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Abstract
Minimum error rate training (MERT) in-
volves choosing parameter values for a
machine translation (MT) system that
maximize performance on a tuning set as
measured by an automatic evaluation met-
ric, such as BLEU. The method is best
when the system will eventually be eval-
uated using the same metric, but in reality,
most MT evaluations have a human-based
component. Although performing MERT
with a human-based metric seems like a
daunting task, we describe a new metric,
RYPT, which takes human judgments into
account, but only requires human input to
build a database that can be reused over
and over again, hence eliminating the need
for human input at tuning time. In this
investigative study, we analyze the diver-
sity (or lack thereof) of the candidates pro-
duced during MERT, we describe how this
redundancy can be used to our advantage,
and show that RYPT is a better predictor of
translation quality than BLEU.

1 Introduction

Many state-of-the-art machine translation (MT)
systems over the past few years (Och and Ney,
2002; Koehn et al., 2003; Chiang, 2007; Koehn
et al., 2007; Li et al., 2009) rely on several mod-
els to evaluate the “goodness” of a given candidate
translation in the target language. The MT system
proceeds by searching for the highest-scoring can-
didate translation, as scored by the different model
components, and returns that candidate as the hy-
pothesis translation. Each of these models need
not be a probabilistic model, and instead corre-
sponds to a feature that is a function of a (can-
didate translation,foreign sentence) pair.

Treated as a log-linear model, we need to as-
sign a weight for each of the features. Och (2003)

shows that setting those weights should take into
account the evaluation metric by which the MT
system will eventually be judged. This is achieved
by choosing the weights so as to maximize the per-
formance of the MT system on a development set,
as measured by that evaluation metric. The other
insight of Och’s work is that there exists an ef-
ficient algorithm to find such weights. This pro-
cess has come to be known as the MERT phase
(for Minimum Error Rate Training) in training
pipelines of MT systems.

A problem arises if the performance of the sys-
tem is not judged by an automatic evaluation met-
ric such as BLEU or TER, but instead through
an evaluation process involving a human. The
GALE evaluation, for instance, judges the quality
of systems as measured by human-targeted TER
(HTER), which computes the edit distance be-
tween the system’s output and a version of the
output post-edited by a human. The IWSLT and
WMT workshops also have a manual evaluation
component, as does the NIST Evaluation, in the
form of adequacy and fluency (LDC, 2005).

In theory, one could imagine trying to optimize
a metric like HTER during the MERT phase, but
that would require the availability of an HTER au-
tomatic scorer, which, by definition, does not ex-
ist. If done manually, the scoring of thousands of
candidates produced during MERT would literally
take weeks, and cost a large sum of money. For
these reasons, researchers resort to optimizing an
automatic metric (almost always BLEU) as a proxy
for human judgment.

As daunting as such a task seems for any
human-based metric, we describe a new metric,
RYPT, that takes human judgment into accout
when scoring candidates, but takes advantage of
the redundancy in the candidates produced dur-
ing MERT. In this investigative study, we describe
how this redundancy can be used to our advantage
to eliminate the need to involve a human at any



time except when building a database of reusable
judgments, and furthermore show that RYPT is a
better predictor of translation quality than BLEU,
making it an excellent candidate for MERT tun-
ing.

The paper is organized as follows. We start by
describing the core idea of MERT before intro-
ducing our new metric, RYPT, and describing the
data collection effort we undertook to collect the
needed human judgments. We analyze a MERT
run optimizing BLEU to quantify the level of re-
dundancy in the candidate set, and also provide
an extensive analysis of the collected judgments,
before describing a set of experiments showing
RYPT is a better predictor of translation quality
than BLEU. Following a discussion of our findings,
we briefly review related work, before pointing out
future directions and summarizing.

2 Och’s Line Search Method

A common approach to translating a source sen-
tence f in a foreign language is to select the can-
didate translation e that maximizes the posterior
probability:

Pr(e | f) def=
exp(sΛ(e, f))∑
e′ exp(sΛ(e′, f))

.

