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Abstract—This paper presents the design and implementation
of declarative policy-based adaptive MANET routing proto-
cols. Our work builds upon declarative networking, a recent
innovation for building extensible network architectures using
declarative languages. We make the following contributions.
First, we demonstrate that traditional MANET protocols can
be expressed in a compact fashion as declarative networks. We
validate these declarative protocols via an experimental study on
the ORBIT wireless testbed and a cluster-based emulation envi-
ronment. Second, we demonstrate that policy-driven adaptation
can be specified in a generic set of declarative rule-based policies
that dictate the dynamic selection of different protocols based
on network conditions. Third, we conduct extensive evaluation
results of declarative policy-based adaptation of MANET routing
on the ORBIT wireless testbed and the cluster-based emulation
environment. Our experimental results show that the specified
policies enable MANETs to dynamically hybridize a variety
of routing protocols to achieve a good tradeoff in bandwidth
utilization and route quality.

I. INTRODUCTION

In the past decade there has been intense activity on the
development of routing protocols for mobile ad hoc networks
(MANETs). A wide variety of routing protocols have been
proposed, all with their own strengths and weaknesses, and
all with varying degrees of success. For example, reactive
routing protocols such as DSR [8] and AODV [13] set up
routing state on demand and hence are preferred for low traffic
environments; proactive routing protocols such as OLSR [5]
on the other hand expend network bandwidth to gather routing
state with a purpose of amortizing this extra cost over multiple
traffic flows – hence these are better for high traffic load
environments, in general. Recently researchers have focused
on the disruption tolerance aspects of MANETs that are at best
intermittently connected, e.g., epidemic routing protocols.

Due to a wide range of variability in network connectivity
and also a wide range of data traffic patterns, a one-size-
fits-all MANET routing algorithm does not exist. Hybrid
routing protocols attempt to address the above problem by
combining features from various pure protocols, such as those
of proactive or reactive types. While extant protocols in the
hybrid category (e.g. [6], [17], [14], [7]) have systematic logic
behind their design, they are still restrictive and are specified
in a stove-piped manner. As a result, the no-one-size-fits-all
argument also applies to these hybrid protocols. In reality,
these protocols perform well only under certain conditions,
and require additional heuristics to achieve good performance
in scenarios where they are not designed for.

Ideally, one would like to have a platform to create highly
customizable hybrid protocols by composing any number of
known protocols, provided the policies, rules, and conditions

for switching amongst them are clearly specified. To this end,
we present our approach of using declarative languages to
build policy-driven hybrid protocols. First, known protocols
such as link state and epidemic protocol are specified in a
database query style declarative language. Second, rule-based
adaptation policies dictating when to use which protocols on
what conditions are specified in the same language. Finally,
the runtime system automatically compiles the protocols and
policies into actual implementations.

The approach has the following benefits: (1) hybrid proto-
cols written in declarative language are highly customizable,
because protocols and policies are both specified in the same
high-level language as first class concerns, suggesting oppor-
tunities for making finer-grained customizations on runtime
adaptation; (2) the declarative framework enables quick pro-
totyping and analysis of complex hybrid protocols in realistic
environments in addition to network simulators. The protocol
specifications are usually orders of magnitude shorter than
the corresponding imperative implementations in languages
like C/C++ or Java. Furthermore, shared protocol components
can be reused and composed to create new hybrid protocols.
Specifically, our contributions are as follows:

Declarative MANET routing protocol implementations: We
demonstrate that MANET protocols such as various variants
of Link State routing and Epidemic routing can be specified
compactly as declarative networks [3], [11]. We validate these
protocols by executing them on MANETs emulated on a
testbed cluster and on 33 nodes (in 802.11 ad-hoc mode) on
the ORBIT [1] wireless testbed.

Policy-based runtime adaptation: We demonstrate how
policy-based decisions for creating hybrid protocols can be
expressed in the same declarative language, and used to switch
between protocols. For example, switching between different
variants of link-state routing based on network dynamics
and density, and switching between proactive and epidemic
protocols in different parts of the network.

Experimental validation: We experimentally validate a vari-
ety of policy-based adaptive MANETs in dynamic settings on
the ORBIT wireless testbed and in the cluster-based emulation
environment. The results demonstrate that our approach en-
ables MANETs to flexibly and dynamically adapt their routing
protocols to achieve a good tradeoff in bandwidth utilization
and route quality.

To our best knowledge, our work is one of the first at-
tempts at evaluating a wide range of MANET protocols in
combination on an actual wireless testbed. In addition to our
contributions on policy-based adaptive MANETs, our work



also demonstrates that declarative networking techniques can
be used effectively to rapidly prototype, deploy, and compare
across a variety of MANET protocols. Moreover, the declar-
ative framework enables the ability to rapidly explore a wide
range of deployment and implementation parameters necessary
for tuning the performance of MANET routing protocols.

II. BACKGROUND

The high level goal of declarative networks is to build ex-
tensible architectures that achieve a good balance of flexibility,
performance and safety. Declarative networks are specified us-
ing Network Datalog (NDlog), which is a distributed recursive
query language for querying networks.

Declarative queries such as NDlog are a natural and compact
way to implement a variety of routing protocols and overlay
networks. For example, traditional routing protocols such as
the path vector and distance-vector protocols can be expressed
in a few lines of code [3], and the Chord distributed hash table
in 47 lines of code [11]. When compiled and executed, these
declarative networks perform efficiently relative to imperative
implementations.

NDlog is based on Datalog [15]: a Datalog program consists
of a set of declarative rules. Each rule has the form p :-
q1, q2, ..., qn., which can be read informally as “q1 and
q2 and ... and qn implies p”. Here, p is the head of the
rule, and q1, q2,...,qn is a list of literals that constitutes the
body of the rule. Literals are either predicates with attributes
(which are bound to variables or constants by the query), or
boolean expressions that involve function symbols (including
arithmetic) applied to attributes.

