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Abstract

In this writing we shall address certain beautiful inter-relations between the con-
struction of 4-dimensional supersymmetric gauge theories and resolution of algebraic
singularities, from the perspective of String Theory. We review in some detail the
requisite background in both the mathematics, such as orbifolds, symplectic quotients
and quiver representations, as well as the physics, such as gauged linear sigma models,
geometrical engineering, Hanany-Witten setups and D-brane probes.

We investigate aspects of world-volume gauge dynamics using D-brane resolutions
of various Calabi-Yau singularities, notably Gorenstein quotients and toric singulari-
ties. Attention will be paid to the general methodology of constructing gauge theories
for these singular backgrounds, with and without the presence of the NS-NS B-field,
as well as the T-duals to brane setups and branes wrapping cycles in the mirror ge-
ometry. Applications of such diverse and elegant mathematics as crepant resolution
of algebraic singularities, representation of finite groups and finite graphs, modular
invariants of affine Lie algebras, etc. will naturally arise. Various viewpoints and
generalisations of McKay’s Correspondence will also be considered.

The present work is a transcription of excerpts from the first three volumes of the
author’s PhD thesis which was written under the direction of Prof. A. Hanany - to
whom he is much indebted - at the Centre for Theoretical Physics of MIT, and which,
at the suggestion of friends, he posts to the ArXiv pro hac vice; it is his sincerest
wish that the ensuing pages might be of some small use to the beginning student.
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the KITP of UCSB under NSF grant PHY94-07194, the Dept. of Physics of UPenn under #DE-
FG02-95ER40893, an NSF Graduate Fellowship, the Presidential Fellowship of MIT, as well as the
C. Reed Fund.

1



Præfatio et Agnitio

Forsan et haec olim meminisse iuvabit. Vir. Aen. I.1.203

Not that I merely owe this title to the font, my education, or the clime

wherein I was born, as being bred up either to confirm those principles my parents

instilled into my understanding, or by a general consent proceed in the religion of my

country; but having, in my riper years and confirmed judgment, seen and examined

all, I find myself obliged, by the principles of grace, and the law of mine own reason,

to embrace no other name but this.

So wrote Thomas Browne in Religio Medici of his conviction to his Faith. Thus

too let me, with regard to that title of “Physicist,” of which alas I am most unworthy,

with far less wit but with equal devotion, confess my allegiance to the noble Cause

of Natural Philosophy, which I pray that in my own riper years I shall embrace none

other. Therefore prithee gentle reader, bear with this fond fool as he here leaves his

rampaging testimony to your clemency.

Some nine years have past and gone, since when the good Professor H. Verlinde, of

Princeton, first re-embraced me from my straying path, as Saul was upon the road to

Damascus - for, Heaven forbid, that in the even greater folly of my youth I had once

blindly fathomed to be my destiny the more pragmatic career of an Engineer (pray

mistake me not, as I hold great esteem for this Profession, though had I pursued her

my own heart and soul would have been greatly misplaced indeed) - to the Straight

2



and Narrow path leading to Theoretical Physics, that Holy Grail of Science.

I have suffered, wept and bled sweat of labour. Yet the divine Bach reminds us in

the Passion of Our Lord according to Matthew, “Ja! Freilich will in uns das Fleisch

und Blut zum Kreuz gezwungen sein; Je mehr es unsrer Seele gut, Je herber geht es

ein.” Ergo, I too have rejoiced, laughed and shed tears of jubilation. Such is the

nature of Scientific Research, and indeed the grand Principia Vitæ. These past half

of a decade has been constituted of thousands of nightly lucubrations, each a battle,

each une petite mort, each with its te Deum and Non Nobis Domine. I carouse to

these five years past, short enough to be one day deemed a mere passing period, long

enough to have earned some silvery strands upon my idle rank.

And thus commingled, the fructus labori of these years past, is the humble work I

shall present in the ensuing pages. I beseech you o gentle reader, to indulge its length,

I regret to confess that what I lack in content I can only supplant with volume, what

I lack in wit I can only distract with loquacity. To that great Gaussian principle of

Pauca sed Matura let me forever bow in silent shame.

Yet the poorest offering does still beseech painstaking preparation and the lowliest

work, a helping hand. How blessed I am, to have a flight souls aiding me in bearing

the great weight!

For what is a son, without the wings of his parent? How blessed I am, to have

my dear mother and father, my aunt DaYi and grandmother, embrace me with four-

times compounded love! Every fault, a tear, every wrong, a guiding hand and every

triumph, an exaltation.

For what is Dante, without his Virgil? How blessed I am, to have the perspicacious

guidance of the good Professor Hanany, who in these 4 years has taught me so much!

His ever-lit lamp and his ever-open door has been a beacon for home amidst the

nightly storms of life and physics. In addition thereto, I am indebted to Professors

Zwiebach, Freedman and Jaffe, together with all my honoured Professors and teachers,

as well as the ever-supportive staff: J. Berggren, R. Cohen, S. Morley and E. Sullivan

at the Centre for Theoretical Physics, to have brought me to my intellectual manhood.

For what is Damon, without his Pythias? How blessed I am, to have such mul-
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titudes of friends! I drink to their health! To the Ludwigs: my brother, mentor

and colleague in philosophy and mathematics, J. S. Song and his JJFS; my brother

and companion in wine and Existentialism, N. Moeller and his Marina. To my col-

laborators: my colleagues and brethren, B. Feng, I. Ellwood, A. Karch, N. Prezas

and A. Uranga. To my brothers in Physics and remembrances past: I. Savonije and

M. Spradlin, may that noble Nassau-Orange thread bind the colourless skeins of our

lives. To my Spiritual counsellors: M. Serna and his ever undying passion for Physics,

D. Matheu and his Franciscan soul, L. Pantelidis and his worldly wisdom, as well as

the Schmidts and the Domesticity which they symbolise. To the fond memories of

one beauteous adventuress Ms. M. R. Warden, who once wept with me at the times

of sorrow and danced with me at the moments of delight. And to you all my many

dear beloved friends whose names, though I could not record here, I shall each and

all engrave upon my heart.

And so composed is a fledgling, through these many years of hearty battle, and

amidst blood, sweat and tears was formed another grain of sand ashore the Vast Ocean

of Unknown. Therefore at this eve of my reception of the title Doctor Philosophiae,

though I myself could never dream to deserve to be called either “learned” or a

“philosopher,” I shall fast and pray, for henceforth I shall bear, as Atlas the weight of

Earth upon his shoulders, the name “Physicist” upon my soul. And so I shall prepare

for this my initiation into a Brotherhood of Dreamers, as an incipient neophyte in-

truding into a Fraternity of Knights, accoladed by the sword of Regina Mathematica,

who dare to uphold that Noblest calling of “Sapere Aude”.

Let me then embrace, not with merit but with homage, not with arms eager but

with knees bent, and indeed not with a mind deserving but with a heart devout,

naught else but this dear cherished Title of “Physicist.”

I call upon ye all, gentle readers, my brothers and sisters, all the Angels and

Saints, and Mary, ever Virgin, to pray for me, Dei Sub Numine, as I dedicate this

humble work and my worthless self,

Ad Catharinae Sanctae Alexandriae et Ad Majorem Dei Gloriam...
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Invocatio et Apologia

De Singularitatis Algebraicæ, Graphicæ Finitatis, & Theorica Men-

suræ Branæ Dirichletiensis: Aspectus Theoricæ Chordæ, cum digressi

super theorica campi chordae. Libellus in Quattuor Partibus, sub Auspicio CTP et

LNS, MIT, atque DOE et NSF, sed potissimum, Sub Numine Dei.

Y.-H. E. He

B. A., Universitatis Princetoniensis

Math. Tripos, Universitatis Cantabrigiensis

We live in an Age of Dualism. The Absolutism which has so

long permeated through Western Thought has been challenged in every conceivable

fashion: from philosophy to politics, from religion to science, from sociology to aes-

thetics. The ideological conflicts, so often ending in tragedy and so much a theme of

the twentieth century, had been intimately tied with the recession of an archetypal

norm of undisputed Principles. As we enter the third millennium, the Zeitgeist is

already suggestive that we shall perhaps no longer be victims but beneficiaries, that

the uncertainties which haunted and devastated the proceeding century shall perhaps

serve to guide us instead.

Speaking within the realms of Natural Philosophy, beyond the wave-particle du-

ality or the Principle of Equivalence, is a product which originated in the 60’s and

70’s, a product which by now so well exemplifies a dualistic philosophy to its very

core.

What I speak of, is the field known as String Theory, initially invented to explain

the dual-resonance behaviour of hadron scattering. The dualism which I emphasise is

more than the fact that the major revolutions of the field, string duality and D-branes,

AdS/CFT Correspondence, etc., all involve dualities in a strict sense, but more so
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the fact that the essence of the field still remains to be defined. A chief theme of this

writing shall be the dualistic nature of String theory as a scientific endeavour: it has

thus far no experimental verification to be rendered physics and it has thus far no

rigorous formulations to be considered mathematics. Yet String theory has by now

inspired so much activity in both physics and mathematics that, to quote C. N. Yang

in the early days of Yang-Mills theory, its beauty alone certainly merits our attention.

I shall indeed present you with breath-taking beauty; in Books I and II, I shall

carefully guide the readers, be them physicists or mathematicians, to a preparatory

journey to the requisite mathematics in Liber I and to physics in Liber II. These

two books will attempt to review a tiny fraction of the many subjects developed

in the last few decades in both fields in relation to string theory. I quote here a

saying of E. Zaslow of which I am particularly fond, though it applies to me far more

appropriately: in the Book on mathematics I shall be the physicist and the Book on

physics, I the mathematician, so as to beg the reader to forgive my inexpertise in

both.

Books III and IV shall then consist of some of my work during my very enjoyable

stay at the Centre for Theoretical Physics at MIT as a graduate student. I regret

that I shall tempt the readers with so much elegance in the first two books and yet

lead them to so humble a work, that the journey through such a beautiful garden

would end in such a witless swamp. And I take the opportunity to apologise again to

the reader for the excruciating length, full of sound and fury and signifying nothing.

Indeed as Saramago points out that the shortness of life is so incompatible with the

verbosity of the world.

Let me speak no more and let our journey begin. Come then, ye Muses nine, and

with strains divine call upon mighty Diane, that she, from her golden quiver may

draw the arrow, to pierce my trembling heart so that it could bleed the ink with

which I shall hereafter compose this my humble work...
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Chapter 1

INTROIT

De Singularitatis Algebraicæ, Graphicæ Finitatis, & Theorica Men-

suræ Branæ Dirichletiensis: Aspectus Theoricæ Chordæ

The two pillars of twentieth century physics, General Relativity and Quantum

Field Theory, have brought about tremendous progress in Physics. The former has

described the macroscopic, and the latter, the microscopic, to beautiful precision.