This defines Pr(e | f) using a log-linear model
that associates a sentence pair (e, f) with a fea-
ture vector Φ(e, f) = {φ1(e, f), ..., φM (e, f)},
and assigns a score

sΛ(e, f) def= Λ · Φ(e, f) =
M∑

m=1

λmφm(e, f)

for that sentence pair, with the feature weights
Λ = {λ1, ..., λM} being the parameters of the
model. Therefore, the system selects the transla-
tion ê:

ê = argmax
e

Pr(e | f) = argmax
e

sΛ(e, f). (1)

Och (2003) provides evidence that Λ should be
chosen by optimizing an objective function basd
on the evaluation metric of interest, rather than
likelihood. Since the error surface is not smooth,
and a grid search is too expensive, Och suggests an
alternative, efficient, line optimization approach.

Assume we are performing a line optimiza-
tion along the dth dimension. Consider a for-
eign sentence f , and let the candidate set for f

be {e1, ..., eK}. Recall from (1) that the 1-best
candidate at a given Λ is the one with maxi-
mum

∑M
m=1 λmφm(ek, f). We can rewrite the

sum as λdφd(ek, f) +
∑

m 6=d λmφm(ek, f). The
second term is constant with respect to λd, and
so is φd(ek, f). Renaming those two quantities
offestΛ(ek) and slope(ek), we get

sΛ(ek, f) = slope(ek)λd + offsetΛ(ek).

Therefore, if we plot the score for a candidate
translation vs. λd, that candidate will be repre-
sented by a line. If we plot the lines for all candi-
dates (Figure 1), then the upper envelope of these
lines indicates the best candidate at any value for
λd.

Therefore, the objective function is piece-wise
linear across any of the M dimensions1, mean-
ing we only need to evaluate it at the “critical”
points corresponding to line intersection points.
Furthermore, we only need to calculate the suffi-
cient statistics once, at the smallest critical point,
and then simply adjust the sufficient statistics to
reflect changes in the set of 1-best candidates.

2.1 The BLEU Metric

The metric most often used with MERT is BLEU

(Papineni et al., 2002), where the score of a candi-
date c against a reference translation r is:

BLEU = BP (len(c), len(r))·exp(
4∑

n=1

1
4

log pn),

where pn is the n-gram precision2 and BP is a
brevity penalty meant to penalize short outputs, to
discourage improving precision at the expense of
recall.

There are several compelling reasons to opti-
mize to BLEU. It is the most widely reported met-
ric in MT research, and has been shown to cor-
relate well with human judgment (Papineni et al.,
2002; Coughlin, 2003). But BLEU is also partic-
ularly suitable for MERT, because it can be com-
puted quite efficiently, and its sufficient statistics
are decomposable, as required by MERT.3,4

1Or, in fact, along any linear combination of the M di-
mensions.

2Modifed precision, to be precise, based on clipped n-
gram counts.

3Note that for the sufficient statistics to be decomposable,
the metric itself need not be – this is in fact the case with
BLEU.

4Strictly speaking, the sufficient statistics need not be de-
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Figure 1: Och’s method applied to a set of two foreign sentences. This figure is essentially a visualization
of equation (1). We show here sufficient statistics for TER for simplicity, since there are only 2 of them,
but the metric optimized in MERT is usually BLEU.

In spite of these advantages, recent work has
pointed out a number of problematic aspects of
BLEU that should cause one to pause and recon-
sider the reliance on it. Chiang et al. (2008) in-
vestigate several weaknesses in BLEU and show
there are realistic scenraios where the BLEU score
should not be trusted, and in fact behaves in a
counter-intuitive manner. Furthermore, Callison-
Burch et al. (2006) point out that it is not always
appropriate to use BLEU to compare systems to
each other. In particular, the quality of rule-based
systems is usually underestimated by BLEU.

All this raises doubts regarding BLEU’s ade-
quacy as a proxy for human judgment, which is
a particularly important issue in the context of set-
ting parameters during the MERT phase. But what
is the alternative?

2.2 (Non-)Applicability of Och’s Method to
Human Metrics

In principle, MERT is applicable to any evalua-
tion metric, including HTER, as long as its suffi-
cient statistics are decomposable.4 In practice, of
course, the method requires the evaluation of thou-
sands of candidate translations. Whereas this is

composable in MERT, as they can be recalculated at each crit-
ical point. However, this would slow down the optimization
process quite a bit, since one cannot traverse the dimension
by simply adjusting the sufficient statistics to reflect changes
in 1-best candidates.

not a problem with a metric like BLEU, for which
automatic (and fast) scorers are available, such an
evaluation with a human metric would require a
large amount of effort and money, meaning that
a single MERT run would take weeks to com-
plete, and would cost thousands of dollars. As-
sume a single candidate string takes 10 seconds
to post-edit, at a cost of $0.10. Even with such
an (overly) optimistic estimate, scoring 100 candi-
dates for each of 1000 sentences would take 35 8-
hour work days and cost $10,000. The cost would
further grow linearly with the number of MERT it-
erations and the n-best list size. On the other hand,
optimizing for BLEU takes on the order of minutes
per iteration, and costs nothing.