Datalog rules can refer to one another in a mutually recur-
sive fashion. The order in which the rules are presented in a
program is semantically immaterial; likewise, the order predi-
cates appear in a rule is not semantically meaningful. Commas
are interpreted as logical conjunctions (AND). Conventionally,
the names of predicates, function symbols, and constants begin
with a lowercase letter, while variable names begin with an
uppercase letter. Function calls are additionally prepended by
f_. Aggregate constructs are represented as functions with
attribute variables within angle brackets (<>). We illustrate
NDlog using a simple example of two rules that computes all
pairs of reachable nodes in a network:

r1 reachable(@S,N) :- link(@S,N).
r2 reachable(@S,D) :- link(@S,N), reachable(@N,D).

The rules r1 and r2 specify a distributed transitive closure
computation, where rule r1 computes all pairs of nodes
reachable within a single hop from all input links (denoted
by the link, and rule r2 expresses that “if there is a link
from S to N, and N can reach D, then S can reach D.”
The output of interest is the set of all reachable(@S,D)
tuples, representing reachable pairs of nodes from S to D.
By modifying this simple example, we can construct more
complex routing protocols, such as the distance vector and
path vector routing protocols.

NDlog supports a location specifier in each predicate,
expressed with the @ symbol followed by an attribute. This

attribute is used to denote the source location of each corre-
sponding tuple. For example, all reachable and link tuples
are stored based on the @S address field. To support wireless
broadcast, we have introduced a broadcast location specifier
denoted by @* which will broadcast a tuple to all nodes within
wireless range of the node where the rule is executed.

NDlog queries are compiled and executed as distributed
dataflows by the query processor to implement various net-
work protocols. These dataflows share a similar execution
model with the Click modular router [9], which consists of
elements that are connected together to implement a variety
of network and flow control components. In addition, elements
include database operators (such as joins, aggregation, selec-
tions, and projects) that are directly generated from the NDlog
rules. Messages flow among dataflows executed at different
nodes, resulting in updates to local tables, or query results
that are returned to the mobile hosts that issued the queries.
The local tables store the network state of various network
protocols.

Predicates refer to tables which themselves are declared as
soft-state with lifetimes. Event predicates (whose names start
with an additional “e”) are used to denote transient tables
which are used as input to rules but not stored. For example,
utilizing the built-in periodic keyword , node X periodically
generates a ePing event every 10 seconds to its neighbor Y
denoted in the link(@X,Y) predicate:

ePing(@Y,X) :- periodic(@X,10), link(@X,Y).

III. DECLARATIVE MANET ROUTING

In this section, we demonstrate how a variety of MANET
protocols can be expressed using the declarative framework.
Due to space constraints, we focus primarily on proactive
protocols and one representative epidemic protocol. We have
also experimented with the DSR reactive protocol. This section
sets the stage for Section V where we discuss policies for
hybridizing and switching between different protocols.

A. Proactive Protocols

A well studied proactive protocol is the link-state protocol,
in which the entire topology is disseminated to all nodes in the
network. We show first an example for network-wide flooding
of link-state (LS) updates in traditional link-state, followed by
two variants of link-state commonly used in MANET settings.
Traditional dissemination of link state information is expressed
by the following NDlog rules:

ls1 lsu(@S,S,N,C,S) :- link(@S,N,C).
ls2 lsu(@M,S,N,C,Z) :- link(@Z,M,C1),

lsu(@Z,S,N,C,W), M!=W.

lsu(@M,S,N,C,Z) is a link state update (LSU) corre-
sponding to link(S,N,C), which indicates a link between
node S and N with a cost of C. This LSU tuple is flooded in
the network starting from source node S. During the flooding
process, node M is the current node it is flooded to, while node
Z is the node that forwarded this tuple to node M.

Rule ls1 generates an lsu tuple for every link at each
node. Rule ls2 states that each node Z that receives an lsu



tuple recursively forwards the tuple to all neighbors M except
the node W that it received the tuple from. Datalog tables are
set-valued, meaning that duplicate tuples are not considered
for computation twice. This ensures that no similar lsu tuple
is forwarded twice.

The above LS rules perform triggered updates continuously:
whenever a link is added or deleted, a corresponding lsu
is inserted or deleted locally, and then flooded to the entire
network. As an alternative, one may prefer to implement link-
state via periodic updates by modifying rule ls1 as follows:

ls1p lsu(@S,S,N,C,S) :- periodic(@S,10),
link(@S,N,C).

ls2p lsu(@M,S,N,C,Z) :- link(@Z,M,C1),
lsu(@Z,S,N,C,W), M!=W.

In rule ls1p we utilize the periodic keyword to flood
once in every 10 seconds. In practice, a combination of
triggered updates for timeliness and periodic updates for
robustness are used. The declarative framework enables both
approaches naturally via modifications to a single rule, demon-
strating the power of declarative programming. In addition,
batched triggered updates in which updates are batched and
propagated at fixed intervals can also be concisely expressed
within this framework. Once the entire network topology,
i.e., all the links represented in lsu tuples, are available at
each node, an additional 4 rules are required to compute
the shortest paths with minimum cost C for each source S
and destination D. The process is equivalent to executing the
Dijkstra’s algorithm locally.

Our example above utilizes unicast communication, where
each link tuple results in an lsu tuple being sent via unicast
to each neighbor. Using the broadcast location specifier @*
described in Section II, the following rules broadcast link
information to all neighbors within the wireless range of each
node S:

ls1b lsu(@*,S,N,C,S) :- link(@S,N,C).
ls2b lsu(@*,S,N,C,Z) :- lsu(@Z,S,N,C,W).