However, the pair, in and of themselves, stand incompatible. Standard techniques

of establishing a quantum theory of gravity have met uncancellable divergences and

unrenormalisable quantities.

As we enter the twenty-first century, a new theory, born in the mid-1970’s, has

promised to be a candidate for a Unified Theory of Everything. The theory is known

as String Theory, whose basic tenet is that all particles are vibrational modes

of strings of Plankian length. Such elegant structure as the natural emergence of

the graviton and embedding of electromagnetic and large N dualities, has made the

theory more and more attractive to the theoretical physics community. Moreover,

concurrent with its development in physics, string theory has prompted enormous

excitement among mathematicians. Hitherto unimagined mathematical phenomena

such as Mirror Symmetry and orbifold cohomology have brought about many new

directions in algebraic geometry and representation theory.

Promising to be a Unified Theory, string theory must incorporate the Standard

Model of interactions, or minimally supersymmetric extensions thereof. The purpose

of this work is to study various aspects of a wide class of gauge theories arising

from string theory in the background of singularities, their dynamics, moduli spaces,
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duality transformations etc. as well as certain branches of associated mathematics. We

will investigate how these gauge theories, of various supersymmetry and in various

dimensions, arise as low-energy effective theories associated with hypersurfaces in

String Theory known as D-branes.

It is well-known that the initial approach of constructing the real world from

String Theory had been the compactification of the 10 dimensional superstring or the

10(26) dimensional heterotic string on Calabi-Yau manifolds of complex dimension

three. These are complex manifolds described as algebraic varieties with Ricci-flat

curvature so as to preserve supersymmetry. The resulting theories are N = 1 super-

symmetric gauge theories in 4 dimensions that would be certain minimal extensions

of the Standard Model.

This paradigm has been widely pursued since the 1980’s. However, we have a

host of Calabi-Yau threefolds to choose from. The inherent length-scale of the super-

string and deformations of the world-sheet conformal field theory, made such violent

behaviour as topology changes in space-time natural. These changes connected vast

classes of manifolds related by, notably, mirror symmetry. For the physics, these

mirror manifolds which are markedly different mathematical objects, give rise to the

same conformal field theory.

Physics thus became equivalent with respect to various different compactifications.

Even up to this equivalence, the plethora of Calabi-Yau threefolds (of which there is

still yet no classification) renders the precise choice of the compactification difficult

to select. A standing problem then has been this issue of “vacuum degeneracy.”

Ever since Polchinski’s introduction of D-branes into the arena in the Second

String Revolution of the mid-90’s, numerous novel techniques appeared in the con-

struction of gauge theories of various supersymmetries, as low-energy effective theories

of the ten dimensional superstring and eleven dimensional M-theory (as well as twelve

dimensional F-theory).

The natural existence of such higher dimensional surfaces from a theory of strings

proved to be crucial. The Dp-branes as well as Neveu-Schwarz (NS) 5-branes are

carriers of Ramond-Ramond and NS-NS charges, with electromagnetic duality (in
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10-dimensions) between these charges (forms). Such a duality is well-known in su-

persymmetric field theory, as exemplified by the four dimensional Montonen-Olive

Duality for N = 4, Seiberg-Witten for N = 2 and Seiberg’s Duality for N = 1.

These dualities are closely associated with the underlying S-duality in the full string

theory, which maps small string coupling to the large.

Furthermore, the inherent winding modes of the string includes another duality

contributing to the dualities in the field theory, the so-called T-duality where small

compactification radii are mapped to large radii. By chains of applications of S and T

dualities, the Second Revolution brought about a unification of the then five disparate

models of consistent String Theories: types I, IIA/B, Heterotic E8×E8 and Heterotic

Spin(32)/ZZ2.

Still more is the fact that these branes are actually solutions in 11-dimensional

supergravity and its dimensional reduction to 10. Subsequently proposals for the

enhancement for the S and T dualities to a full so-called U-Duality were conjectured.

This would be a symmetry of a mysterious underlying M-theory of which the unified

string theories are but perturbative limits. Recently Vafa and collaborators have

proposed even more intriguing dualities where such U-duality structure is intimately

tied with the geometric structure of blow-ups of the complex projective 2-space, viz.,

the del Pezzo surfaces.

With such rich properties, branes will occupy a central theme in this writing. We

will exploit such facts as their being BPS states which break supersymmetry, their

dualisation to various pure geometrical backgrounds and their ability to probe sub-

stringy distances. We will investigate how to construct gauge theories empowered

with them, how to realise dynamical processes in field theory such as Seiberg duality

in terms of toric duality and brane motions, how to study their associated open

string states in bosonic string field theory as well as many interesting mathematics

that emerge.

We will follow the thread of thought of the trichotomy of methods of fabricating

low-energy effective super-Yang-Mills theories which soon appeared in quick succes-

sion in 1996, after the D-brane revolution.
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One method was very much in the geometrical vein of compactification: the so-

named geometrical engineering of Katz-Klemm-Lerche-Vafa. With branes of var-

ious dimensions at their disposal, the authors wrapped (homological) cycles in the

Calabi-Yau with branes of the corresponding dimension. The supersymmetric cy-

cles (i.e., cycles which preserve supersymmetry), especially the middle dimensional

3-cycles known as Special Lagrangian submanifolds, play a crucial rôle in Mirror

Symmetry.

In the context of constructing gauge theories, the world-volume theory of the

wrapped branes are described by dimensionally reduced gauge theories inherited from

the original D-brane and supersymmetry is preserved by the special properties of the

cycles. Indeed, at the vanishing volume limit gauge enhancement occurs and a myriad

of supersymmetric Yang-Mills theories emerge. In this spirit, certain global issues in

compactification could be addressed in the analyses of the local behaviour of the

singularity arising from the vanishing cycles, whereby making much of the geometry

tractable.

The geometry of the homological cycles, together with the wrapped branes, deter-

mine the precise gauge group and matter content. In the language of sheafs, we are

studying the intersection theory of coherent sheafs associated with the cycles. We will

make usage of these techniques in the study of such interesting behaviour as “toric

duality.”

The second method of engineering four dimensional gauge theories from branes

was to study the world-volume theories of configurations of branes in 10 dimensions.

Heavy use were made especially of the D4 brane of type IIA, placed in a specific

position with respect to various D-branes and the solitonic NS5-branes. In the limit

of low energy, the world-volume theory becomes a supersymmetric gauge theory in

4-dimensions.

Such configurations, known as Hanany-Witten setups, provided intuitive reali-

sations of the gauge theories. Quantities such as coupling constants and beta functions

were easily visualisable as distances and bending of the branes in the setup. More-

over, the configurations lived directly in the flat type II background and the intricacies
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involved in the curved compactification spaces could be avoided altogether.

The open strings stretching between the branes realise as the bi-fundamental and

adjoint matter of the resulting theory while the configurations are chosen judiciously

to break down to appropriate supersymmetry. Motions of the branes relative to

each other correspond in the field theory to moving along various Coulomb and Higgs

branches of the Moduli space. Such dynamical processes as the Hanany-Witten Effect

of brane creation lead to important string theoretic realisations of Seiberg’s duality.

We shall too take advantage of the insights offered by this technique of brane

setups which make quantities of the product gauge theory easily visualisable.

The third method of engineering gauge theories was an admixture of the above

two, in the sense of utilising both brane dynamics and singular geometry. This became

known as the brane probe technique, initiated by Douglas and Moore. Stacks of

parallel D-branes were placed near certain local Calabi-Yau manifolds; the world-

volume theory, which would otherwise be the uninteresting parent U(n) theory in

flat space, was projected into one with product gauge groups, by the geometry of the

singularity on the open-string sector.

Depending on chosen action of the singularity, notably orbifolds, with respect to

the SU(4) R-symmetry of the parent theory, various supersymmetries can be achieved.

When we choose the singularity to be SU(3) holonomy, a myriad of gauge theories of

N = 1 supersymmetry in 4-dimensions could be thus fabricated given local structures

of the algebraic singularities. The moduli space, as solved by the vacuum conditions

of D-flatness and F-flatness in the field theory, is then by construction, the Calabi-

Yau singularity. In this sense space-time itself becomes a derived concept, as realised

by the moduli space of a D-brane probe theory.

As Maldacena brought about the Third String Revolution with the AdS/CFT

conjecture in 1997, new light shone upon these probe theories. Indeed the SU(4) R-

symmetry elegantly manifests as the SO(6) isometry of the 5-sphere in the AdS5×S5

background of the bulk string theory. It was soon realised by Kachru, Morrison,

Silverstein et al. that these probe theories could be harnessed as numerous checks for

the correspondence between gauge theory and near horizon geometry.
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Into various aspects of these probes theories we shall delve throughout the writing

and attention will be paid to two classes of algebraic singularities, namely orbifolds

and toric singularities,

With the wealth of dualities in String Theory it is perhaps of no surprise that the

three methods introduced above are equivalent by a sequence of T-duality (mirror)

transformations. Though we shall make extensive usage of the techniques of all three

throughout this writing, focus will be on the latter two, especially the last. We

shall elucidate these three main ideas: geometrical engineering, Hanany-Witten brane

configurations and D-branes transversely probing algebraic singularities, respectively

in Chapters 6, 7 and 8 of Book II.

The abovementioned, of tremendous interest to the physicist, is only half the story.

In the course of this study of compactification on Ricci-flat manifolds, beautiful and

unexpected mathematics were born. Indeed, our very understanding of classical ge-

ometry underwent modifications and the notions of “stringy” or “quantum” geometry

emerged. Properties of algebro-differential geometry of the target space-time mani-

fested as the supersymmetric conformal field theory on the world-sheet. Such delicate

calculations as counting of holomorphic curves and intersection of homological cycles

mapped elegantly to computations of world-sheet instantons and Yukawa couplings.

The mirror principle, initiated by Candelas et al. in the early 90’s, greatly simpli-

fied the aforementioned computations. Such unforeseen behaviour as pairs of Calabi-

Yau manifolds whose Hodge diamonds were mirror reflections of each other naturally

arose as spectral flow in the associated world-sheet conformal field theory. Though

we shall too make usage of versions of mirror symmetry, viz., the local mirror,

this writing will not venture too much into the elegant inter-relation between the

mathematics and physics of string theory through mirror geometry.

What we shall delve into, is the local model of Calabi-Yau manifolds. These are

the algebraic singularities of which we speak. In particular we concentrate on canon-

ical Gorenstein singularities that admit crepant resolutions to smooth Calabi-Yau

varieties. In particular, attention will be paid to orbifolds, i.e., quotients of flat space

by finite groups, as well as toric singularities, i.e., local behaviour of toric varieties
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near the singular point.