2.3 The RYPT Metric

We suggest here a new metric that combines the
best of both worlds, in that it is based on human
judgment, but that is a viable metric to be used in
the MERT phase. The key to the feasiblity is the
reliance on a database of human judgment rather
than immendiate feedback for each candidate, and
so human feedback is only needed once, and the
collected human judgments can be reused over and
over again by an automatic scorer.

The basic idea is to reward syntactic con-
stituents in the source sentence that get aligned
to “acceptable” translations in the candidate sen-
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Figure 2: The source parse tree (top) and the can-
didate derivation tree (bottom). Nodes in the parse
tree with a thick border correspond to the frontier
node set with maxLen = 4. The human annota-
tor only sees the portion surrounded by the dashed
rectangle, including the highlighting (though ex-
cluding the word alignment links).

tence, and penalize constituents that do not. For
instance, consider the source-candidate sentence
pair of Figure 2. To evaluate the candidate transla-
tion, the source parse tree is first obtained (Dubey,
2005), and each subtree is matched with a sub-
string in the candidate string. If the source sub-
string covered by this subtree is translated into an
acceptable substring in the candidate, that node
gets a YES label. Otherwise, the node gets a NO
label.

The metric we propose is taken to be the ratio of
YES nodes in the parse tree (or RYPT). The candi-
date in Figure 2, for instance, would get a RYPT

score of 13/18 = 0.72.
To justify its use as a proxy for HTER-like met-

rics, we need to demonstrate that this metric corre-
lates well with human judgment. But it is also im-
portant to show that we can obtain the YES/NO la-
bel assignments in an efficient and affordable man-
ner. At first glance, this seems to require a human
to provide judgments for each candidate, much
like with HTER. But we describe in the next sec-
tion strategies that minimize the number of judg-
ments we need to actually collect.

3 Collecting Human Judgments

The first assumption we make to minimize the
number of human judgments, is that once we
have a judgment for a source-candidate substring
pair, that same judgment can be used across all
candidates for this source sentence. In other
words, we build a database for each source sen-
tence, which consists of <source substring,target
substring,judgment> entries. For a given source
substring, multiple entries exist, each with a dif-
ferent target candidate substring. The judgment
field is one of YES, NO, and NOT SURE.

Note that the entries do not store the full can-
didate string, since we reuse a judgment across
all the candidates of that source sentence. For in-
stance, if we collect the judgment:

<der patient,the patient,YES>

from the sentence pair:

der patient wurde isoliert .
the patient was isolated .

then this would apply to any candidate translation
of this source sentence. And so all of the following
substrings are labeled YES as well:

the patient isolated .
the patient was in isolation .
the patient has been isolated .

Similarly, if we collect the judgment:

<der patient,of the patient,NO>

from the sentence pair:

der patient wurde isoliert .
of the patient was isolated .

then this would apply to any candidate translation
of the source, and the following substrings are la-
beled NO as well:

of the patient isolated .
of the patient was in isolation .
of the patient has been isolated .

The strategy of using judgments across candi-
dates reduces the amount of labels we need to col-
lect, but evaluating a candidate translation for the
source sentence of Figure 2 would still require ob-
taining 18 labels, one for each node in the parse
tree. Instead of querying a human for each one



of those nodes, it is quite reasonable to percolate
existing labels up and down the parse tree: if a
node is labeled NO, this likely means that all its
ancestors would also be labeled NO, and if a node
is labeled YES, this likely means that all its de-
scendents whould also be labeled YES.

While those two strategies (using judgments
across candidates, and percolating labels up and
down the tree) are only approximations for the true
labels, employing them considerably reduces the
amount of data we need to collect.

3.1 Obtaining Source-to-Candidate
Alignments

How do we determine which segment of the can-
didate sentence aligns to a given source segment?
Given a word alignment between the source and
the candidate, we take the target substring to con-
tain any word aligned with at least one word in
the source segment. One could run an aligner (e.g.
GIZA++) on the two sentences to obtain the word
alignment, but we take a different approach.

