sentences changed by YB16
and SMEC, however the human corrections have
a higher mean edit distance, because the anno-
tators made more extensive changes when a sen-
tence needed to be corrected than any of the mod-
els.

Our fully customized model with all modifi-
cations, Specialized Machine translation for Er-

4Drawn from the CLC, which is not public.

349



ror Correction (SMEC+morph), scores lower than
YB16 according to GLEU but has the same M2

score. SMEC+morph has higher M2 recall, and
visual examination of the output supports this,
showing many incorrect or unnecessary num-
ber of tense changes. Automatic analysis re-
veals that it makes significantly more inflection
changes than the humans or YB16 (detected with
the same method described in Section 3.2), from
which we can conclude that the morphological
rules errors are applied too liberally. If we re-
move the generated morphological rules but keep
the spelling rules (SMEC), performance improves
by 0.4 GLEU points and decreases by 0.1 M2

points—but, more importantly, this system has
higher precision and lower recall, and makes more
conservative morphological changes. Therefore,
we consider SMEC, the model without artificial
morphological rules, to be our best system.

The metrics only give us a high-level overview
of the changes made in the output. With error-
coded text, the performance by feature type can be
examined with M2, but this is not possible with
GLEU or the un-coded JFLEG corpus. To investi-
gate the types of changes systems make on a more
granular level, we apply the feature extraction
method described in Section 3.2 to quantify the
morphological and lexical transformations. While
we developed this method for scoring translation
rules, it can work on any aligned text, and is sim-
ilar to the forthcoming ERRANT toolkit, which is
uses a rule-based framework for automatically cat-
egorizes grammatical edits (Bryant et al., 2017).
We calculate the number of each of these trans-
formations made by to the input by each system
and the human references, determining significant
differences with a paired t-test (p < 0.05). Fig-
ure 1 contains the mean number of these trans-
formations per sentence made by SMEC, YB16,
and the human-corrected references, and Figure 2
shows the number of operations by part of speech.
Even though the GLEU and M2 scores of the two
systems are nearly identical, they are significantly
different in all of the transformations in Figure 1,
with SMEC having a higher edit distance from
the original, but YB16 making more insertions
and substitutions. Overall, the human corrections
have a significantly more inserted tokens than ei-
ther system, while YB16 makes the most substitu-
tions and fewer deletions than SMEC or the hu-
man corrections. The bottom plot displays the
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Figure 1: Mean tokens per sentence displaying
certain changes from the input sentence.

mean number of operations by part of speech (op-
erations include deletion, insertion, and substitu-
tion). Both systems and the human corrections
display similar rates of substitutions across differ-
ent parts of speech, however the human references
have significantly more preposition and verb op-
erations and there are significant differences be-
tween the determiner and noun operations made
by YB16 compared to SMEC and the references.
This information can be further analyzed by part
of speech and edit operation, and the same infor-
mation is available for other word classes.

5 Model analysis

We wish to understand how each component
of our model contributes to its performance,
and therefore train a series of variations of the
model, each time removing a single customiza-
tion, specifically: the optimization metric (tun-
ing to BLEU instead of GLEU; SMEC−GLEU),
the features (only using the standard MT fea-
tures; SMEC−feats), and eliminating artificial rules
(SMEC−sp). The impact of training data size will
be investigated separately in Section 5.1. We com-
puted the automatic metric scores of each model
variation and performed the automatic edit anal-
ysis described in Section 3.2. In Table 4, we
report the net metric increase or decrease com-
pared to the full model, and the percent increase
or decrease for each of the features. Changing
the metric from GLEU to BLEU significantly de-
creases the amount of change made by the model,
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M2 Edit distance
System GLEU P R F0.5 Sents. changed (tokens)
Sp. Baseline 55.5 57.7 16.6 38.4 42% 0.8
MT Baseline 54.9 56.7 14.6 36.0 39% 0.7
SMEC+morph 57.9 54.7 44.2 52.3 88% 2.8
SMEC 58.3 55.9 41.1 52.2 85% 2.5
YB16 58.4 59.4 35.3 52.3 73% 1.9
Human 62.1 67.0 52.9 63.6 77% 3.1

Table 3: Results on the JFLEG test set. In addition to the GLEU and M2 scores, we also report the
percent of sentences changed from the input and the mean Levensthein distance.
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Figure 2: Mean number of operations (deletions,
insertions, and substitutions) per sentence by part
of speech.