As early as the mid 80’s, the string partition function of Dixon-Harvey-Vafa-

Witten (DHVW) proposed a resolution of orbifolds then unknown to the mathemati-

cian and made elegant predictions on the Euler characteristic of orbifolds. These gave

new directions to such remarkable observations as the McKay Correspondence and

its generalisations to beyond dimension 2 and beyond du Val-Klein singularities. Re-

cent work by Bridgeland, King, and Reid on the generalised McKay from the derived

category of coherent sheafs also tied deeply with similar structures arising in D-brane

technologies as advocated by Aspinwall, Douglas et al. Stringy orbifolds thus became

a topic of pursuit by such noted mathematicians as Batyrev, Kontsevich and Reid.

Intimately tied thereto, were applications of the construction of certain hyper-

Kähler quotients, which are themselves moduli spaces of certain gauge theories, as

gravitational instantons. The works by Kronheimer-Nakajima placed the McKay

Correspondence under the light of representation theory of quivers. Douglas-Moore’s

construction mentioned above for the orbifold gauge theories thus brought these quiv-

ers into a string theoretic arena.

With the technology of D-branes to probe sub-stringy distance scales, Aspinwall-

Greene-Douglas-Morrison-Plesser made space-time a derived concept as moduli space

of world-volume theories. Consequently, novel perspectives arose, in the understand-

ing of the field known as Geometric Invariant Theory (GIT), in the light of gauge

invariant operators in the gauge theories on the D-brane. Of great significance, was

the realisation that the Landau-Ginzberg/Calabi-Yau correspondence in the linear

sigma model of Witten, could be used to translate between the gauge theory as a

world-volume theory and the moduli space as a GIT quotient.

In the case of toric varieties, the sigma-model fields corresponded nicely to gener-

ators of the homogeneous coördinate ring in the language of Cox. This provided us

with a alternative and computationally feasible view from the traditional approaches

to toric varieties. We shall take advantage of this fact when we deal with toric duality

later on.

This work will focus on how the above construction of gauge theories leads to
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various intricacies in algebraic geometry, representation theory and finite graphs, and

vice versa, how we could borrow techniques from the latter to address the physics

of the former. In order to refresh the reader’s mind on the requisite mathematics,

Book I is devoted to a review on the relevant topics. Chapter 2 will be an overview

of the geometry, especially algebraic singularities and Picard-Lefschetz theory. Also

included will be a discussion on symplectic quotients as well as the special case of

toric varieties. Chapter 3 then prepares the reader for the orbifolds, by reviewing the

pertinent concepts from representation theory of finite groups. Finally in Chapter 4, a

unified outlook is taken by studying quivers as well as the constructions of Kronheimer

and Nakajima.

Thus prepared with the review of the mathematics in Book I and the physics in II,

we shall then take the reader to Books III and IV, consisting of some of the author’s

work in the last four years at the Centre for Theoretical Physics at MIT.

We begin with the D-brane probe picture. In Chapters ?? and ?? we classify and

study the singularities of the orbifold type by discrete subgroups of SU(3) and SU(4)

[?, ?]. The resulting physics consists of catalogues of finite four dimensional Yang-

Mills theories with 1 or 0 supersymmetry. These theories are nicely encoded by certain

finite graphs known as quiver diagrams. This generalises the work of Douglas and

Moore for abelian ALE spaces and subsequent work by Johnson-Meyers for all ALE

spaces as orbifolds of SU(2). Indeed McKay’s Correspondence facilitates the ALE

case; moreover the ubiquitous ADE meta-pattern, emerging in so many seemingly

unrelated fields of mathematics and physics greatly aids our understanding.

In our work, as we move from two-dimensional quotients to three and four di-

mensions, interesting observations were made in relation to generalised McKay’s Cor-

respondences. Connections to Wess-Zumino-Witten models that are conformal field

theories on the world-sheet, especially the remarkable resemblance of the McKay

graphs from the former and fusion graphs from the latter were conjectured in [?].

Subsequently, a series of activities were initiated in [?, ?, ?] to attempt to address

why weaker versions of the complex of dualities which exists in dimension two may

persist in higher dimensions. Diverse subject matters such as symmetries of the mod-
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ular invariant partition functions, graph algebras of the conformal field theory, matter

content of the probe gauge theory and crepant resolution of quotient singularities all

contribute to an intricate web of inter-relations. Axiomatic approaches such as the

quiver and ribbon categories were also attempted. We will discuss these issues in

Chapters ??, ?? and ??.

Next we proceed to address the T-dual versions of these D-brane probe theories in

terms of Hanany-Witten configurations. As mentioned earlier, understanding these

would greatly enlighten the understanding of how these gauge theories embed into

string theory. With the help of orientifold planes, we construct the first examples of

non-Abelian configurations for C3 orbifolds [?, ?]. These are direct generalisations

of the well-known elliptic models and brane box models, which are a widely studied

class of conformal theories. These constructions will be the theme for Chapters ??

and ??.

Furthermore, we discuss the steps towards a general method [?], which we dubbed

as “stepwise projection,” of finding Hanany-Witten setups for arbitrary orbifolds in

Chapter ??. With the help of Frøbenius’ induced representation theory, the stepwise

procedure of systematically obtaining non-Abelian gauge theories from the Abelian

theories, stands as a non-trivial step towards solving the general problem of T-

dualising pure geometry into Hanany-Witten setups.

Ever since Seiberg and Witten’s realisation that the NS-NS B-field of string theory,

turned on along world-volumes of D-branes, leads to non-commutative field theories,

a host of activity ensued. In our context, Vafa generalised the DHVW closed sector

orbifold partition function to include phases associated with the B-field. Subsequently,

Douglas and Fiol found that the open sector analogue lead to projective representation

of the orbifold group.

This inclusion of the background B-field has come to be known as turning on

discrete torsion. Indeed a corollary of a theorem due to Schur tells us that orbifolds

of dimension two, i.e., the ALE spaces do not admit such turning on. This is in

perfect congruence with the rigidity of the N = 2 superpotential. For N = 0, 1

theories however, we can deform the superpotential consistently and arrive at yet
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another wide class of field theories.

With the aid of such elegant mathematics as the Schur multiplier, covering groups

and the Cartan-Leray spectral sequence, we systematically study how and when it is

possible to arrive at these theories with discrete torsion by studying the projective

representations of orbifold groups [?, ?] in Chapters ?? and ??.

Of course orbifolds, the next best objects to flat (complex-dimensional) space, are

but one class of local Calabi-Yau singularities. Another intensively studied class of

algebraic varieties are the so-called toric varieties. As finite group representation the-

ory is key to the former, combinatorial geometry of convex bodies is key to the latter.

It is pleasing to have such powerful interplay between such esoteric mathematics and

our gauge theories.

We address the problem of constructing gauge theories of a D-brane probe on toric

singularities [?] in Chapter ??. Using the technique of partial resolutions pioneered

by Douglas, Greene and Morrison, we formalise a so-called “Inverse Algorithm” to

Witten’s gauged linear sigma model approach and carefully investigate the type of

theories which arise given the type of toric singularity.

Harnessing the degree of freedom in the toric data in the above method, we will

encounter a surprising phenomenon which we call Toric Duality. [?]. This in fact

gives us an algorithmic technique to engineer gauge theories which flow to the same

fixed point in the infra-red moduli space. The manifestation of this duality as Seiberg

Duality forN = 1 [?] came as an additional bonus. Using a combination of field theory

calculations, Hanany-Witten-type of brane configurations and the intersection theory

of the mirror geometry [?], we check that all the cases produced by our algorithm do

indeed give Seiberg duals and conjecture the validity in general [?]. These topics will

constitute Chapters ?? and ??.

All these intricately tied and inter-dependent themes of D-brane dynamics, con-

struction of four-dimensional gauge theories, algebraic singularities and quiver graphs,

will be the subject of this present writing.
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Chapter 2

Algebraic and Differential

Geometry

Nomenclature

Unless otherwise stated, we shall adhere to the following notations throughout the

writing:

X Complex analytic variety

TpX, T ∗
p X Tangent and cotangent bundles (sheafs) of X at point p

O(X) Sheaf of analytic functions on X

O∗(X) Sheaf of non-zero analytic functions on X

Γ(X,O) Sections of the sheaf (bundle) O over X

Ωp,q(X) Dolbeault (p, q)-forms on X

ωX The canonical sheaf of X

f : X̃ → X Resolution of the singularity X

g = Lie(G) The Lie Algebra of the Lie group G

g̃ The Affine extension of g

µ : M → Lie(G)∗ Moment map associated with the group G

µ−1(c)//G Symplectic quotient associated with the moment map µ

|G| The order of the finite group G

χ
(i)
γ (G) Character for the i-th irrep in the γ-th conjugacy class of G
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As the subject matter of this work is on algebraic singularities and their applications to

string theory, what better place to commence our mathematical invocations indeed,

than a brief review on some rudiments of the vast field of singularities in algebraic

varieties. The material contained herein shall be a collage from such canonical texts

as [?, ?, ?, ?], to which the reader is highly recommended to refer.

2.1 Singularities on Algebraic Varieties

Let M be an m-dimensional complex algebraic variety; we shall usually deal with

projective varieties and shall take M to be IPm, the complex projective m-space, with

projective coördinates (z1, . . . , zm) = [Z0 : Z2 : . . . : Zm] ∈ Cm+1. In general, by

Chow’s Theorem, any analytic subvariety X of M can be locally given as the zeores

of a finite collection of holomorphic functions gi(z1, . . . , zm). Our protagonist shall

then be the variety X := {z|gi(z1, . . . , zm) = 0 ∀ i = 1, . . . , k}, especially the singular

points thereof. The following definition shall distinguish such points for us:

DEFINITION 2.1.1 A point p ∈ X is called a smooth point of X if X is a submanifold

of M near p, i.e., the Jacobian J (X) :=
(

∂gi

∂zj

)
p

has maximal rank, namely k.

Denoting the locus of smooth points as X∗, then if X = X∗, X is called a smooth

variety. Otherwise, a point s ∈ V \ V ∗ is called a singular point.

Given such a singularity s on a X, the first exercise one could perform is of course

its resolution, defined to be a birational morphism f : X̃ → X from a nonsingular

variety X̃ . The preimage f−1(s) ⊂ X̃ of the singular point is called the exceptional

divisor in X̃. Indeed if X is a projective variety, then if we require the resolution

f to be projective (i.e., it can be composed as X̃ → X × IPN → X), then X̃ is a

projective variety.

The singular variety X, of (complex) dimension n, is called normal if the structure

sheafs obey OX = f ∗OX̃ . We henceforth restrict our attention to normal varieties.

The point is that as a topological space the normal variety X is simply the quotient

X = X̃/ ∼,
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where ∼ is the equivalence which collapses the exceptional divisor to a point1, the so-

called process of blowing down. Indeed the reverse, where we replace the singularity

s by a set of directions (i.e., a projective space), is called blowing up . As we shall

mostly concern ourselves with Calabi-Yau manifolds (CY) of dimensions 2 and 3, of

the uttermost importance will be exceptional divisors of dimension 1, to these we

usually refer as IP1-blowups.