Optimized Link-state Routing (OLSR): A well-known
proactive MANET protocol is OLSR (Optimized Link State
Protocol) [5]. OLSR ensures efficient flooding since only a
subset of neighbors known as multipoint relays (MPR) keeps
forwarding LSUs. The union of the neighbor sets of MPRs
of any node X is equal to the set of 2-hop neighbors of X.
The following rules olsr1-2 are modified from rule ls1-2
to implement OLSR-style flooding of LSUs:

olsr1 lsu(@S,S,N,C,S) :- periodic(@S,10),
mprSelector(@S,N,C).

olsr2 lsu(@*,S,N,C,Z) :- lsu(@Z,S,N,C,W),
mprSelector(@Z,M,C1), M==W.

The mprSelector predicate in rule olsr1-2 denotes the
MPR selector tuples each storing multipoint relay selector
node M for node Z (i.e. node M chooses node Z as one MPR
node) . This predicate itself can be defined with additional
rules to customize the definition of MPR. Compared to pure
link-state protocol, in OLSR only mprSelector tuples instead
of link are flooded as LSUs (as shown in rule olsr1), and

only MPR nodes keep forwarding received LSUs (as shown
in rule olsr2).

Hazy-sighted Link-state (HSLS): Hazy Sighted Link State
routing (HSLS) [18] is a scalable LS routing variant for
handling moderate to high rate of change in network topology.
This protocol attempts to control the scope and frequency of
its LSU flooding scheme based on the topology of the network.
The basic principle of HSLS is that route calculation of a node
should not be affected significantly by link dynamics due to
mobility or failure in a portion of network that is far away from
this node. Hence unlike the pure LS protocol which always
performs network wide flood of all LSUs, HSLS sends LSUs
to the 2k hop neighbors of a node with a period equal to 2kTe,
where Te is a nominal period. If link dynamics are high, pure
LS starts thrashing because remote nodes could receive an
LSU corresponding to a link that has long vanished.

Policy rules used in HSLS are expressed as follows:
hsls1 lsu(@S,S,N,C,S,TTL) :- periodic(@S,T),

link(@S,N,C), T=f_pow(2,K)*Te,
TTL=f_pow(2,K), K=range[1,10].

hsls2 lsu(@M,S,N,C,Z,K-1) :- lsu(@Z,S,N,C,W,K),
link(@Z,M,C1), K>0, M!=W.

Rule hsls1 is periodically fired, and the period of execution
depends on 2KTe. Note that here we add one more attribute for
lsu tuple, which is TTL used for controlling flooding scope.
In declarative networking, it is easy to modify tuples, such as
adding and deleting their attributes due to the need of different
protocols. Rule hsls2 keeps forwarding LSUs if their TTL is
larger than 0. Similar to LS, the HSLS rules can be modified
to support triggered updates or batched triggered updates. If
triggered updates are used, in order for all LSUs to reach
every node, a periodic network-wide LSU flooding needs to
be carried out based on the nominal period Te.

B. Epidemic Protocols

Epidemic routing has been proposed for reliable delivery
in intermittently connected MANETs (a class of disruption
tolerant networks or DTNs). A key reliability component of
such protocols is the summary vector exchange as illustrated
by the rules e1-4 below:
e1 eBitVecReq(@Y,X,V):- summaryVec(@X,V),

eDetectNewLink(@X,Y).
e2 eBitVecReply(@X,Y,V):- eBitVecReq(@Y,X,V1),

summaryVec(@Y,V2),
V=f_vec_AND(V1,f_vec_NOT(V2)).

e3 eNewMsg(@Y,I,S,D):- eBitVecReply(@X,Y,V),
msgs(@X,I,S,D),
f_vec_in(V,I)==true.

e4 msgs(@Y,I,S,D):- eNewMsg(@Y,I,S,D).

In rule e1, node X detects that a new link comes to
be available, then it retrieves its local summaryVec table,
consisting a bit vector where the ith bit denotes the receipt
of the ith message, and then generates a eBitVecReq request
to the neighbor Y connected by the new link. Upon receiv-
ing the request, node Y performs a bitwise AND operation
(f_vec_AND) between the incoming summary vector V1 and
the negation (f_vec_NOT) of local summary vector V2 to
generate a new vector V which is sent back to X. This new



vector V denotes messages seen by X but not Y. Rules e3-4
then enables node X to filter local messages to be sent based
on the bit vector V stored in the reply, which are then put in
the local msgs table after transmission.

IV. EVALUATION OF DECLARATIVE MANET ROUTING

As a feasibility analysis of declarative MANETs, we per-
form an evaluation of three MANET protocols described in
Section III: proactive LS, OLSR, and HSLS. We base our
evaluation on the P2 declarative networking system [2], and
validate the behavior of the declarative protocols in a cluster-
based emulation environment and on the ORBIT wireless
testbed [1].

A. Local Cluster Emulation

Our first set of experiments is carried out on a local
cluster with 15 Pentium IV 2.8GHz PCs with 2GB RAM
running Fedora Core 6 with kernel version 2.6.20, which are
interconnected by high-speed Gigabit Ethernet. When running
the protocols, we execute several P2 nodes on each cluster
node, and together, these nodes execute declarative MANET
routing protocols to compute the shortest paths in the network.
In this setting, we emulate network connectivity by initializing
the link table of each node such that every node has three
neighbors. This setup allows us to validate the scalability
trends (in terms of bandwidth utilization) of each protocol.

Figure 1 shows the per-node communication overhead of
LS, OLSR, and HSLS protocols as the network size increases.
All three protocols utilize periodic propagation of LSUs at 10
seconds interval (i.e. similar for the nominal period in HSLS).
In our protocols, we measure the aggregate communication
overhead required for each node to propagate its LSUs to other
nodes.