SMEC−GLEU, with a 60% lower edit distance than
SMEC, and at least 50% fewer of almost all trans-
formations. The GLEU score of this system is
nearly 1 point lower, however there is almost no
change in the M2 score, indicating that the changes
made were appropriate, even though they were
fewer in number. Tuning to BLEU causes fewer
changes because the input sentence already has a
high BLEU score due to the high overlap between
the input and reference sentences. GLEU encour-
ages more changes by penalizing text that should
have been changed in the output.

Removing the custom features (SMEC−feats)
makes less of a difference in the GLEU score,
however there are significantly more determiners
added and more tokens are substituted with words
that have different lemmas and parts of speech.
This suggests that the specialized features encour-
aged morphologically-aware substitutions, reduc-

ing changes that did not have semantic or func-
tional overlap with the original content. Removing
the artificially generated spelling rules (SMEC−sp)
had the greatest impact on performance, with a
nearly 4-point decrease in GLEU score and 9.5-
decrease in M2. Without spelling rules, signifi-
cantly fewer tokens were inserted in the correc-
tions across all word classes. We also see a signif-
icantly greater number of substitutions made with
words that had neither the same part of speech or
lemma as the original word, which could be due to
sparsity in the presence of spelling errors which is
addressed with the artificial grammar.

Table 5 contains example sentences from the
test set with system outputs that illustrate these ob-
servations. These ungrammatical sentences range
from one that can easily be corrected using min-
imal edits; to a sentence that requires more sig-
nificant changes and inference but has an obvious
meaning; to a sentence that is garbled and does not
have an immediately obvious correction, even to a
native speaker. The reference correction contains
more extensive changes than the automatic sys-
tems and makes spelling corrections not found by
the decoder (engy → energy) or inferences in the
instance of the garbled third sentence, changing
lrenikg → Ranking. SMEC makes many spelling
corrections and makes more insertions, substitu-
tions, and deletions than the two SMEC varia-
tions. However, the artificial rules also cause some
bad corrections, found in the third example chang-
ing studens→ stud-ens, while the intended word,
students, is obvious to a human reader. When
optimizing to BLEU instead of the custom met-
ric (SMEC−GLEU), there are fewer changes and
therefore output is less fluent. In the first exam-
ple, SMEC−GLEU applies only one spelling change
even though the rest of the sentence has many
small errors that were all corrected in SMEC, such
as missing determiner and extra auxiliary. The
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Score
SMEC SMEC SMEC

SMEC −GLEU −feats −sp

GLEU 58.3 57.6 58.1 54.4
M2 52.2 44.9 47.7 42.7
Transformation
Edit dist −60% −11%
Deleted −51% −7% −4%
Inserted −46% −24%
Substituted −37% +9%
Diff inflection −53%
Diff token −18% +9%
Diff token&POS −29% +24% +31%
Spelling −35% +8%
Determiner −51% −7%

del −47% −5%
ins −70% +39% −30%
sub −56%

Preposition −52%
del −51%
ins −45% −10% −22%
sub −42%

Noun −40% −6% −10%
del −45% −9% −12%
ins −38% −7% −13%
sub −30%

Verb −57% −5% −11%
del −61% −6% −7%
ins −53% −13% −40%
sub −50%

Punctuation −52%
del −47% −5%
ins −84% −30%
sub

Table 4: Modifications of SMEC, reporting the
mean occurrence of each transformation per sen-
tence, when there is a significant difference (p <
0.05 by a paired t-test). We report the difference
with percentages because each transformation oc-
curs with different frequency.

same pattern is visible in the other two examples.
Finally, without the artificial rules, SMEC−sp fixes
only a fraction of the spelling mistakes—however
it is the only system that correctly changes stu-
dens → students. Independent from these mod-
ifications, the capitalization issues present in the
input were all remedied by our recasing algorithm,
which improves the metric score.