Now consider the canonical divisors of X̃ and X. We recall that the canonical

divisor KX of X is any divisor in the linear equivalence (differing by principal divisors)

class as the canonical sheaf ωX , the n-th (hence maximal) exterior power of the sheaf

of differentials. Indeed for X Calabi-Yau, KX is trivial. In general the canonical

sheaf of the singular variety and that of its resolution X̃ are not so näıvely related

but differ by a term depending on the exceptional divisors Ei:

KX̃ = f ∗(KX) +
∑

i

aiEi.

The term
∑
i

aiEi is a formal sum over the exceptional divisors and is called the dis-

crepancy of the resolution and the values of the numbers ai categorise some commonly

encountered subtypes of singularities characterising X, which we tabulate below:

ai ≥ 0 canonical ai > 0 terminal

ai ≥ −1 log canonical ai > −1 log terminal

The type which shall be pervasive throughout this work will be the canonical sin-

gularities. In the particular case when all ai = 0, and the discrepancy term vanishes,

we have what is known as a crepant resolution. In this case the canonical sheaf

of the resolution is simply the pullback of that of the singularity, when the latter is

trivial, as in the cases of orbifolds which we shall soon see, the former remains trivial

and hence Calabi-Yau. Indeed crepant resolutions always exists for dimensions 2 and

3, the situations of our interest, and are related by flops. Although in dimension

1And so X has the structure sheaf f∗OX̃ , the set of regular functions on X̃ which are constant
on f−1(s).

21



3, the resolution may not be unique (q.v. e.g. [?]). On the other hand, for ter-

minal singularities, any resolution will change the canonical sheaf and such singular

Calabi-Yau’s will no longer have resolutions to Calabi-Yau manifolds.

In this vein of discussion on Calabi-Yau’s, of the greatest relevance to us are the

so-called2 Gorenstein singularities , which admit a nowhere vanishing global holo-

morphic n-form on X \s; these are then precisely those singularities whose resolutions

have the canonical sheaf as a trivial line bundle, or in other words, these are the local

Calabi-Yau singularities.

Gorenstein canonical singularities which admit crepant resolutions to smooth

Calabi-Yau varieties are therefore the subject matter of this work.

2.1.1 Picard-Lefschetz Theory

We have discussed blowups of singularities in the above, in particular IP1-blowups.

A most useful study is when we consider the vanishing behaviour of these S2-cycles.

Upon this we now focus. Much of the following is based on [?]; The reader is also

encouraged to consult e.g. [?, ?] for aspects of Picard-Lefschetz monodromy in string

theory.

Let X be an n-fold, and f : X → U ⊂C a holomorphic function thereupon. For

our purposes, we take f to be the embedding equation of X as a complex algebraic

variety (for simplicity we here study a hypersurface rather than complete intersec-

tions). The singularities of the variety are then, in accordance with Definition 2.1.1,

{~x|f ′(~x) = 0} with ~x = (x1, ..., xn) ∈ M . f evaluated at these critical points ~x is

called a critical value of f .

We have level sets Fz := f−1(z) for complex numbers z; these are n−1 dimensional

varieties. For any non-critical value z0 one can construct a loop γ beginning and

ending at z0 and encircling no critical value. The map hγ : Fz0 → Fz0 , which generates

2The definition more familiar to algebraists is that a singularity is Gorenstein if the local ring
is a Gorenstein ring, i.e., a local Artinian ring with maximal ideal m such that the annihilator of
m has dimension 1 over A/m. Another commonly encountered terminology is the Q-Gorenstein
singularity; these have Γ(X \ p, K⊗n

X ) a free O(X)-module for some finite n and are cyclic quotients
of Gorenstein singularities.
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the monodromy as one cycles the loop, the main theme of Picard-Lefschetz Theory.

In particular, we are concerned with the induced action hγ∗ on the homology cycles

of Fz0 .

When f is Morse3, in the neighbourhood of each critical point pi , f affords the

Taylor series f(x1, . . . , xn) = zi +
n∑

j=1

(xj − pj)
2 in some coordinate system. Now

adjoin a critical value zi = f(pi) with a non-critical value z0 by a path u(t) : t ∈

[0, 1] which does not pass through any other critical value. Then in the level set

Fu(t) we fix sphere S(t) =
√

u(t)− ziS
n−1 (with Sn−1 the standard (n − 1)-sphere

{(x1, . . . , xn) : |x|2 = 1, Imxi = 0}. In particular S(0) is precisely the critical point pi.

Under these premises, we call the homology class ∆ ∈ Hn−1(Fz0) in the non-singular

level set Fz0 represented by the sphere S(1) the Picard-Lefschetz vanishing cycle.

Fixing z0, we have a set of such cycles, one from each of the critical values zi. Let

us consider what are known as simple loops. These are elements of π1 (U\{zi}, z0),

the fundamental group of loops based at z0 and going around the critical values. For

these simple loops τi we have the corresponding Picard-Lefschetz monodromy operator

hi = hτi∗ : H•(Fz0) → H•(Fz0).

On the other hand if π1 (U\{zi}, z0) is a free group then the cycles {∆i} are weakly

distinguished.

The point d’appui is the Picard-Lefschetz Theorem which determines the mon-

odromy of f under the above setup:

THEOREM 2.1.1 The monodromy group of the singularity is generated by the Picard-

Lefschetz operators hi, corresponding to a weakly distinguished basis {∆i} ⊂ Hn−1

of the non-singular level set of f near a critical point. In particular for any cycle

a ∈ Hn−1 (no summation in i)

hi(a) = a + (−1)
n(n+1)

2 (a ◦∆i)∆i.

3That is to say, at all critical points xi, the Hessian ∂f
∂xi∂xj

has non-zero determinant and all
critical values zi = f(xi) are distinct.
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2.2 Symplectic Quotients and Moment Maps

We have thus far introduced canonical algebraic singularities and monodromy actions

on exceptional IP1-cycles. The spaces we shall be concerned are Kähler (Calabi-Yau)

manifolds and therefore naturally we have more structure. Of uttermost importance,

especially when we encounter moduli spaces of certain gauge theories, is the symplec-

tic structure.

DEFINITION 2.2.2 Let M be a complex algebraic variety, a symplectic form ω on M

is a holomorphic 2-form, i.e. ω ∈ Ω2(M) = Γ(M,
∧2 T ∗M), such that

• ω is closed: dω = 0;

• ω is non-degenerate: ω(X, Y ) = 0 for any Y ∈ TpM ⇒ X = 0 .

Therefore on the symplectic manifold (M, ω) (which by the above definition is

locally a complex symplectic vector space, implying that dimCM is even) ω induces

an isomorphism between the tangent and cotangent bundles by taking X ∈ TM to

iX(ω) := ω(X, ·) ∈ Ω1(M). Indeed for any global analytic function f ∈ O(M) we

can obtain its differential df ∈ Ω1(M). However by the (inverse map of the) above

isomorphism, we can define a vector field Xf , which we shall call the Hamiltonian

vector field associated to f (a scalar called the Hamiltonian). In the language of

classical mechanics, this vector field is the generator of infinitesimal canonical trans-

formations4. In fact, [Xf , Xg], the commutator between two Hamiltonian vector fields

is simply X{f,g}, where {f, g} is the familiar Poisson bracket.

The vector field Xf is actually symplectic in the sense that

LXf
ω = 0,

where LX is the Lie derivative with respect to the vector field X. This is so since

LXf
ω = (d ◦ iXf

+ iXf
◦ d)ω = d2f + iXf

dω = 0. Let H(M) be the Lie subalgebra

4If we were to write local coördinates (pi, qi) for M , then ω =
∑

i dqi ∧ dqi and the Hamiltonian
vector field is Xf =

∑
i

∂f
∂pi

∂
∂qi

− (pi ↔ qi) and our familiar Hamilton’s Equations of motion are
iXf

(ω) = ω(Xf , ·) = df.
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of Hamiltonian vector fields (of the tangent space at the identity), then we have an

obvious exact sequence of Lie algebras (essentially since energy is defined up to a

constant),

0 →C → O(M) → H(M) → 0,

where the Lie bracket in O(M) is the Poisson bracket.

Having presented some basic properties of symplectic manifolds, we proceed to

consider quotients of such spaces by certain equivariant actions. We let G be some

algebraic group which acts symplectically on M . In other words, for the action

g∗ on Ω2(M), induced from the action m → gm on the manifold for g ∈ G, we

have g∗ω = ω and so the symplectic structure is preserved. The infinitesimal action

of G is prescribed by its Lie algebra, acting as symplectic vector fields; this gives

homomorphisms k : Lie(G) → H(M) and k̃ : Lie(G) → O(M). The action of G

on M is called Hamiltonian if the following modification to the above exact sequence

commutes

0 →C → O(M) → H(M) → 0

k̃ ↖ ↑ k

Lie(G)

DEFINITION 2.2.3 Any such Hamiltonian G-action on M gives rise to a G-equivariant

Moment Map µ : M → Lie(G)∗ which corresponds5 to the map k̃ and satisfies

k(A) = XA◦µ for any A ∈ Lie(G),

i.e., d(A ◦ µ) = ik(A)ω.

Such a definition is clearly inspired by the Hamilton equations of motion as presented

in Footnote ??. We shall not delve into many of the beautiful properties of the

moment map, such as when G is translation in Euclidean space, it is nothing more

than momentum, or when G is rotation, it is simply angular momentum; for what we

shall interest ourselves in the forthcoming, we are concerned with a crucial property

of the moment map, namely the ability to form certain smooth quotients.

5Because hom(Lie(G),hom(M,C)) = hom(M,Lie(G)∗).
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Let µ : M → Lie(G)∗ be a moment map and c ∈ [Lie(G)∗]G be the G-invariant

subalgebra of Lie(G)∗ (in other words the co-centre), then the equivariance of µ says

that G acts on the fibre µ−1(c) and we can form the quotient of the fibre by the group

action. This procedure is called the symplectic quotient and the subsequent space is

denoted µ−1(c)//G. The following theorem guarantees that the result still lies in the

category of algebraic varieties.

THEOREM 2.2.2 Assume that G acts freely on µ−1(c), then the symplectic quotient

µ−1(c)//G is a symplectic manifold, with a unique symplectic form ω̄, which is the

pullback of the restriction of the symplectic form on M ω|µ−1(c); i.e., ω|µ−1(c) = q∗ω̄ if

q : µ−1(c) → µ−1(c)//G is the quotient map.

A most important class of symplectic quotient varieties are the so-called toric varieties.

These shall be the subject matter of the next section.

2.3 Toric Varieties

The types of algebraic singularities with which we are most concerned in the ensuing

chapters in Physics are quotient and toric singularities. The former are the next best

thing to flat spaces and will constitute the topic of the Chapter on finite groups. For

now, having prepared ourselves with symplectic quotients from the above section, we

give a lightening review on the vast subject matter of toric varieties, which are the

next best thing to tori. The reader is encouraged to consult [?, ?, ?, ?, ?] as canonical

mathematical texts as well as [?, ?, ?] for nice discussions in the context of string

theory.