We use Joshua (Li et al., 2009), in our experi-
ments. Joshua is a hierarchical parsing-based MT
system, and it can be instructed to produce deriva-
tion trees instead of the candidate sentence string
itself. Furthermore, each node in the derivation
tree is associated with the two indices in the source
sentence that indicate the segment corresponding
to this derivation subtree (the numbers indicated
in curly brackets in Figure 2).

Using this information, we are able to recover
most of the phrasal alignments. There are other
phrasal alignments that can be deduced from
the structure of the tree indirectly, by system-
atically discarding source words that are part
of another phrasal alignment. For instance,
in Figure 2, one can observe the alignment
(offizielle,prognosen,sind)–(official,forecasts,are)
and the alignment (prognosen)–(forecasts) to
deduce (offizielle,sind)–(official,are).

Although some of the phrasal alignment are
one-to-one mappings, many of them are many-
to-many. By construction, any deduced many-to-
many mapping has occurred in the training paral-
lel corpus at least once. And so we recover the
individual word alignments by consulting the par-
allel corpus from which the grammar rules were
extracted (which requires maintaining the word
alignments obtained prior to rule extraction).5

5We incorporated our implementation of the source-

We emphasize here that our recovery of word
alignment from phrasal alignment is independent
from the hierarchical and parsing-based nature of
the Joshua system. And so the alignment approach
we suggest here can be applied to a different MT
system as well, as long as that system provides
phrasal alignment along with the output. In partic-
ular, a phrase-based system such as Moses can be
modified in a straightforward manner to provide
phrasal alignments, and then apply our method.

4 Data Collection

We chose the WMT08 German-English news
dataset to work with, and since this is an investiga-
tive study of a novel approach, we collected judg-
ments for a subset of 250 source sentences from
the development set for the set of candidate sen-
tences produced in the last iteration of a MERT
run optimizing BLEU on the full 2051-sentence de-
velopment set. The MT system we used is Joshua
(Li et al., 2009), a software package that comes
complete with a grammar extraction module and a
MERT module, in addition to the decoder itself.

What segments of the source should be chosen
to be judged? We already indicated that we limit
ourselves, by definition of RYPT, to segments that
are covered exactly by a subtree in the source parse
tree. This has a couple of nice advantages: it al-
lows us to present an annotator with a high num-
ber of alternatives judged simulataneously (since
the annotator is shown a source segment and sev-
eral candidates, not just one), and this probably
also makes judging them easier – it is reasonable
to assume that strings corresponding to syntactic
constituents are easier to process by a human.

Our query selection strategy attempts to max-
imize the amount of YES/NO percolation that
would take place. We therefore ensure that for any
2 queries, the corresponding source segments do
not overlap: such overlap indicates that one sub-
tree is completely contained within the other. Hav-
ing both queries (in the same batch) might be re-
dundant if we use the above percolation procedure.

The idea is to select source segments so that
they fully cover the entire source sentence, but
have no overlap amongst them. In one extreme,
each query would correspond to an entire parse
tree. This is not ideal since the overwhelming ma-
jority of the judgments will most likely be NO,

candidate aligner into the Joshua software as a new
aligner package.



which does not help identify where the problem
is. In the other extreme, each query would corre-
spond to a subtree rooted at a preterminal. This is
also not ideal, since it would place too much em-
phasis on translations of unigrams.

So we need a middle ground. We select a
maximum-source-length maxLen to indicate how
long we’re willing to let source segments be. Then
we start at the root of the parse tree, and prop-
agate a “frontier” node set down the parse tree,
to end up with a set of nodes that fully cover the
source sentence, have no overlap amongst them,
and with each covering no more than maxLen
source words. For instance, with maxLen set to
4, the frontier set of Figure 2 are the nodes with
a thick border. An algorithmic description is pro-
vided in Algorithm 1.

Algorithm 1 Constructing the frontier node set for
a parse tree.
Input: A source parse tree T rooted at ROOT, and

a maximum source length maxLen.
Return: A nonempty set frontierSet, con-

taining a subset of the nodes in T .
1. Initialize frontierSet to the empty set.
2. Initialize currNodes to {ROOT}.
3. while currNodes is not empty do
4. Initialize newNodes to the empty set.
5. for each node N in currNodes do
6. if N covers ≤ maxLen source words

then
7. Add N to frontierSet.
8. else
9. Add children of N to newNodes.