5.1 Impact of training data

Lang-8 is the largest publicly available parallel
corpus for GEC, with 1 million tokens and approx-
imately 563k corrected sentence pairs, however
this corpus may contain noise due to automatic

44 46 48 50 52 54 56 57 60
GLEU

FCE (21.2k)
NUCLE (21.8k)

FCE+NUCLE (42.8k)
Lang-8 (43k)

Lang-8 (563k)

no spelling rules with spelling rules

Figure 3: GLEU scores of SMEC with different
training sizes, with and without artificial rules.

alignment and the annotators, who were users of
the online Lang-8 service and may not necessarily
have provided accurate or complete corrections.
Two other corpora, FCE and NUCLE, contain an-
notations by trained English instructors and abso-
lute alignments between sentences, however each
is approximately 20-times smaller than Lang-8.
We wish to isolate the effect of size and source
of training data has on system performance, and
therefore randomly sample the Lang-8 corpus to
create a training set the same size as FCE and NU-
CLE (43k corrected sentence pairs), train a model
following the same procedure described above.
We hypothesized that including artificial rules may
help address problems of sparsity in the training
data, and therefore we also train additional models
with and without spelling rules to determine how
artificial data affects performance as the amount
of training data increases. Figure 3 shows the rel-
ative GLEU scores of systems with different train-
ing data sizes and sources, before and after adding
artificial spelling rules.

More data increases performance for Lang-8,
however there is no clear relationship between size
and performance on the FCE+NUCLE data. Mod-
els trained on FCE, NUCLE, and FCE/NUCLE
all have similar performance. And, training on
43k Lang-8 sentence pairs slightly improves per-
formance over training on just FCE/NUCLE, sug-
gesting that more data negates the presence of
noise and the sentential rewrites present in Lang-8
are better for training a GEC system. The rewrites
in Lang-8 could be more similar to those found in
JFLEG since both datasets allow for broader flu-
ency changes instead of corrections to coded spans
of text. In future work, we will train on version
2 of the Lang-8 Learner Corpus, which has twice
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Orig Unforturntly , almost older people can not use internet , in spite of benefit of internet .
Human Unfortunately , most older people can not use the internet , in spite of benefits of the

internet .
SMEC Unfortunately , most older people can not use the internet , in spite of the benefits of

the internet .
SMEC−GLEU Unfortunately , almost older people can not use internet , in spite of benefit of internet .
SMEC−sp Unforturntly , 2 older people can not use the internet , in spite of the benefits of the

internet .
Orig becuse if i see some one did somthing to may safe me time and engy and it wok ’s i will

do it .
Human Because if I see that someone did something that may save me time and energy and it

works I will also do it .
SMEC Because if I see 2 one did something 2 may save me time and edgy and 2 work 2 , I

will do it .
SMEC−GLEU Because if I see some one did something to may save me time and edgy and it wok ’s I

will do it .
SMEC−sp Because if I see 2 one somthings 2 may save me time and engy 2 work 2 I will do

it .
Orig lrenikg the studens the ideas have many advantegis :
Human Ranking the students ’ 2 ideas has many advantages .
SMEC Linking the stud-ens 2 ideas have many advantages :
SMEC−GLEU Linking the stud-ens the ideas have many advantages :
SMEC−sp Lrenikg 2 students 2 ideas have 2 advantegis :

Table 5: Example corrections made by a human annotator, SMEC, and two variations: trained on BLEU
instead of GLEU SMEC−GLEU and without artificial spelling rules (SMEC−sp). Inserted or changed text
is in bold and deleted text is indicated with 2.

as much data as the version used in this work, to
determine whether performance continues to im-
prove. For all models, adding artificial spelling
rules improves performance by about 4 GLEU
points (adding spelling rules to FCE training data
only causes a 2-point GLEU improvement). The
amount of performance does not change related to
the size of the training data, however the consis-
tent improvement supports our hypothesis that ar-
tificial rules are useful to address problems of data
sparsity.

6 Conclusion

This paper has presented a systematic investiga-
tion into the components of a standard statistical
MT pipeline that can be customized for GEC. The
analysis performed on the contribution of each
component of the system can inform the design of
future GEC models. We have found that extending
the translation grammar with artificially generated
rules for spelling correction can increase the M2

score by as much as 20%. The amount of training

data also has a substantial impact on performance,
increasing GLEU and M2 scores by approximately
10%. Tuning to a specialized GEC metric and
using custom features both help performance but
yield less considerable gains. The performance
of our model, SMEC, is on par with the current
state-of-the-art GEC system, which is neural MT
trained on twice the training data, and our analy-
sis suggests that the performance of SMEC would
continue to improve if trained on that amount of
data. In future work we will test this hypothesis
with the larger parallel corpus extracted from ver-
sion 2 of the Lang-8 Learner Corpora. Our code
will be available for automatic feature extraction
and edit analysis, as well as more details about the
model implementation.5
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