We observe that the communication overhead increases lin-
early as the network size increases, a scalability trend that one
would expect in link state protocols. Moreover, as expected,
LS incurs the highest communication overhead, followed by
OLSR, and HSLS. Intuitively, OLSR incurs lower commu-
nication overhead than LS since flooding is only performed
via MPRs, whereas HSLS requires the least communication
overhead as it sacrifices optimality for performance via the
use of scoped flooding.

In addition to LS, OLSR, and HSLS, we have also imple-
mented DSR and summary-based epidemic routing in 11 rules
and 17 rules respectively. When executed in the same setup,
these protocols exhibit expected protocol behavior and per-
formance characteristics. For instance, in DSR, the per-node
communication overhead increases linearly as the number of
route requests increases. We notice a similar linear trend for
DSR when we fix the number of queries, but increase the
network size.

Overall, our results demonstrate that in a cluster-based
emulation environment, declarative MANET implementations
are able to achieve the same scalability trends as one may
expect from the respective protocols being implemented.

B. ORBIT Wireless Testbed Evaluation

The cluster-based environment enables us to study the
protocols within a controlled environment. To study declarative
MANET protocols in an actual wireless environment, we
evaluate two variants of link-state protocol (LS and HSLS) on
the ORBIT wireless testbed [1]. The ORBIT testbed consists
of machines with 1 GhZ VIA Nehemiah processors, 64KB
cache, 512MB RAM, and supports two types of network
adapters (Intel Pro-wireless 2915-based 802.11 a/b/g and
Atheros AR5212-based 802.11 a/b/g). Nodes on the ORBIT
testbed are placed a meter apart from one another in a grid
and run with 1dBm transmit power.

Our evaluation is based on the P2 declarative networking
system, with additional enhancements to support broadcast-
based wireless communication. We utilize 33 testbed nodes
within a 7m × 5m grid area1 for our experiments. Each
ORBIT machine executes an instance of a P2 process. In
the static network configuration, we generate random network
topology, in which nodes are configured to communicate with
6-8 random neighbors. The neighborhood information is used
to create the link table at each node. We utilize iptables to
filter packets at the MAC layer so that each node only receives
broadcasting messages from its designated neighbors.

Figure 2 shows the per-node bandwidth utilization (in KBps)
measured from running the 33 nodes MANET executing either
LS or HSLS protocols. By default, we configure all nodes in
802.11a ad-hoc mode with RTS/CTS for packets larger than
768 bytes and a retry number of 3. In both protocols, given
our use of broadcast communication to disseminate LSUs to
neighbors, RTS/CTS and retries are not invoked. We have
selected 802.11a as it is less susceptible to interference on
the ORBIT testbed compared to 802.11b.

The periodic flooding interval in LS is set to 30 seconds.
Since not all nodes are started at the same time, the network-
wide flood occurs over an interval of 20 seconds in the entire
network, as shown by the per-node communication overhead
peaks at 43-63KBps every 30 seconds. In contrast, HSLS
incurs considerably less bandwidth due to the use of scoped
flooding. Given a nominal period Te of 30 seconds, the per-
node communication overhead of LS and HSLS is 16KBps
and 8KBps respectively. Moreover, our declarative HSLS
implementation exhibits expected periodic scoped flooding
behavior from the protocol specification. At regular intervals
of 60 seconds, the per-node bandwidth utilization of HSLS
peaks at 10KBps (for floods of TTL=2), whereas, at larger
intervals of 120 seconds, the peaks are higher at 25 KBps.
At the largest intervals, HSLS incurs the same overhead as
LS for each network-wide flood. These results are consistent
with what one would expect from the protocol behavior and
performance of LS and HSLS.

In Section VI, we will present additional evaluation results
for these protocols in a dynamic network environment and
study the impact of adaptation policies on the performance of
these protocols.

1Two of the nodes within our selected 7x5 grid were down at the time of
the experiment.
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V. POLICY-BASED ADAPTIVE MANET ROUTING

Building upon the basic declarative MANET protocols in
the previous section, in this section, we demonstrate the con-
struction of adaptive hybrid protocols by applying appropriate
policies to available declarative protocol code. Such protocol
behaviors are often necessary in MANETs for adapting to a
wide range of network and traffic conditions. The policy-based
examples described in this section are by no means exhaustive.
We focus our examples and subsequent evaluation primarily
on adapting a MANET protocol based on link dynamics and
mobility. Other inputs to policies such as quality-of-service
requirements, traffic patterns and network density are also
possible and worth exploring.

Hybrid protocols attempt to combine the best features from
various pure protocols and attempt to operate in one of the
constituent modes depending on the network dynamics, traffic
conditions, and other requirements such as reliability, security
etc. If there were a perfect oracle that could learn about the
entire network state, it would be easy to write switching rules
for representing hybrid protocols in the sense that a node
could decide to always run the optimal protocol that is most
appropriate for the current scenario.

In the absence of this global information at every node
in the network, it is still possible to write a generic set of
policies that can allow run-time adaptation based on local state
available at each node. However, characterizing the optimality
and stability of such composite protocols in a general sense
is an open and orthogonal problem. In this paper, we focus
on demonstrating how hybrid composition could be facilitated
with little effort using the declarative paradigm. Stability and
optimality analysis is an interesting topic for future research.

A. Hybrid Link-state Protocols

The primary disadvantages of HSLS is that it sacrifices
optimality in routing to the need for scalability. This is because
it gathers imperfect information about the network topology
and computes routes on this topology. Imperfect topology
knowledge may result in computation of suboptimal routes,
and this effect can be pronounced in somewhat dynamic but
sparsely connected topologies.