10. end if
11. Set currNodes = newNodes
12. end for
13. end while
14. Return frontierSet.

This would ensure that our queries cover be-
tween 1 and maxLen source words, and ensures
they do not overlap, which would allow us to take
full advantage of the downward-YES and upward-
NO percolation. We set maxLen = 4 based on a
pilot study of 10 source sentences and their candi-
dates, having observed that longer segments tend
to always be labeled as NO, and shorter segments
tend to be so deep down the parse tree.

4.1 Amazon Mechanical Turk

We use the infrastructure of Amazon’s Mechan-
ical Turk (AMT)6 to collect the labels. AMT is
a virtual marketplace that allows “requesters” to
create and post tasks to be completed by “work-
ers” around the world. To create the tasks (called
Human Intelligence Tasks, or HITs), a requester
supplies an HTML template along with a comma-
separated-values database, and AMT automati-
cally creates the HITs and makes them available to
workers. The queries are displayed as an HTML
page (based on the provided HTML template),
with the user indicating the label (YES, NO, or NOT
SURE) by selecting the appropriate radio button.
The instructions read, in part:7

You are shown a “source” German
sentence with a highlighted segment,
followed by several candidate trans-
lations with corresponding highlighted
segments. Your task is to decide if each
highlighted English segment is an ac-
ceptable translation of the highlighted
German segment.

In each HIT, the worker is shown up to 10 al-
ternative translations of a highlighted source seg-
ment, with each itself highlighted within a full
candidate string in which it appears. To aid the
worker in the task, they are also shown the ref-
erence translation, with a highlighted portion that
corresponds to the source segment, deduced using
word alignments obtained with GIZA++.8

4.2 Cost of Data Collection

The total number of HITs created was 3873,
with the reward for completing a HIT depend-
ing on how many alternative translations are being
judged. On average, each HIT cost 2.1 cents and
involved judging 3.39 alternatives. 115 distinct
workers put in a total of 30.82 hours over a pe-
riod of about 4 days. On average, a label required
8.4 seconds to determine (i.e. at a rate of 426 la-
bels per hour). The total cost was $81.44: $21.43
for Amazon’s commission, $53.47 for wages, and

6AMT’s website: http://www.mturk.com.
7Template and full instructions can be viewed at http:

//cs.jhu.edu/˜ozaidan/hmert.
8These alignments are not always precise, and we do note

that fact in the instructions. We also deliberately highlight the
reference substring in a different color to make it clear that
workers should judge a candidate substring primarily based
on the source substring, not the reference substring.



$6.54 for bonuses9, for a cost per label of 0.62
cents (i.e. at a rate of 161.32 labels per dol-
lar). Excluding Amazon’s commission, the effec-
tive hourly ‘wage’ was $1.95.

5 Experimental Results and Analysis

By limiting our queries to source segments corre-
sponding to frontier nodes with maxLen = 4, we
obtain a total of 3601 subtrees across the 250 sen-
tences, for an average of 14.4 per sentence. On
average, each subtree has 3.65 alternative trans-
lations. Only about 4.8% of the judgments were
returned as NOT SURE (or, occasionally, blank),
with the rest split into 35.1% YES judgments and
60.1% NO judgments.

The coverage we get before percolating labels
up and down the trees is 39.4% of the nodes, in-
creasing to a coverage of 72.9% after percolation.
This is quite good, considering we only do a sin-
gle data collection pass, and considering that about
10% of the subtrees do not align to candidate sub-
strings to begin with (e.g. single source words that
lack a word alignment into the candidate string).

The main question, of course, is whether or not
those labels allow us to calculate a RYPT score
that is reliably correlated with human judgment.
We designed an experiment to compare the predic-
tive power of RYPT vs. BLEU. Given the candidate
set of a source sentence, we rerank the candidate
set according to RYPT and extract the top-1 can-
didate, and we rerank the candidate set according
to BLEU, and extract the top-1 candidate. We then
present the two candidates to human judges, and
ask them to choose the one that is a more adequate
translation. For reliability, we collect 3 judgments
per sentence pair comparison, instead of just 1.