As a holomorphic quotient, a toric variety is simply a generalisation of the complex

projective space IPd := (Cd+1 {0})/C∗ with the C∗-action being the identification

x ∼ λx. A toric variety of complex dimension d is then the quotient

(Cn \ F )/C∗(n−d).

Here the C∗(n−d)-action is given by xi ∼ λ
Qa

i
a xi (i = 1, . . . , n; a = 1, . . . , n−d) for some
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integer matrix (of charges) Qa
i . Moreover, F ∈ Cn \C∗n is a closed set of points one

must remove to make the quotient well-defined (Hausdorff).

In the language of symplectic quotients, we can reduce the geometry of such

varieties to the combinatorics of certain convex sets.

2.3.1 The Classical Construction

Before discussing the quotient, let us first outline the standard construction of a toric

variety. What we shall describe is the classical construction of a toric variety from

its defining fan, due originally to MacPherson. Let N ' ZZn be an integer lattice and

let M = homZZ(N, ZZ) ' ZZn be its dual. Moreover let NIR := N ⊗ZZ IR ' IRn (and

similarly for MIR). Then

DEFINITION 2.3.4 A (strongly convex) polyhedral cone σ is the positive hull of a

finitely many vectors v1, . . . , vk in N , namely

σ = pos{vi=1,...,k} :=
k∑

i=1

IR≥0vi.

From σ we can compute its dual cone σ∨ as

σ∨ := {u ∈ MIR|u · v ≥ 0∀v ∈ σ} .

Subsequently we have a finitely generated monoid

Sσ := σ∨ ∩M = {u ∈ M |u · σ ≥ 0} .

We can finally associate maximal ideals of the monoid algebra of the polynomial ring

adjoint Sσ to points in an algebraic (variety) scheme. This is the affine toric variety

Xσ associated with the cone σ:

Xσ := Spec(C[Sσ]).
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To go beyond affine toric varieties, we simply paste together, as coördinate patches,

various Xσi
for a collection of cones σi; such a collection is called a fan Σ =

⊔
i σi

and we finally arrive at the general toric variety XΣ.

As we are concerned with the singular behaviour of our varieties, the following

definition and theorem shall serve us greatly.

DEFINITION 2.3.5 A cone σ = pos{vi} is simplicial is all the vectors vi are linearly

independent; it is regular if {vi} is a ZZ-basis for N . The fan Σ is complete if

its cones span the entirety of IRn and it is regular if all its cones are regular and

simplicial.

Subsequently, we have

THEOREM 2.3.3 XΣ is compact iff Σ is complete; it is non-singular iff Σ is regular.

Finally we are concerned with Calabi-Yau toric varieties, these are associated with

what is know (recalling Section 1.1 regarding Gorenstein resolutions) as Gorenstein

cones. It turns out that an n-dimensional toric variety satisfies the Ricci-flatness

condition if all the endpoints of the vectors of its cones lie on a single n−1-dimensional

hypersurface, in other words,

THEOREM 2.3.4 The cone σ is called Gorenstein if there exists a vector w ∈ N such

that 〈vi, w〉 = 1 for all the generators vi of σ. Such cones give rise to toric Calabi-Yau

varieties.

We refer the reader to [?] for conditions when Gorenstein cones admit crepant reso-

lutions.

The name toric may not be clear from the above construction but we shall see now

that it is crucial. Consider each point t the algebraic torus T n := (C∗)n ' N ⊗ZZC∗ '

hom(M,C∗) ' spec(C[M ]) as a group homomorphism t : M → C∗ and each point

x ∈ Xσ as a monoid homomorphism x : Sσ →C. Then we see that there is a natural

torus action on the toric variety by the algebraic torus T n as x → t · x such that

(t · x)(u) := t(u)x(u) for u ∈ Sσ. For σ = {0}, this action is nothing other than the

group multiplication in T n = Xσ={0}.
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2.3.2 The Delzant Polytope and Moment Map

How does the above tie in together with what we have discussed on symplectic quo-

tients? We shall elucidate here. It turns out such a construction is canonically done

for compact toric varieties embedded into projective spaces, so we shall deal more

with polytopes rather than polyhedral cones. The former is simply a compact version

of the latter and is a bounded set of points instead of extending as a cone. The argu-

ment below can be easily extended for fans and non-compact (affine) toric varieties.

For now our toric variety X∆ is encoded in a polytope ∆.

Let (X, ω) be a symplectic manifold of real dimension 2n. Let τ : T n → Diff(X,ω)

be a Hamiltonian action from the n-torus to vector fields on X. This immediately

gives us a moment map µ : X → IRn, where IRn is the dual of the Lie algebra for T n

considered as the Lie group U(1)n. The image of µ is a polytope ∆, called a moment

or Delzant Polytope. The inverse image, up to equivalence of the T n-action, is

then nothing but our toric variety X∆. But this is precisely the statement that

X∆ := µ−1(∆)//T n

and the toric variety is thus naturally a symplectic quotient.

In general, given a convex polytope, Delzant’s theorem guarantees that if the

following conditions are satisfied, then the polytope is Delzant and can be used to

construct a toric variety:

THEOREM 2.3.5 (Delzant) A convex polytope ∆ ⊂ IRn is Delzant if:

1. There are n edges meeting at each vertex pi;

2. Each edge is of the form pi + IR≥0vi with vi=1,...,n a basis of ZZn.

We shall see in Liber II and III, that the moduli space of certain gauge theories

arise as toric singularities. In Chapter 5, we shall in fact see a third, physically

motivated construction for the toric variety. For now, let us introduce another class

of Gorenstein singularities.
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Chapter 3

Representation Theory of Finite

Groups

A wide class of Gorenstein canonical singularities are of course quotients of flat spaces

by appropriate discrete groups. When the groups are chosen to be discrete subgroups

of special unitary groups, i.e., the holonomy groups of Calabi-Yau’s, and when crepant

resolutions are admissible, these quotients are singular limits of CY’s and provide ex-

cellent local models thereof. Such quotients of flat spaces by discrete finite subgroups

of certain Lie actions, are called orbifolds (or V-manifolds, in their original guise in

[?]). It is therefore a natural point de départ for us to go from algebraic geometry

to a brief discussion on finite group representations (q.v. e.g. [?] for more details of

which much of the following is a condensation).

3.1 Preliminaries

We recall that a representation of a finite group G on a finite dimensional (complex)

vector space V is a homomorphism ρ : G → GL(V ) to the group of automorphisms

GL(V ) of V . Of great importance to us is the regular representation, where V is

the vector space with basis {eg|g ∈ G} and G acts on V as h ·
∑

ageg =
∑

agehg for

h ∈ G.

Certainly the corner-stone of representation theory is Schur’s Lemma:
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THEOREM 3.1.6 (Schur’s Lemma) If V and W are irreducible representations of G

and φ : V → W is a G-module homomorphism, then (a) either φ is an isomorphism

or φ = 0. If V = W , then φ is a homothety (i.e., a multiple of the identity).

The lemma allows us to uniquely decompose any representation R into irreducibles

{Ri} as R = R⊕a1
1 ⊕ . . .⊕R⊕an

n . The three concepts of regular representations, Schur’s

lemma and unique decomposition we shall extensively use later in Liber III. Another

crucial technique is that of character theory into which we now delve.

3.2 Characters

If V is a representation of G, we define its character χV to be theC-function on g ∈ G:

χV (g) = Tr(V (g)).

Indeed the character is a class function, constant on each conjugacy class of G; this is

due to the cyclicity of the trace: χV (hgh−1) = χV (g). Moreover χ is a homomorphism

from vector spaces to C as

χV⊕W = χV + χW χV⊗W = χV χW .

From the following theorem

THEOREM 3.2.7 There are precisely the same number of conjugacy classes are there

are irreducible representations of a finite group G,

and the above fact that χ is a class function, we can construct a square matrix, the

so-called character table, whose entries are the characters χ
(i)
γ := Tr(Ri(γ)), as i

goes through the irreducibles Ri and γ, through the conjugacy classes. This table

will be of tremendous computational use for us in Liber III.

The most important important properties of the character table are its two or-

thogonality conditions, the first of which is for the rows, where we sum over conjugacy
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classes: ∑
g∈G

χ(i)∗
g χ(j)∗

g =
n∑

γ=1

rγχ
(i)∗
γ χ(j)∗

γ = |G|δij,

where n is the number of conjugacy classes (and hence irreps) and rγ the size of the

γ-th conjugacy class. The other orthogonality is for the columns, where we sum over

irreps:
n∑

i=1

χ
(i)∗
k χ

(i)∗
l =

|G|
rk

δkl.

We summarise these relations as

THEOREM 3.2.8 With respect to the inner product (α, β) := 1
|G|
∑
g∈G

α∗(g)β(g) =

1
|G|

n∑
γ=1

rγα
∗(γ)β(γ), the characters of the irreducible representations (i.e. the char-

acter table) are orthonormal.

Many interesting corollaries follow. Of the most useful are the following. Any rep-

resentation R is irreducible iff (χR, χR) = 1 and if not, then (χR, χRi
) gives the

multiplicity of the decomposition of R into the i-th irrep.

For the regular representation Rr, the character is simply χ(g) = 0 if g 6= II and it is

|G| when g = II (this is simply because any group element h other than the identity will

permute g ∈ G and in the vector basis eg correspond to a non-diagonal element and

hence do not contribute to the trace). Therefore if we were to decompose the Rr in to

irreducibles, the i-th would receive a multiplicity of (Rr, Ri) = 1
|G|χRi

(II)|G| = dimRi.

Therefore any irrep Ri appears in the regular representation precisely dimRi times.

3.2.1 Computation of the Character Table

There are some standard techniques for computing the character table given a finite

group G; the reader is referred to [?, ?, ?] for details.

For the j-th conjugacy class cj, define a class operator Cj :=
∑
g∈cj

g, as a formal

sum of group elements in the conjugacy class. This gives us a class multiplication:

CjCk =
∑

g∈cj ;h∈ck

gh =
∑

k

cjklCl,
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where cjkl are “fusion coefficients” for the class multiplication and can be determined

from the multiplication table of the group G. Subsequently one has, by taking char-

acters,

rjrkχ
(i)
j χ

(i)
k = dimRi

n∑
l=1

cjklrlχ
(l)
k .

These are n2 equations in n2 + n variables {χ(i)
j ; dimRi}. We have another n equa-

tions from the orthonormality 1
|G|

n∑
j=1

rj|χ(i)
j |2 = 1; these then suffice to determine the

characters and the dimensions of the irreps.