There are a variety of metrics in which one can use to quan-
tify the degree of mobility on a per-link basis in a network. The

metric we explore is average availability (AA) [16], which is a
metric of link to indicate its average fraction of time in that the
link are available for use in the recent past. AA is calculated
as the total time that a link’s status is up divided by the total
time since it was detected. This metric itself can be computed
based on received LSUs, and is expressible using 5 declarative
rules.

If the link AAs stop fluctuating wildly in most parts of the
network as indicated by gathered LSUs, one may decide to
switch from HSLS to pure LS routing since that may yield
near-optimal routes with a lower stretch2. Moreover, a stable
network will result in fewer triggered updates, ensuring that
LS does not incur unnecessarily high control traffic.

Based on the HSLS rules presented earlier, one can further
define a generic policy that allows us to switch between
HSLS and LS based on the computed average AA of all links
collected in the network. The average AA threshold below
which to switch to pure LS is a configuration parameter that
is set either by analysis or experimentation. This policy can
be expressed by the following rules:
#include ls1, ls2, hsls1, hsls2
#define THRES 0.5
s1 averageLinkAvail(@M,AVG<AA>) :-

lsu(@M,S,N,C,Z,TTL,AA).
s2 useHSLS(@M) :- averageLinkAvail(@M,AA), AA<THRES.
s3 useLS(@M) :- averageLinkAvail(@M,AA), AA>=THRES.

#include is a macro used to include earlier rules. Rule
s1 computes at node M the average AA of all links gathered
from the LSUs that pass through M. Note that we add one
additional attribute which is link AA for every LSU tuple here.
Rules s2-3 generate useHSLS and useLS predicates which
are then added to rules hsls1 and ls1, respectively.

Any form of protocol adaptation requires extensive exper-
imentation and tuning, especially under a large number of
network variables. A declarative protocol design is much more
suited for that style than traditional protocol design due to its
conciseness. To encode a new policy (e.g. use LS instead of
HSLS when the network is sparse with high frequency of link
updates), one only needs to modify the above rules to generate

2Given the source and the destination of a routing request, the stretch of
the route is the ratio of the hop count of the path selected by the routing
algorithm to that of the optimal path given by the oracle with complete and
instantaneous knowledge of the entire network topology.



useHSLS and useLS without having to change the rules for the
individual protocols themselves. Several metrics (in addition to
link AA) can be easily composed declaratively. For instance,
network density can be computed based on a rule that uses a
combination of group-bys and aggregates (counts and average)
across all links. The main point is not whether one policy is
superior to another, but rather that the declarative framework
makes such policy specifications concise and flexible.

B. Hybrid Proactive-Epidemic
As an alternative example, one can utilize a hybrid

proactive-epidemic protocol, useful in a disruption-tolerant
setting. This hybrid protocol switches between two modes
of operation: (1) single path LS message forwarding in well
connected parts of the network under low mobility, and (2)
multi-path epidemic style message flooding in disrupted parts
of the network under high mobility. In the simplest form, one
can utilize the average link AA (presented in Section V-A) to
decide at each node whether to use LS or epidemic based on a
threshold. This policy is expressed using the following rules:
#include ls1, ls2, e1, e2, e3, e4
#define THRES 0.5
le1 averageLinkAvail(@M,AVG<AA>) :-

lsu(@M,S,N,C,Z,TTL,AA).
le2 useEpidemic(@M,S,D) :- averageLinkAvail(@M,AA),

message(@M,S,D), AA<THRES.
le3 useLS(@M,S,D) :- averageLinkAvail(@M,AA),

message(@M,S,D), AA>=THRES.

In the above rules, rule s1 computes the average link AA,
which is then used by rules s2-s3 to determine whether to
use epidemic-based routing or LS accordingly. Interestingly,
this policy requires that all nodes receive up-to-date LSUs – a
challenge particularly in cases where the network may experi-
ence momentary partitions. One solution that we have explored
(and validated successfully in later experimental section) is the
use of epidemic flooding of the LSUs themselves.

The Anxiety-Prone Link-State (APLS) protocol [14] is a
more sophisticated version of a proactive-epidemic policy that
takes into account the end-to-end cumulative AA along a path
from source to destination. The following set of rules demon-
strate the ease at which these policies can be implemented:
#include ls1, ls2, e1, e2, e3, e4
#include bp1, bp2, bp3, bp4
#define THRES 1.2
pe1 useEpidemic(@M,S,D) :- bestPath(@M,S,D,P,C),

C>THRES.
pe2 useLS(@M,S,D) :- bestPath(@M,S,D,P,C),

C<=THRES.

In the rules above, at any node M, bestPath computes
the cost of the shortest path between S and D (rules bp1-4
is for computing best paths), which is then used by rules
pe1-2 to determine whether to use LS or epidemic routing.
Intuitively, low values of path cost indicate that S and D are in
a connected component whereas high values indicate that link
availability is low, or LSU information is unavailable or stale,
hence epidemic protocol is desired under those circumstances
to improve delivery probability.

Note that while our first example illustrates switching the
underlying dissemination scheme, the latter illustrates how to

switch the route computation and forwarding. The declarative
framework and compact specifications make it easy to write
other (more intelligent) switching rules in this scenario.

VI. EVALUATION OF POLICY-BASED MANET ROUTING

In this section, we perform an experimental evaluation to
validate the benefits of policy-based adaptation via declarative
networking. We utilize a combination of measurements ob-
tained from a deployment on the ORBIT wireless testbed and
emulation within a local cluster environment.

A. ORBIT Experimental Setup

We utilize the same ORBIT testbed described in Sec-
tion IV-B, with additional mechanisms to emulate mobility.
Given that nodes on the ORBIT testbed are static, we emulate
random waypoint mobility as follows: each ORBIT node is
initially assigned an x-y coordinate which is then updated
based on the random waypoint model. Neighbors are then
determined based on nodes that are at most 1.5 meters away
in Cartesian distance based on the most recent coordinates.
Similar to the earlier setup, we utilize iptables to filter
packets at the MAC layer so that each node only receives
broadcasting messages from its designated neighbors. The
filters are updated as each node’s neighborhood information
is modified.