The results show that RYPT significantly outper-
forms BLEU when it comes to predicting human
preference, with its choice prevailing in 46.1%
of judgments vs. 36.0% for BLEU, with 17.9%
judged to be of equal quality (left half of Ta-
ble 1). This advantage is especially true when the
judgments are grouped by sentence, and we ex-
amine cases of strong agreement among the three
annotators (Table 2): whereas BLEU’s candidate
is strongly preferred in 32 of the candidate pairs
(bottom 2 rows), RYPT’s candidate is strongly pre-
ferred in about double that number: 60 candidate

9We would review the collected labels and give a 20%
reward for good workers to encourage them to come back
and complete more HITs.

pairs (top 2 rows).
This is quite a remarkable result, given that

BLEU, by definition, selects a candidate that has
significant overlap with the reference shown to the
annotators to aid in their decision-making. This
means that BLEU has an inherent advantage in
comparisons where both candidates are more or
less of equal quality, since annotators are encour-
aged (in the instructions) to make a choice even if
the two candidates seem of be of equal quality at
first glance. Pressed to make such a choice, the
annotator is likely to select the candidate that su-
perficially ‘looks’ more like the reference to be the
‘better’ of the two candidates. That candidate will
most likely be the BLEU-selected one.

To test this hypothesis, we repeated the experi-
ment without showing the annotators the reference
translations, and limited data collection to work-
ers living in Germany, making judgments based
only on the source sentences. (We only collected
one judgment per source sentence, since German
workers on AMT are in short supply.)

As expected, the difference is even more pro-
nounced: human judges prefer the RYPT-selected
candidate 45.2% of the time, while BLEU’s can-
didate is preferred only 29.2% of the time, with
25.6% judged to be of equal quality (right half
of Table 1). Our hypothesis is further supported
by the fact that most of the gain of the “equal-
quality” category comes from BLEU, which loses
6.8 percentage points, whereas RYPT’s share re-
mains largely intact, losing less than a single per-
centage point.

5.1 Analysis of Data Collection

Recall that we minimize data collection by per-
forming label percolation and by employing a
frontier node set selection strategy. While the re-
sults just presented indicate those strategies pro-
vide a good approximation of some ‘true’ RYPT

score, label percolation was a strategy based pri-
marily on intuition, and choosing maxLen = 4
for frontier set construction was based on examin-
ing a limited amount of preliminary data.

Therefore, and in addition to encouraging em-
pricial results, we felt a more rigorous quantitative
analysis was in order, especially with future, more
ambitious annotation projects on the horizon. To
this end, we collected a complete set of judgments
for 50 source sentences and their candidates. That
is, we generated a query for each and every node



References shown; References not shown;
unrestricted restricted to DE workers

Preferred candidate # judgments % judgments # judgments % judgments
Top-1 by RYPT 346 46.1 113 45.2
Top-1 by BLEU 270 36.0 73 29.2

Neither 134 17.9 64 25.6
Total 750 100.0 250 100.0

Table 1: Ranking comparison results. The left half corresponds to the experiment (open to all workers)
where the English reference was shown, whereas the right half corresponds to the experiment (open only
to workers living in Germany) where the English reference was not shown.

Aggregate # sentences % sentences Aggregate # sentences % sentences
RYPT +3 45 18.0
RYPT +2 15 6.0 RYPT +any 120 48.0
RYPT +1 60 24.0
± 0 42 16.8 ± 0 42 16.8

BLEU +1 55 22.0
BLEU +2 5 2.0 BLEU +any 88 35.2
BLEU +3 28 11.2

Total 250 100.0 Total 250 100.0

Table 2: Ranking comparison results, grouped by sentence. This table corresponds to the left half of
Table 1. 3 judgments were collected for each comparison, with the “aggregate” for a comparison calcu-
lated from these 3 judgments. For instance, an aggregate of “RYPT +3” means all 3 judgments favored
RYPT’s choice, and “RYPT +1” means one more judgment favored RYPT than did BLEU.

in the source parse tree, instead of limiting our-
selves to a frontier node set. (Though we did limit
the length of a source segment to be ≤ 7 words.)
This would allow us to judge the validity of label
percolation, and under different maxLen values.

Furthermore, we collected multiple judgments
for each query in order to minimize the effet of
bad/random annotations. For each of 5580 gen-
erated queries, we collected five judgments, for a
total of 27,900 judgments.10 As before, the anno-
tator would pick one of YES, NO, and NOT SURE.