3.3 Classification of Lie Algebras

In Book the Third we shall encounter other aspects of representation theory such

as induced and projective representation; we shall deal therewith accordingly. For

now let us turn to the representation of Lie Algebras. It may indeed seem to the

reader rather discontinuous to include a discussion on the the classification of Lie

Algebras in a chapter touching upon finite groups. However the reader’s patience

shall soon be rewarded in Chapter 4 as well as Liber III when we learn that certain

classifications of finite groups are intimately related, by what has become known as

McKay’s Correspondence, to that of Lie Algebras. Without further ado then let us

simply present, for the sake of refreshing the reader’s memory, the classification of

complex Lie algebras.

Given a complex Lie algebra g, it has the Levi Decomposition

g = Rad(g)⊕ g̃ = Rad(g)⊕
⊕

i

gi,

where Rad(g) is the radical, or the maximal solvable ideal, of g. The representation of

such solvable algebras is trivial and can always be brought to n× n upper-triangular

matrices by a basis change. On the other hand g̃ is semisimple and contains no

nonzero solvable ideals. We can decompose g̃ further into a direct sum of simple Lie

algebras gi which contain no nontrivial ideals. The gi’s are then the nontrivial pieces
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of g.

The great theorem is then the complete classification of the complex simple Lie

algebras due to Cartan, Dynkin and Weyl. These are the

• Classical Algebras: An := sln+1(C), Bn := so2n+1(C), Cn := sp2n(C) and

Dn := so2n(C) for n = 1, 2, 3 . . .;

• Exceptional Algebras: E6,7,8, F4 and G2.

The Dynkin diagrams for these are given in Figure ??. The nodes are marked with

the so-called comarks a∨i which we recall to be the expansion coefficients of the highest

root θ into the simple coroots α∨
i := 2αi/|αi|2 (αi are the simple roots)

θ =
r∑
i

a∨i α∨
i ,

where r is the rank of the algebra (or the number of nodes).

The dual Coxeter numbers are defined to be

c :=
r∑
i

a∨i + 1

and the Cartan Matrix is

Cij := (αi, α
∨
j ).

We are actually concerned more with Affine counterparts of the above simple

algebras. These are central extensions of the above in the sense that if the com-

mutation relation in the simple g is [T a, T b] = fab
c T c, then that in the affine ĝ is

[T a
m, T b

m] = fab
c T c

m+n + knδabδm,−n. The generators T a of g are seen to be generalised

to T a
m := T a⊗tm of ĝ by Laurent polynomials in t. The above concepts of roots etc. are

directly generalised with the inclusion of the affine root. The Dynkin diagrams are

as in Figure ?? but augmented with an extra affine node.

We shall see in Liber III that the comarks and the dual Coxeter numbers will

actually show up in the dimensions of the irreducible representations of certain fi-
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Figure 3-1: The Dynkin diagrams of the simple complex Lie Algebras; the nodes are
labelled with the comarks.

nite groups. Moreover, the Cartan matrices will correspond to certain graphs con-

structable from the latter.
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Chapter 4

Finite Graphs, Quivers, and

Resolution of Singularities

We have addressed algebraic singularities, symplectic quotients and orbifolds in re-

lation to finite group representations. It is now time to embark on a journey which

would ultimately give a unified outlook. To do so we must involve ourselves with yet

another field of mathematics, namely the theory of graphs.

4.1 Some Rudiments on Graphs and Quivers

As we shall be dealing extensively with algorithms on finite graphs in our later work

on toric singularities, let us first begin with the fundamental concepts in graph theory.

The reader is encouraged to consult such classic texts as [?, ?].

DEFINITION 4.1.6 A finite graph is a triple (V, E, I) such that V, E are disjoint finite

sets (respectively the set of vertices and edges) with members of E joining those of V

according to the incidence relations I.

The graph is undirected if for each edge e joining vertex i to j there is another

edge e′ joining j to i; it is directed otherwise. The graph is simple if there exists no

loops (i.e., edges joining a vertex to itself). The graph is connected if any two vertices

can be linked a series of edges, a so-called walk. Two more commonly encountered
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concepts are the Euler and Hamilton cycles, the first of which is walk returning to

the beginning vertex which traverses each edge only once and each vertex at least

once, while the latter, the vertices only once. Finally we call two graphs isomorphic

if they are topologically homeomorphic; we emphasise the unfortunate fact that the

graph isomorphism problem (of determining whether two graphs are isomorphic) is

thus far unsolved; it is believed to be neither P nor NP-complete. This will place

certain restrictions on our computations later.

We can represent a graph with n vertices and m edges by an n × n matrix, the

so-named adjacency matrix aij whose ij-th entry is the number of edges from i

to j. If the graph is simple, then we can also represent the graph by an incidence

matrix, an n×m matrix dia in whose a-th columns there is a −1 (resp. 1) in row i

(resp. row j) if there an a-th edge going from i to j. We emphasise that the graph

must be simple for the incidence matrix to fully encapture its information. Later on

in Liber III we will see this is a shortcoming when we are concerned with gauged

linear sigma models.

4.1.1 Quivers

Now let us move onto a specific type of directed graphs, which we shall call a quiver.

To any such a quiver (V, E, I) is associated the abelian category Rep(V, E, I), of its

representations (over say, C). A (complex) representation of a quiver associates to

every vertex i ∈ V a vector space Vi and to any edge i
a→ j a linear map fa : Vi → Vj.

The vector ~d = (di := dimCVi) is called the dimension of the representation.

Together with its representation dimension, we can identify a quiver as a labelled

graph (i.e., a graph with its nodes associate to integers) (V, E, I; ~d). Finally, as we

shall encounter in the case of gauge theories, one could attribute certain algebraic

meaning to the arrows by letting them be formal variables which satisfy certain sets

algebraic relations R; now we have to identify the quiver as a quintuple (V, E, I; ~d,R).

These labelled directed finite quivers with relations are what concern string theorist

the most.

In Liber III we shall delve further into the representation theory of quivers in
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relation to gauge theories, for now let us introduce two more preliminary concepts.

We say a representation with dimension ~d′ is a sub-representation of that with ~d if

(V, E, I; ~d′) ↪→ (V, E, I; ~d) is an injective morphism. In this case given a vector θ

such that θ · d = 0, we call a representation with dimension d θ-semistable if for

any subrepresentation with dimension d′, θ · d′ ≥ 0; we call it θ-stable for the strict

inequality. King’s beautiful work [?] has shown that θ-stability essentially implies

existence of solutions to certain BPS equations in supersymmetric gauge theories,

the so-called F-D flatness conditions. But pray be patient as this discussion would

have to wait until Liber II.

4.2 du Val-Kleinian Singularities

Having digressed some elements of graph and quiver theories, let us return to algebraic

geometry. We shall see below a beautiful link between the theory of quivers and that

of orbifold of C2.

First let us remind the reader of the classification of the quotient singularities of

C2, these date as far back as F. Klein [?]. The affine equations of these so-called ALE

(Asymptotically Locally Euclidean) singularities can be written in C[x, y, z] as

An : xy + zn = 0

Dn : x2 + y2z + zn−1 = 0

E6 : x2 + y3 + z4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : x2 + y3 + z5 = 0.

We have not named these ADE by coincidence. The resolutions of such singularities

were studied extensively by [?] and one sees in fact that the IP1-blowups intersect

precisely in the fashion of the Dynkin diagrams of the simply-laced Lie algebras

ADE. For a illustrative review upon this elegant subject, the reader is referred to

[?].
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4.2.1 McKay’s Correspondence

Perhaps it is a good point here to introduce the famous McKay correspondence, which

will be a major part of Liber III. We shall be brief now, promising to expound upon

the matter later.

Due to the remarkable observation of McKay in [?], there is yet another justifica-

tion of naming the classification of the discrete finite subgroups Γ of SU(2) as ADE.

Take the defining representation R of Γ, and consider its tensor product with all the

irreducible representations Ri:

R⊗Ri =
⊕

j

aijRj.

Now consider aij as an adjacency matrix of a finite quiver with labelling the dimen-

sions of the irreps. Then McKay’s Theorem states that aij of the ADE finite group is

precisely the Dynkin diagram of the affine ADE Lie algebra and the dimensions cor-

respond to the comarks of the algebra. Of course for any finite group we can perform

such a procedure, and we shall call the quiver so-obtained the McKay Quiver.

4.3 ALE Instantons, hyper-Kähler Quotients and

McKay Quivers

It is the unique perspective of Kronheimer’s work [?] which uses the methods of

certain symplectic quotients in conjunction with quivers to study the resolution of

the C2 orbifolds. We must digress one last time, to introduce instanton constructions.

4.3.1 The ADHM Construction for the E4 Instanton

For the Yang-Mills equation DaFab := ∇aFab +[Aa, Fab] = 0 obtained from the action

LYM = −1
4
FabF

ab with connexion Aa and field strength Fab := ∇[aAb] + [Aa, Ab],

we seek finite action solutions. These are known as instantons. A theorem due to

Uhlenbeck [?] ensures that finding such an instanton solution in Euclidean space E4
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amounts to investigating G-bundles over S4 since finite action requires the gauge field

to be well-behaved at infinity and hence the one-point compactification of E4 to S4.

Such G-bundles, at least for simple G, are classified by integers, viz., the second

Chern number of the bundle E, c2(E) := 1
8π

∫
S4 Tr(F ∧ F ); this is known as the

instanton number of the gauge field. In finding the saddle points, so as to enable

the evaluation of the Feynman path integral for LYM, one can easily show that only

the self-dual and self-anti-dual solutions Fab = ±Fab give rise to absolute minima in

each topological class (i.e., for fixed instanton number). Therefore we shall focus in

particular on the self-dual instantons. We note that self-duality implies solution to

the Yang-Mills equation due to the Bianchi identity. Hence we turn our attention to

self-dual gauge fields. There is a convenient theorem (see e.g. [?]) which translates

the duality condition into the language of holomorphic bundles:

THEOREM 4.3.9 (Atiyah et al.) There is a natural 1-1 correspondence between

• Self-dual SU(n) gauge fields1 on U , an open set in S4, and

• Holomorphic rank n vector bundles E over Û , an open set2 in IP3, such that (a)

E|x̂ is trivial ∀x ∈ U ; (b) det E is trivial; (c) E admits a positive real form.