This approach enables one to dynamically adjust neigh-
borhood information on ORBIT even though the nodes are
physically static. This flexibility however comes at the expense
of the increased likelihood of transmission collision (and hence
dropped frames) since each node’s neighbors may be not the
ones that are physically closest on the grid. In all variants of
link-state routing, to reduce the likelihood of collisions, we
de-synchronize the time at which all nodes flood LSUs by
spacing out the starting time of nodes. This reduces the peak
bandwidth utilization when all nodes are sending LSUs to all
other nodes. To reduce packet interference caused by potential
simultaneous broadcast of LSUs, we add a random jitter of 0
to 0.1 seconds to every broadcast.

B. Hybrid Link-state Protocol

Our first evaluation study involves Hybrid-LS, a policy-
driven link-state protocol described in Section V-A. Hybrid-
LS utilizes traditional LS routing when the network is stable,
and HSLS when unstable. We compare Hybrid-LS with two
declarative implementations of link-state routing presented
earlier: LS and HSLS.

In all link-state protocols, we utilize batched triggered
updates introduced in Section III-A, which ensures that link
updates are batched and propagated periodically. In other
words, each node periodically batches up all link updates in
the previous period, and sends out the corresponding LSUs.
In our experiments, we set the propagation period to be 1
second, corresponding to the flooding period in LS and the
nominal period Te in HSLS. Interestingly, we observe from
our ORBIT experiments that the choice of the propagation
interval has a significant impact on packet loss (and hence
route quality). While larger intervals potentially benefit from



batching by packing several LSUs within a packet, sending
many LSUs in a single batch may result in increased collision
in the network.

In addition to periodic batched updates, there is network-
wide refresh of link-state information performed periodically
at intervals of 60 seconds. Correspondingly, LSUs that are not
refreshed will time-out after 65 seconds. Given the triggered
updates, this network-wide refresh is not strictly necessary.
However, this ensures that all nodes eventually learn about the
network topology via a soft-state refresh mechanism. This is
particularly useful given that transient network partitions result
in LSU packet losses during triggered updates. In addition, for
HSLS, its scoped flooding prevents the protocol from learning
about the network-wide topology necessary for computing
average link AA (Section V-A). We note that our use of
declarative programming ensures that selecting the flooding
mechanism (periodic network-wide flood vs batched triggered)
and tuning propagation intervals can be easily achieved by
adding/modifying a few NDlog rules.

Mobility setup: To explore extremes in mobility patterns,
we alternate at 60 seconds interval between three degrees of
mobility using the random waypoint model: stationary stage
in which all nodes stay in their current positions, moderate
stage, in which nodes move at a moderate speed of 0.06 m/s,
and fast stage, in which nodes move at 0.15 m/s. Figure 3
shows the mobility setup in terms of link events per second,
where each event corresponds to an update (insertion followed
by deletion) to the link table at the node whose neighborhood
has been updated. On average, each node has 6-8 neighbors.
We note that at moderate speed (the 2nd and 4th intervals), link
events occur at a frequency of 6.5 events/second on average
in the entire network. At fast speed (final interval), link events
increase to 16.5 events/seconds.

Average link AA: The link average availability (AA) metric
(first introduced in Section V-A ) reflects the stability of each
link, expressed as the fraction of time a link has been up in
the recent past. Given that each node receives LSU updates
from the network, each node can then compute the network-
wide average availability, by averaging across all link AAs.
The higher the average network-wide AA, the more stable the
overall network is.

Figure 4 shows the average link AA (computed by averaging
across the individual averages computed at each node) and
validates that our mobility model is behaving as expected, and
that the LSU propagation (and subsequent AA computations
at each node) is able to reflect the current state of the network.
We observe that when the network is stable, the average
network-wide link AA is 1, and at periods of moderate speed,
the average link AA can drop to as low as 0.88, only to
recover to 1 when the network is stable again. At fast speed,
we observe that link AA drops to 0.65. While the link AA
is consistent across all three protocols, we observe that link
AA is lower for LS under high mobility. This is due to the
high frequency of collisions caused by excessive flooding of
LSUs when LS is used. We will revisit this phenomenon when
comparing packet losses across all three protocols.

Comparing LS and HSLS. One of the main advantages of
Hybrid-LS over traditional LS and HSLS is that it attempts to
find a good balance between communication overhead induced
by LSUs and route quality. In the remaining of this section,
we try to quantify these tradeoffs by first comparing LS and
HSLS in terms of their communication overhead and route
quality, and then contrast their performance against Hybrid-
LS. Figures 5-7 compare LS and HSLS based on the per-
node bandwidth utilization (KBps), and two measures of route
quality (stretch and validity). The respective averages are
summarized in Table I in the first and second columns.

Figure 5 shows per-node bandwidth utilization (KBps) ob-
tained via tcpdump for LS and HSLS during the corresponding
experimental run. Not surprisingly, LS incurs higher commu-
nication overhead compared to HSLS, averaging at 79.6KBps
compared to 48.0KBps for HSLS.

While LS consumes more bandwidth compared to HSLS,
it is able to compute higher quality routes. We consider two
well-known notions of route quality: route stretch as defined
in Section V-A, and route validity, a route is valid if at the
time it is computed from the local LSUs, all the links that
comprise the route are up.