First, collecting multiple judgments allowed us
to investigate inter-annotator agreement. In 68.9%
of the queries, at least 4 of the 5 annotators chose
the same label, signifying a high degree of inter-
annotator agreement. This is especially encourag-
ing considering that we identified about 15% of
the HITs as being of poor quality, and blocked the
respective annotators from doing further HITs.11

We then examine the applicability and validity

10For a given query, the five collected judgments are from
five different annotators, since AMT ensures an annotator is
never shown the same HIT twice.

11It is especially easy to identify (and then block) such an-
notators when they submit a relatively large number of HITs,
since inspecting some of their annotations would indicate
they are answering randomly and/or inconsistently.

of label percolation. For each of 7 different values
for Algorithm 1’s maxLen, we ignore all but la-
bels that would be requested under that maxLen
value, and percolate the labels up and down the
tree. In Figure 3 we plot the coverage before and
after percolation (middle two curves), and observe
expansion in coverage across different values of
maxLen, peaking at about +33% for maxLen= 4
and 5, with most of the benefit coming from YES
percolation (bottom two curves).
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Figure 3: Label percolation under different
maxLen values. The bottom two curves are the
breakdown of the difference between the middle
two. Accuracy is measured against majority votes.



We also measure the accuracy of labels deduced
from percolation (top curve of Figure 3). We de-
fine a percolated label to be correct if it matches
the label given by a majority vote over the col-
lected labels for that particular node. We find that
accuracy at low maxLen values is significantly
lower than at higer values (e.g. 72.6% vs. 84.1%
for 1 vs. 4). This means a middle value such as 3
or 4 is optimal. Higher values could be suitable if
we wish to emphasize translation fluency.

6 Related Work

Nießen et al. (2000) is an early work that also con-
structs a database of translations and judgments.
There, a source sentence is stored along with all
the translations that have already been manually
judged, along with their scores. They utilize this
database to carry out “semi-automatic” evaluation
in a fast and convenient fashion thanks to tool they
developed with a user-friendly GUI.

In their annual evaluation, the WMT work-
shop has effectively conducted manual evaluation
of submitted systems over the past few years by
distributing the work across tens of volunteers,
though they relied on a self-designed online por-
tal. On the other hand, Snow et al. (2008) illus-
trate how AMT can be used to collect data in a
“fast and cheap” fashion, for a number of NLP
tasks, such as word sense disambiguation. They
go a step further and model the behavior of their
annotators to reduce annotator bias. This was pos-
sible as they collect multiple judgments for each
query from multiple annotators.

The question of how to design an automatic
metric that best approximates human judgment
has received a lot of attention lately. NIST started
organizing the Metrics for Machine Translation
Challenge (MetricsMATR) in 2008, with the aim
of developing automatic evaluation metrics that
correlate highly with human judgment of transla-
tion quality. The latest WMT workshop (Callison-
Burch et al., 2009) also conducted a full assess-
ment of how well a suite of automatic metrics cor-
relate with human judgment.

7 Future Work

This pilot study has demonstrated the feasibility
of collecting a large number of human judgments,
and has shown that the RYPT metric is better than
BLEU at picking out the best translation. The
next step is to run a complete MERT run. This

will involve collecting data for thousands of al-
ternative translations for several hundreds source
sentences. Based on our analysis, this it should
be cost-effective to solicit these judgments using
AMT. After training MERT using RYPT as an ob-
jective function the, the next logical step would be
to compare two outputs of a system. One output
would have parameters optimized to BLEU and the
other to RYPT. The hope is that the RYPT-trained
system would be better under the final HTER eval-
uation than the BLEU-trained system.

We are also investigating a probabilistic ap-
proach to percolating the labels up and down the
tree, whereby the label of a node is treated as a
random variable, and inference is performed based
on values of the other observed nodes, as well as
properties of the source/candidate segment. Cast
this way, a probabilistic approach is actually quite
appealing, and one could use collected data to
train a prediction model (such as a Markov ran-
dom field).

8 Summary

We propose a human-based metric, RYPT, that is
quite feasible to optimize using MERT, relying on
the redundancy in the candidate set, and collect-
ing judgments using Amazon’s Mechanical Turk
infrastructure. We show this could be done in a
quite cost-effective manner, and produces data of
good quality. We show the effectiveness of the
metric by illustrating that it is a better predictor of
human judgment of translation quality than BLEU,
the most commonly used metric in MT. We show
this is the case even with a modest amount of data
that does not cover the entirety of all parse trees,
on which the metric is dependent. The collected
data represents a database that can be reused over
and over again, hence limiting human feedback to
the initial phase only.
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