Therefore the problem of constructing self-dual instantons amounts to constructing a

holomorphic vector bundle over IP3. The key technique is due to the monad concept

of Horrocks [?] where a sequence of vector bundles F
A→ G

B→ H is used to produce

the bundle E as a quotient E = kerB/ImA. Atiyah, Hitchin, Drinfeld and Manin

then utilised this idea in their celebrated paper [?] to reduce the self-dual Yang-Mills

instanton problem from partial differential equations to matrix equations; this is now

known as the ADHM construction. Let V and W be complex vector spaces of

dimensions 2k + n and k respectively and A(Z) a linear map

A(Z) : W → V

1Other classical groups have also been done, but here we shall exemplify with the unitary groups.
2There is a canonical mapping from x ∈ U to x̂ ∈ Û into which we shall not delve.
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depending linearly on coordinates {Za=0,1,2,3} of IP3 as A(Z) := AaZ
a with Aa con-

stant linear maps from W to V . For any subspace U ⊂ V , we define

U0 := {v ∈ V |(u, v) = 0 ∀u ∈ U}

with respect to the symplectic (nondegenerate skew bilinear) form ( , ). Moreover

we introduce antilinear maps σ : W → W with σ2 = 1 and σ : V → V with σ2 = −1

and impose the conditions

(1) ∀Za 6= 0, UZ := A(Z)W has dimension k and is isotropic (UZ ⊂ U0
Z);

(2) ∀w ∈ W, σA(Z)w = A(σZ)σw.
(4.3.1)

Then the quotient space EZ := U0
Z/UZ of dimension (2k+n−k)−k = n is precisely the

rank n SU(n)-bundle E over IP3 which we seek. One can further check that E satisfies

the 3 conditions in theorem ??, whereby giving us the required self-dual instanton.

Therefore we see that the complicated task of solving the non-linear partial differential

equations for the self-dual instantons has been reduced to finding (2k+n)×k matrices

A(Z) satisfying condition (??), the second of which is usually known - though perhaps

here not presented in the standard way - as the ADHM equation.

4.3.2 Moment Maps and Hyper-Kähler Quotients

The other ingredient we need is a generalisation of the symplectic quotient discussed in

Section 1.2, the so-called Hyper-Kähler Quotients of Kronheimer [?] (see also the elu-

cidation in [?]). A Riemannian manifold X with three covariantly constant complex

structures i := I, J, K satisfying the quaternionic algebra is called Hyper-Kähler3.

From these structures we can define closed (hyper-)Kähler 2-forms:

ωi(V, W ) := g(V, iW ) for i = I, J, K

3In dimension 4, simply-connectedness and self-duality of the Ricci tensor suffice to guarantee
hyper-Kählerity.
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mapping tangent vectors V, W ∈ T (X) to IR with g the metric tensor.

On a hyper-Kähler manifold with Killing vectors V (i.e., LV g = 0) we can impose

triholomorphicity: LV ωi = V ν(dωi)ν + d(V ν(ωi)ν) = 0 which together with closed-

ness dωi = 0 of the hyper-Kähler forms imply the existence of potentials µi, such

that dµi = V ν(ωi)ν . Since the dual of the Lie algebra g of the group of symmetries

G generated by the Killing vectors V is canonically identifiable with left-invariant

forms, we have an induced map of such potentials:

µi : X → µa
i ∈ IR3 ⊗ g∗ i = 1, 2, 3; a = 1, ..., dim(G)

These maps are the (hyper-Kähler) moment maps and usually grouped as µIR = µ3

and µC = µ1 + iµ2

Thus equipped, for any hyper-Kähler manifold Ξ of dimension 4n admitting k

freely acting triholomorphic symmetries, we can construct another, Xζ , of dimension

4n− 4k by the following two steps:

1. We have 3k moment maps and can thus define a level set of dimension 4n− 3k:

Pζ := {ξ ∈ Ξ|µa
i (ξ) = ζa

i };

2. When ζ ∈ IR3⊗Centre(g∗), Pζ turns out to be a principal G-bundle over a new

hyper-Kähler manifold

Xζ := Pζ/G ∼= {ξ ∈ Ξ|µa
C(ξ) = ζa

C}/GC.

This above construction , where in fact the natural connection on the bundle Pζ → Xζ

is self-dual, is the celebrated hyper-Kähler quotient construction [?].

Now we present a remarkable fact which connects these moment maps to the

previous section. If we write (??) for SU(n) groups into a (perhaps more standard)

component form, we have the ADHM data

M := {A, B; s, t†|A, B ∈ End(V ); s, t† ∈ Hom(V, W )},
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with the ADHM equations

[A, B] + ts = 0;

([A, A†] + [B, B†])− ss† + tt† = 0.

Comparing with the hyper-Kähler forms ωC = Tr(dA ∧ dB) + Tr(dt ∧ ds) and ωIR =

Tr(dA∧dA†+dB∧dB†)−Tr(ds†∧ds−dt∧dt†) which are invariant under the action

by A, B, s, t†, we immediately arrive at the following fact:

PROPOSITION 4.3.1 The moment maps for the triholomorphic SU(n) isometries pre-

cisely encode the ADHM equation for the SU(n) self-dual instanton construction.

4.3.3 ALE as a Hyper-Kähler Quotient

Kronheimer subsequently used the above construction for the case of X being the

ALE space, i.e. the orbifolds C2/(Γ ∈ SU(2)). Let us first clarify some notations:

Γ ⊂ SU(2) := Finite discrete subgroup of SU(2), i.e., An, Dn, or E6,7,8; Q := The

defining C2-representation; R := The regular |Γ|-dimensional complex representa-

tion; Ri=0,..,r := irreps(Γ) of dimension ni with 0 corresponding to the affine node

(the trivial irrep); ( )Γ := The Γ-invariant part; aij := The McKay quiver matrix

for Γ, i.e., Q ⊗ Ri =
⊕
j

aijRj; T := A one dimensional quaternion vector space

= {x0 + x1i + x2j + x3k|xi ∈ IR}; Λ+T ∗ := The self-dual part of the second exterior

power of the dual space = span{hyper-Kähler forms ωi=I,J,K}; [y ∧ y] := (T ∗ ∧ T ∗)⊗

[End(V ), End(V )], for y ∈ T ∗ ⊗ End(V ); Endskew(R) := The anti-Hermitian endo-

morphisms of R; Z := Trace free part of Centre(EndskewΓ(R)); G :=
r∏

i=1

U(ni) = The

group of unitary automorphisms of R commuting with the action of Γ, modded out

by U(1) scaling4 Xζ := {y ∈ (T ∗ ⊗IR Endskew(R))Γ|[y ∧ y]+ = ζ}/G for genericζ ∈

Λ+T ∗⊗Z; R := The natural bundle over Xζ , viz., Yζ ×G R, with Yζ := {y|[y∧y]+ =

ζ}; and finally ξ := A tautological vector-bundle endormorphism as an element in T ∗⊗IR

Endskew(R).

4This is in the sense that the group U(|Γ|) is broken down, by Γ-invariance, to
r∏

i=0

U(ni), and

then further reduced to G by the modding out.
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We now apply the hyper-Kähler construction in the previous subsection to the

ALE manifold

Ξ := (Q⊗ End(R))Γ = {ξ =

 α

β

}
=

⊕
ij

aij hom(Cni , Cnj)

∼= (T ∗ ⊗IR Endskew(R))Γ = {ξ =

 α −β†

β α†

}

where α and β are |Γ| × |Γ| matrices satisfying

 RγαRγ−1

RγβRγ−1

 = Qγ

 α

β

 for

γ ∈ Γ. Of course this is simply the Γ-invariance condition; or in a physical context, the

projection of the matter content on orbifolds. In the second line we have directly used

the definition of the McKay matrices5 aij and in the third, the canonical isomorphism

between C4 and the quaternions.

The hyper-Kähler forms are ωIR = Tr(dα∧ dα†) + Tr(dβ ∧ dβ†) and ωC = Tr(dα∧

dβ), the moment maps, µIR = [α, α†]+ [β, β†] and µC = [α, β]. Moreover, the group of

triholomorphic isometries is G =
r∏

i=1

U(ni) with a trivial U(n0) = U(1) modded out.

It is then the celebrated theorem of Kronheimer [?] that

THEOREM 4.3.10 (Kronheimer) The space

Xζ := {ξ ∈ Ξ|µa
i (ξ) = ζa

i }/G

is a smooth hyper-Kähler manifold of dimension6 four diffeomorphic to the resolu-

tion of the ALE orbifold C2/Γ. And conversely all ALE hyper-Kähler four-folds are

obtained by such a resolution.

We remark that in the metric, ζC corresponds to the complex deformation while

5The steps are as follows: (Q⊗ End(R))Γ = (Q ⊗ Hom(
⊕
i

Ri ⊗ Cni ,Hom(Cni , Cnj )))Γ =

(
⊕
ijk

aikHom(Rk, Rj))Γ ⊗Hom(Cni , Cnj ) =
⊕
ij

aijHom(Cni , Cnj ) by Schur’s Lemma.

6Since dim(Xζ) = dim(Ξ)− 4dim(G) = 2
∑
ij

aijninj − 4(|Γ| − 1) = 4|Γ| − 4|Γ|+ 1 = 4.
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ζIR = 0 corresponds to the singular limit C2/Γ.

4.3.4 Self-Dual Instantons on the ALE

Kronheimer and Nakajima [?] subsequently applied the ADHM construction on the

ALE quotient constructed in the previous section. In analogy to the usual ADHM

construction, we begin with the data (V, W,A, Ψ) such that

V, W := A pair of unitary Γ-modules of complex dimensions

k and n respectively;

A, B := Γ-equivariant endomorphisms of V ;

A :=

 A −B†

B A†

 ∈ (T ∗ ⊗IR Endskew(R))Γ =
⊕
ij

aijHom(Vi, Vj);

s, t† := homomorphisms from V to W ;

Ψ := (s, t†) ∈ Hom(S ⊗ V, W )Γ.

Let us explain the terminology above. By Γ-module we simply mean that V and

W admit decompositions into the irreps of Γ in the canonical way: V =
⊕
i

Vi ⊗ Ri

with Vi
∼= Cvi such that k = dim(V ) =

∑
i

vini and similarly for W . By Γ-equivariance

we mean the operators as matrices can be block-decomposed (into ni×nj) according

to the decomposition of the modules V and W . In the definition of A we have used

the McKay matrices in the reduction of (T ∗ ⊗IR Endskew(R))Γ in precisely the same

fashion as was in the definition of Ξ. For Φ, we use something analogous to the

standard spin-bundle decomposition of tangent bundles T ∗ ⊗ C = S ⊗ S̄, to positive

and (dual) negative spinors S and S̄. We here should thus identify S as the right-

handed spinors and Q, the left-handed.

Finally we have an additional structure on Xζ . Now since Xζ is constructed as

a quotient, with Pζ as a principal G-bundle, we have an induced natural bundle

R := Pζ ×G R with trivial R fibre. From this we have a tautological bundle T

whose endomorphisms are furnished by ξ ∈ T ∗ ⊗IR Endskew(R). This is tautological

in the sense that ξ ∈ Ξ and the points of the base Xζ are precisely the endomorphisms

of the fibre R.
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On Xζ we define operators A⊗ IdT , IdV ⊗ ξ and Ψ⊗ IdT : S ⊗ V ⊗T → W ⊗T .