Figure 6 compares the protocols by comparing the average
stretch of the 5% longest routes. We choose to plot the stretch
for 5% longest routes because stretch is typically a greater
concern for longer routes, whereas routes that have low hop-
counts are less impacted by stretch. We make the following
observations. First, a perfect stretch of 1 is typically only
achievable when all nodes are stationary. Second, at moderate
speed, LS results in routes that are of lower stretch, rarely
exceeding an average route stretch of 1.1, compared to HSLS
which achieves an average as high as 1.35. In the stationary
stage , both protocols eventually converge to a stretch of 1,
though LS is able to recover much quickly. At high speed, we
observe that the stretch of LS and HSLS is roughly equivalent,
average at 1.28 and 1.36 respectively.

We make a similar observation for the route validity metric,
as shown in Figure 7, where LS is able to achieve higher
percentage of valid routes at moderate speed, and equivalent
percentage of valid routes at high speed. Overall, our results
indicate that at moderate speed, LS is a desirable protocol
since it is able to compute high quality routes at relatively low
bandwidth utilization. At high speed, the use of LS becomes
counter-productive, as network-wide floods under churn result
in high communication overhead, which significantly degrades
the successful delivery of LSUs necessary for maintaining up-
to-date routes. In this case, the HSLS protocol is far more
desirable given that it achieves routes of equivalent quality
with lower communication overhead and significantly higher
packet delivery rates.
Benefits of Hybrid-LS: To validate that the specified policies
of Hybrid-LS can indeed adapt between LS and HSLS based
on computed network-wide average link AA, we perform a
similar evaluation study on the ORBIT testbed by measuring
the performance characteristics of Hybrid-LS. In this protocol,
the specified policy sets the THRES parameter described in
Section V-A to 0.80. THRES can be tuned either experi-
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Mobility Performance LS HSLS Hybrid-LS

High
BW (KBps) 146.8 94.3 116.8
Stretch 1.28 1.36 1.31
Validity 38.4% 38.2% 42.5%

Moderate
BW (KBps) 79.6 48.0 81.8
Stretch 1.07 1.17 1.05
Validity 81.4% 74.2% 81.8%

TABLE I
PERFORMANCE COMPARISONS (BANDWIDTH UTILIZATION FOR

TRIGGERED UPDATES, AVERAGE ROUTE STRETCH AND VALIDITY) AMONG
LS, HSLS AND Hybrid-LS DURING MODERATE AND HIGH MOBILITY.

mentally or by analysis, and adaptive tuning of this value is
an interesting avenue for future work.

Figure 8 shows the effects of this policy, by measuring
the percentage of nodes using HSLS during the experiment.
Not unexpected, LS and HSLS are insensitive to changing AA
values, since they are not policy driven. On the other hand,
we observe that in Hybrid-LS, nodes are able to quickly and
successfully adapt according to the policy. As AA is above the
threshold (shown in Figure 4), all nodes adapt their protocol to

utilize LS. Conversely, after time 325 seconds, as the network
becomes unstable, nodes start adapting to using HSLS. Since
there is a delay in the arrival of LSUs at different nodes, some
nodes are slower than others to adapt to the new protocol.
Eventually, all nodes adapt to using the HSLS protocol. At the
end of the experiment, as the network stabilizes, nodes begin
to re-adapts to using LS. Overall, we note that Hybrid-LS is
able to effectively adapt based on network conditions.

The third column of Table I summarizes the performance
characteristics of Hybrid-LS in comparison with LS and HSLS.
We note that Hybrid-LS is able to achieve a good balance
between communication overhead and route quality. In periods
where the network is in moderate mobility, Hybrid-LS adapts
to a more aggressive flooding strategy used by LS. Hence, the
protocol is able to achieve equivalent route quality compared to
LS, and higher route quality compared to HSLS. For example,
the average and peak route stretch of Hybrid-LS is 1.05 and
1.11 respectively. In contrast, HSLS results in an average and
peak route stretch of 1.17 and 1.33.

In periods of high mobility, Hybrid-LS adapts to using the
HSLS protocol. As a result, it is able to achieve equivalent
route quality compared to LS and HSLS, while utilizing only a
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fraction of the bandwidth that LS requires. By utilizing scoped
flooding, we observe that the packet loss ratios of both HSLS
and Hybrid-LS are significantly lower (12.2%) compared to
LS (68.9%).

All in all, our results demonstrate that Hybrid-LS is able
to achieve the desired protocols of both protocols given the
current network conditions, by leveraging LS’s capabilities
to achieve high quality routes under moderate mobility, and
adapting to HSLS’s lower bandwidth utilization and higher
packet delivery ratios at extreme rates of mobility.

C. Hybrid Proactive-Epidemic

Our next experiment evaluates another hybrid protocol,
one that combines proactive routing and epidemic routing, as
described in Section V-B. Due to the high bandwidth utiliza-
tion of the store-and-forward mechanisms used in epidemic
protocols, emulating mobility on the Orbit testbed in a similar
fashion as our earlier experiments results in high packet losses
and is hence infeasible. We instead carry out this experiment
using the cluster-based emulation environment described in
Section IV-A. We emulate a 35-node network, where each
node is an instance of a P2 declarative networking engine
executing different MANET rules and policies. Each one of
these 35 nodes runs an instance of the P2 system, and is
deployed on one of the 15 physical machines in the cluster
(i.e. each physical machine executes 2-3 P2 instances).

In our cluster emulation, random waypoint model is also
deployed. The 35 nodes are initially randomly placed within
a 7m × 5m arena, where we alternate at 60 seconds time
intervals between moderate mobility (random waypoint with
a speed of 0.03 m/s) and stability (speed of 0.001 m/s) in
the network. In order to create an intermittently disconnected
environment, the neighbor distance is reduced to 1.2 meters
during the moderate mobility interval.

