

LBTrust: Declarative Reconfigurable
Trust Management

Bill Marczak*, Dave Zook†, Wenchao Zhou*, Molham Aref†, Boon Thau Loo*

*University of Pennsylvania
†LogicBlox

What is “Trust Management”?
● Trust management is broadly defined as:

◦ Assigning credentials (rights) to principals (users) to perform actions
◦ Delegating among principals
◦ Enforce access control policies in a multi-user environment

● Logic representation/reasoning:
◦ Logical analysis of new security protocols
◦ Declarative interface for implementing security policies
◦ Several runtime systems based on distributed Datalog/Prolog

“In alice's context, any principal P may access object O in read mode if
 P is good (R1) or,

bob says P may do so (R2 - delegation)”

r1: access(P,O,read) good(P).←
r2: access(P,O,read) bob says access(P,O,read).←

At alice:

● Binder, a simple representative language:

(Non-Exhaustive) Survey of Trust Management Languages
Authentication Delegation Conditional

Re-Delegation
Threshold
Structures

Type
System

Aura Y Y* Y? Y Y

Binder Y Y* N N N

Cassandra Y Y* Y Y Y

D1LP Y Y Y (depth/width) Y N

KeyNote Y Y N Y N

SD3 Y Y* N N N

SeNDLoG Y Y* N Y N

SPKI/SDSI Y Y* Y (boolean) Y N

● Problem: too many languages, features, separate runtime systems, hard to
compare and reuse

● Our goal: A unified declarative framework to enable all of these languages

Key Ideas of LBTrust

● Constraints: type safety, program correctness, security
● Meta-programmability

◦ Meta-model: rules as data [VLDB 08]
◦ Meta-rules (code generation)
◦ Meta-constraints (constraint + reflection)

● Customizable partitioning, distribution, and communication
● Extensible predicates for cryptographic primitives

Constraints and Types

negation

“let fail() whenever access(P,O,M) and not principal(P)”

fail() access(P,O,M), !principal(P).←

access(P,O,M) principal(P).→
“whenever access(P,O,M), require principal(P)”

access(P,O,M) principal(P), object(O), mode(M).→
type constraint

Meta-Model Schema

rule(R) .→
active(R) rule(R).→
head(R,A) rule(R), atom(A).→
body(R,A) rule(R), atom(A).→

atom(A) .→
functor(A,P) atom(A), predicate(P).→
arg(A,I,T) atom(A), int(I), term(T).→
negated(A) atom(A).→

term(T) .→
variable(X) term(X).→
vname(X.N) variable(X), string(N).→
constant(C) term(C).→
value(C,V) constant(C), string(V).→

predicate(P) .→
pname(P,N) predicate(P), string(N).→

ensures rules are
well-structured

Rules as Data

rule

1

active

1

atom

1

2

head

rule atom

1 1

body

rule atom

1 2

predicate

1

2

functor

atom pred

1 1

2 2

arg

atom int term

1 1 1

2 1 2

pname

pred string

1 “foo”

2 “bar”

term

1

2

variable

1

2

vname

var string

1 x

2 x

foo(x) ← bar(x).

“let foo(x) whenever bar(x)”

Meta Rules for Security
● Meta

◦ Code generation (insert new rules that must be evaluated)
◦ Reflection (query for program structure)

● Meta-Syntax
◦ Embedded rule/bounded constants

active([| active(R) says(~P2,~P1,R). |]←) delegates(P1,P2).←

“activate a rule active(R) says(P2,P1,R).← for every delegates(P1,P2).”

Meta-Constraints

owner(U, [| A <- P(T*), A*. |]) access(U,P,read).→

● Meta
◦ Code generation (insert new rules that must be evaluated)
◦ Reflection (query for program structure)

fail() owner(U, ← [| A <- ~P(T*), A*. |]), !access(U,P,read).

Kleene starmeta
variables

“whenever user U owns a rule, require that U has read access to every predicate
P in the rule body”

A Concrete Example: The “Says”
Authentication Construct

says(P1,P2,R) prin(P1), prin(P2), rule(R).→
rulesig(R,S) rule(R), string(S).→
rsapubkey(P,K) prin(P), string(K).→
rsaprivkey(P,K) prin(P), string(K).→

} schema / type
constraints

says(bob,alice,R).

alicebob

r1: rulesig(R,S) ←
 says(P1,_,R),
 rsaprivkey(P1,K),
 rsasign(R,S,K).

} signature
derivation

r2: says(P1,_,R),
rsapubkey(P1,K),
rulesig(R,S) →
 rsaverify(R,S,K).

signature
check
constraint

}

Delegation (Basic)

alice “speaks-for” bob == “if alice says something, bob says it too.”

bob

r2: active(R) says(alice,bob,R).←

r1: active([| active(R) says(P2,P1,R). |]←) delegates(P1,P2).←

delegates(bob,alice).
“I will believe (i.e. say)
any rule that alice says”

alice

says(alice,bob,R).

speaks-for is a special form of delegation:
● delegates(P1,P2) prin(P1), prin(p2).→

Other cool features (see paper for details)

● Conditional Delegations:
◦ Constraint by width, depth, or predicates
◦ Detecting delegation violations (use of provenance)

● Customizable distribution/partitioning policies
◦ Partition data and rules by principals
◦ Distribute principals across machines
◦ Same security policy rules can run in local/distributed environment

● Customizable authentication and encryption (RSA vs HMAC)
● Use meta-rules to rewrite top-down access control to execute

in a bottom-up evaluation engine
● Example languages:

◦ Binder
◦ Delegation logic, D1LP
◦ Secure Network Datalog [ICDE 09]

▪ Authenticated routing protocols

LogicBlox – a commercial Datalog Engine

● Startup company based in Atlanta (50 employees + 65
academic collaborators)

● Decision Automation Applications:
◦ Retail supply-chain management (Predictix) – e.g: Best Buy, Sainsbury,
◦ Insurance risk management (Verabridge) – e.g. RenRe
◦ Context Sensitive Program Analysis (Semmle) - TBD

● LBTrust is developed using LogicBlox:
◦ Classic datalog with well behaved constructors or E variables in head
◦ Constraints
◦ Meta-programmability: model, rules, constraints
◦ Higher-Order: gets us aggs, state + ECA, default values, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