Finally we define the operator (which is a (2k + n)|Γ| × 2k|Γ| matrix because S and

Q are of complex dimension 2, V , of dimension k and R and T , of dimension |Γ|)

D := (A⊗ Id− Id⊗ ξ)⊕Ψ⊗ Id

mapping S ⊗ V ⊗R → Q ⊗ V ⊗ T ⊕W ⊗R. We can restrict this operator to the

Γ-invariant part, viz., DΓ, which is now a (2k + n)× 2k matrix. The adjoint is given

by

D†
Γ :
(
Q̄⊗ V̄ ⊗ T

)
Γ
⊕
(
W̄ ⊗ T

)
Γ
→ S ⊗

(
V̄ ⊗ T

)
Γ
,

where V̄ , W̄ and Q̄ denote the trivial (Cartesian product) bundle over Xζ with fibres

V, W and Q.

Now as with the IR4 case, the moment maps encode the ADHM equations, ex-

cept that instead of the right hand side being zero, we now have the deforma-

tion parametres ζ. In other words, we have [A ∧ A]+ + {Ψ†, Ψ} = −ζV , where

{Ψ†, Ψ} ∈ Λ+T ∗ ⊗ Endskew(V ) is the symmetrisation in the S indices and contract-

ing in the W indices of Ψ†⊗Ψ, and ζV is such that ζV ⊗ Id ∈ Λ+T ∗⊗End((V ⊗R)Γ).

In component form this reads

[A, B] + ts = −ζC;

([A, A†] + [B, B†])− ss† + tt† = ζIR,
(4.3.2)

where as before ζ =
r⊕

i=1

ζiIdvi
∈ IR3 ⊗ Z.

Thus equipped, the anti-self-dual7 instantons can be constructed by the following

theorem:

THEOREM 4.3.11 (Kronheimer-Nakajima) For A and Ψ satisfying injectivity of DΓ

and (??), all anti-self-dual U(n) connections of instanton number k, on ALE can be

obtained as the induced connection on the bundle E = Coker(DΓ).

7The self-dual ones are obtained by reversing the orientation of the bundle.
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More explicitly, we take an orthonormal frame U of sections of Ker(D†
Γ), i.e., a (2k +

n) × n complex matrix such that D†
ΓU = 0 and U †U = Id. Then the required

connection (gauge field) is given by

Aµ = U †∇µU.

4.3.5 Quiver Varieties

We can finally take a unified perspective, combining what we have explained concern-

ing the construction of ALE-instantons as Hyper-Kähler quotients and the quivers

for th orbifolds of C2. Given an SU(2) quiver (i.e., a McKay quiver constructed out

of Γ, a finite discrete subgroup of SU(2)) Q with edges H = {h}, vertices {1, 2, ..., r},

and beginning (resp. ends) of h as α(h) (resp. β(h)), we study the representation by

associating vector spaces as follows: to each vertex q, we associate a pair of hermitian

vector spaces Vq and Wq. We then define the complex vector space:

M(v, w) :=

(⊕
h∈H

Hom(Vα(h), Vβ(h))

)
⊕
(

r⊕
q=1

Hom(Wq, Vq)⊕ Hom(Vq, Wq)

)
:=

⊕
h,q

{Bh, iq, jq}

with v := (dimCV1, ... , dimCVn) and w := (dimCW1, ... , dimCWn) being vectors of

dimensions of the spaces associated with the nodes.

Upon M(v, w) we can introduce the action by a group

G :=
∏

q

U(Vq) : {Bh, iq, jq} →
{

gα(h)Bhg
−1
β(h), gqiq, jqg

−1
q

}

with each factor acting as the unitary group U(Vq). We shall be more concerned with

G′ := G/U(1) where the trivial scalar action by an overall factor of U(1) has been

modded out.

In Q we can choose an orientation Ω and hence a signature for each (directed)

edge h, viz., ε(h) = 1 if h ∈ Ω and ε(h) = −1 if h ∈ Ω̄. Hyper-Kähler moment maps
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are subsequently given by:

µIR(B, i, j) := i
2

( ∑
h∈H,q=α(h)

BhB
†
h −B†

h̄
Bh̄ + iqi

†
q − j†qjq

)
∈
⊕
q

u(Vq) := g,

µC(B, i, j) :=

( ∑
h∈H,q=α(h)

ε(h)BhBh̄ + iqjq

)
∈
⊕
q

gl(Vq) := g⊗ C.

(4.3.3)

These maps (??) we recognise as precisely the ADHM equations in a different guise.

Moreover, the center Z of g, being a set of scalar r × r matrices, can be identified

with IRn. For Dynkin graphs8 we can then define R+, the set of positive roots, R+(v),

the positive roots bounded by v and Dθ, the wall defined by the root θ.

We rephrase Kronheimer’s theorem as [?]:

THEOREM 4.3.12 For the discrete subgroup Γ ∈ SU(2), let v = (n0, n1, ..., nn), the

vector of Dynkin labels of the Affine Dynkin graph associated with Γ and let w = 0,

then for9 ζ := (ζIR, ζC) ∈
{
IR3 ⊗ Z

}
\

⋃
θ∈IR+\{n}

IR3 ⊗Dθ, the manifold

Xζ := {B ∈ M(v, 0)|µ(B) = ζ}//G′

is the smooth resolution of C2/Γ with corresponding ALE metric.

For our purposes this construction induces a natural bundle which will give us the

required instanton. In fact, we can identify G′ =
∏
q 6=0

U(Vq) as the gauge group over

the non-Affine nodes and consider the bundle

Rl = µ−1(ζ)×G′ Cnl

for l = 1, ..., r indexing the non-Affine nodes where Cnl is the space acted upon by

the irreps of Γ (whose dimensions, by the McKay Correspondence, are precisely the

Dynkin labels) such that U(Vq) acts trivially (by Schur’s Lemma) unless q = l. For the

8In general they are defined as R+ := {θ ∈ ZZn
≥0|θt ·C · θ ≤ 2}\{0} for generalised Cartan matrix

C := 2I − A with A the adjacency matrix of the graph; R+(v) := {θ ∈ R+|θq ≤ vq = dimCVq ∀q}
and Dθ := {x ∈ IRn|x · θ = 0}.

9Z is the trace-free part of the centre and µ(B) = ζ means, component-wise µIR = ζIR and
µC = ζC.
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affine node, we define R0 to be the trivial bundle (inspired by the fact that this node

corresponds to the trivial principal 1-dimensional irrep of Γ). There is an obvious

tautological bundle endomorphism:

ξ := (ξh) ∈
⊕
h∈H

Hom(Rα(h),Rβ(h)).

We now re-phrase the Kronheimer-Nakajima theorem above as

THEOREM 4.3.13 The following sequence of bundle endomorphisms

⊕
q

Vq ⊗Rq
σ→

(⊕
h∈H

Vα(h) ⊗Rβ(h)

)
⊕

(⊕
q

Wq ⊗Rq

)
τ→
⊕

q

Vq ⊗Rq,

where

σ :=
(
Bh̄ ⊗ IdRβ(h)

+ ε(h)IdVα(h)
⊗ ξh

)
⊕
(
jq ⊗ IdRq

)
τ :=

(
ε(h)Bh̄ ⊗ IdRβ(h)

− IdVα(h)
⊗ ξh̄, iq ⊗ IdVq

)
is a complex (since the ADHM equation µC(B, i, j) = −ζC implies τσ = 0) and the

induced connection A on the bundle

E := Coker(σ, τ †) ⊂

(⊕
h∈H

Vα(h) ⊗Rβ(h)

)
⊕

(⊕
q

Wq ⊗Rq

)

is anti-self-dual. And conversely all such connections are thus obtained.

We here illustrate the discussions above via explicit quiver diagrams; though we

shall use the Â2 as our diagrammatic example, the generic structure should be cap-

tured. The quiver is represented in Figure ?? and the concepts introduced in the

previous sections are elucidated therein. In the figure, the vector space V of dimen-

sion k is decomposed into V0⊕V1⊕ ...⊕Vr, each of dimension vi and associated with

the i-th node of Dynkin label ni = dim(Ri) in the affine Dynkin diagram of rank r.

This is simply the usual McKay quiver for Γ ⊂ SU(2). Therefore we have k =
∑
i

nivi.

To this we add the vector space W of dimension n decomposing similarly as

W = W0 ⊕W1 ⊕ ... ⊕Wr, each of dimension wi and n =
∑
i

niwi. Now we have the

McKay quiver with extra legs. Between each pair of nodes Vq1 and Vq2 we have the
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Figure 4-1: The Kronheimer-Nakajima quiver forC2/An, extending the McKay quiver
to also encapture the information for the construction of the ALE instanton.

map Bh with h the edge between these two nodes. We note of course that due to

McKay h is undirected and single-valence for SU(2) thus making specifying merely

one map between two nodes sufficient. Between each pair Vq and Wq we have the

maps iq : Wq → Vq and jq, in the other direction. The group U(k) is broken down

to (
r∏

q=0

U(vq))/U(1). This is the group of Γ-compatible symplectic diffeomorphisms.

This latter gauge group is our required rank n = dim(W ) unitary bundle with anti-

self-dual connection, i.e., an U(n) instanton with instanton number k = dim(V ).
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Epilogue

Thus we conclude Liber I, our preparatory journey into the requisite mathematics.

We have introduced canonical Gorenstein singularities and monodromies thereon.

Thereafter we have studied symplectic structures one could impose, especially in the

context of symplectic quotients and moment maps. As a powerful example of such

quotients we have reviewed toric varieties.

We then digressed to the representation of finite groups, in preparation of studying

a wide class of Gorenstein singularities: the orbifolds. We shall see in Liber III how all

of the Abelian orbifolds actually afford toric descriptions. Subsequently we digressed

again to the theory of finite graphs and quiver, another key constituent of this writing.

A unified outlook was finally performed in the last sections of Chapter 4 where

symplectic quotients in conjunction with quivers were used to address orbifolds of C2,

the so-called ALE spaces. With all these tools in hand, let us now proceed to string

theory.

51



Bibliography

[1] P. Griffiths and J. Harris, “Principles of Algebraic Geometry,” Wiley 1994.

[2] R. Hartshorne, “Algebraic Geometry,” Springer 1977.

[3] M. Reid, “Young Person’s Guide to Canonical Singularities,” Proc. Symp. Pure

Math. AMS vol 46, 1987.

[4] M. Reid, Chapters on Algebraic Surfaces, in “Complex Algebraic Geometry,”

Ed. J Kollar, AMS 1997.

[5] Yongbin Ruan, “Cohomology ring of crepant resolutions of orbifolds,”

math.AG/0108195.

[6] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, “Singularities of Differ-

entiable Maps,” Vols I and II, Birkhauser, 1988.

[7] S. Cecotti and C. Vafa, “On classification of N=2 supersymmetric theories,”

Commun. Math. Phys. 158, 569 (1993), hep-th/9211097.

[8] R.Berndt, “An Introduction to Symplectic Geometry,” AMS 2000.

[9] Hassen and Slodowy, in “Singularities, The Brieskorn Anniversary Volume”,

Ed. V. Arnold, G.-M. Gruel, J. H. M. Steenbrink, Progress in Mathematics,
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