The hybrid policy Hybrid-Epi depends on a similar network-
wide average link AA computed from LSUs. When AA thresh-
old is below 0.9, epidemic protocol is utilized. Otherwise,
traditional link-state is used. For comparison purposes, we
have included also the baselines of LS and Epidemic. In

periods of low connectivity with moderate mobility where
nodes are moving at a speed of 0.03m/s, in order to get timely
updates to link AAs, these three protocols all utilize epidemic
forwarding of LSUs introduced in Section V-B. To measure
packet delivery ratio, messages are forwarded from random
sources to destinations every 5 seconds.

Comparing LS and Epidemic. Table II provides a summary
of the average bandwidth consumption and average message
delivery ratio in periods of low and high connectivity. Given
that our setup involves nodes moving at a higher speed during
periods of low connectivity, the bandwidth utilization of LSU
dissemination is higher across all protocols during high con-
nectivity periods. A packet is considered successfully delivered
if it can reach its destination within a reasonable latency (set
to 65 seconds). We make the following observations for the
results. First, in periods of low connectivity, LS (3.2KBps)
incurs far less traffic than Epidemic (14.8KBps). However,
this comes at the expense of a lower message delivery rate
(80.1% as opposed to 100%). This is also reflected in the
message delivery ratio, where Epidemic is able to maintain
high message delivery ratio regardless of network mobility.
In periods of high connectivity with low mobility, LS clearly
benefits from having low communication overhead (0.25KBps,
primarily dominated by LSU updates) while achieving a high
message delivery ratio of 99.4%. On the other hand, Epidemic
achieves equivalent message delivery ratio at a much higher
overhead in communication (8.3KBps).

Benefits of Hybrid-Epi. As summarized in Table II, the
policies of Hybrid-Epi are adapted in order to achieve a
good balance between communication overhead and packet
delivery ratio. In periods of low connectivity, in order to ensure
high packet delivery in the disconnected network, Hybrid-Epi
utilizes an epidemic-style forwarding strategy, hence ensuring
high packet delivery ratio (100%). However, in periods of
high connectivity, because Hybrid-Epi switches to LS routing,
it is still able to achieve high packet delivery ratio (97.5%)
while maintaining lower overheads (0.24KBps). Interestingly,
we observe that in the process of switching from one protocol
to another, Hybrid-Epi incurs some packet losses (resulting in



2-3% reduction in average delivery ratios). To alleviate such
losses, one possible policy extension that we are exploring is
to for nodes to continue using Epidemic for an additional delay
as their neighboring nodes adapt to use the LS protocol.

Overall, Hybrid-Epi achieves the best features of both pro-
tocols, by adapting between two protocols based on network
conditions. In terms of packet delivery ratio, it generally has
equivalent performance compared to Epidemic, but is able to
avoid incurring the communication overhead in periods of high
connectivity that is observed in Epidemic.

Connectivity Performance LS Epidemic Hybrid-Epi

Low BW (KBps) 3.2 14.8 14.9
Delivery Ratio 80.1% 100% 100%

High BW (KBps) 0.25 8.3 0.24
Delivery Ratio 99.4% 100% 97.5%

TABLE II
AVERAGE BANDWIDTH UTILIZATION (KBPS) AND MESSAGE DELIVERY
RATIO IN PERIODS OF LOW AND HIGH CONNECTIVITY RESPECTIVELY.

VII. RELATED WORK

Of particular relevance to our work is the extensive liter-
ature on adaptive MANET routing protocols. These include
hybrid protocols such as Zone Routing Protocol (ZRP) [6],
SHARP [17] and ZHLS [7]. The declarative framework pre-
sented in this paper does not preclude such hybrid protocols. In
fact, the flexibility provided by declarative networking enables
one to better explore the design space of such hybrid protocols.

Prior to this paper, declarative networking has been studied
primarily in wired environments, such as IP routing [3] and
overlay network construction [11]. Recent work [4] has also
demonstrated the feasibility of using declarative techniques
to program sensor network protocols. The MANET settings
present new challenges posed by the presence of mobil-
ity in the network. In addition, the variability of wireless
environment presents compelling motivation for the use of
declarative framework for synthesizing a variety of protocols,
and expressing policy decisions that enable one to adaptively
select and compose protocols at runtime.

Reference [10] first proposes the use of declarative program-
ming to prototype and adapt MANET routing protocols. This
paper realizes the vision with a detailed design, analysis and
implementation on the ORBIT wireless testbed and cluster-
based emulation. We additionally flesh out several practical
issues on deploying MANETs, and presents scenarios on
policy-based adaptation which are validated via realistic exper-
imentation on the ORBIT testbed. Finally, we have proposed
and implemented extensions to the declarative networking
language and runtime system in order to support broadcast-
based wireless communication.

VIII. CONCLUSION

In this paper, we present a declarative framework on adap-
tive MANET routing protocols. We demonstrate that a variety
of MANET routing protocols can be specified tersely using the
NDlog declarative networking language. Furthermore, policy-
based decisions can be expressed within the same declarative

framework for runtime switching amongst protocols to create
hybrid adaptive protocols. We experimentally validate a variety
of declarative MANET routing protocols and policy-based
adaptive protocols on the ORBIT wireless testbed and cluster-
based emulation environment.

Our immediate steps include further experimentation on the
ORBIT wireless testbed as well as emulation software [14]
that enables us to evaluate our system in a variety of network
settings. We are particularly experimenting with more complex
policies that incorporate other metrics such as network density
and traffic patterns.

We are currently in the process of developing a declarative
network simulator, realized by integrating a declarative net-
working engine with the ns-3 [12] network simulator. Building
upon our MANET deployment experiences on the ORBIT
testbed, we are also exploring releasing a declarative MANET
routing toolkit for use on the ORBIT testbed for rapidly
prototyping, comparing and adapting across a wide range of
MANET protocols.
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