
Experience report: Mechanizing Core F.

using the locally nameless approach
(extended abstract)

Benoît Montagu
INRIA Paris-Rocquencourt
benoit.montagu@inria.fr

Abstract
For a couple of years, much effort has been put in the development of
techniques that ease the mechanization of proofs involving binders.
We report such a mechanized development of metatheory, the
type soundness of Core F. [3], by a non expert user of Coq [2],
using the locally nameless representation of binders and cofinite
quantification, with the help of the tools LNgen [1] and Ott [4].

1. F. and its formal proof in a nutshell
Core F.(F-zip) is a variant of System F that allows for more freedom
in the structure of programs that make use of existential types, by
considering existentials with an open scope. It is equipped with a
small-step reduction semantics and a sound type system.

The paper proof is neither very informative, nor very difficult,
and consists in the subject reduction and the progress properties.
The mechanized proof was carried out in about one month by the
author, who is not an expert user of Coq. It makes use of LNgen [1]
and the experimental locally nameless backend of Ott [4] to reduce
the burden of the locally nameless encoding and its infrastructure
lemmas. The only complex automation we used is the one provided
by the Metatheory library from UPenn, that was of great help. Thus,
a clean up of the development as well as clever tactics could certainly
reduce the size of the whole proof. Much time is spent in proof
search, so that Coq compiles it in about 45 minutes on a recent
computer, while type checking takes just a few minutes.

Specifications Proofs

3 000 1 450 Automatically generated
2 600 8 600 Manually produced
5 600 10 050 Total

Specification/proof ratio: 35%; Ratio produced by tools: 28%.
http://gallium.inria.fr/~montagu/proofs/FzipCore/

Table 1. Size of the development in lines of code.

2. Encountered issues
In spite of its relatively simple paper proof, Core F. gathers a set
of peculiarities, that makes it not straightforward to mechanically
formalize:

• The syntax of terms is not stable under substitution of types,
which forced us to slightly change the definition of the system;

• Reduction proceeds under some binders, which makes renaming
lemmas on the reduction relation necessary, for example, to
prove the progress property;

• Some reduction rules involve nested binders, while some other
ones create new binders in their conclusion: this is the case
of rules that extrude the scope of a binder, or that swap two
consecutive binders. This makes the encoding using cofinite
quantification somewhat convoluted, or nay difficult to under-
stand, so that we had to prove the admissibility of more natural
formulations of the rules just to convince ourselves that the en-
coding was correct. Ott currently failed to handle these rules in
a correct manner.

We now quickly illustrate each of the above points, as well as the
lack of support for definitions of functions over terms with bindings.

2.1 A syntax that is not closed under substitution
The syntax of terms in Core F. is not stable under substitution of
types. Two constructs are responsible for this: open 〈α〉 M and
Σ 〈α〉 (β = τ)M , where the free type variable α can only be re-
placed with another type variable. LNgen however only has support
for syntax that are closed under substitution. As a consequence, we
were forced to extend our definition (i.e. allow open 〈τ〉M and
Σ 〈τ〉 (α = τ ′)M for arbitrary τ s), and then restrict the uses of the
syntax in the typing rules.

We think that renaming should be considered as the basic
operation on terms with binders, instead of substitution.

2.2 Definition of functions over structures with binders
We sometimes needed to define functions over terms. LNgen
provides a recursion combinator on locally closed terms for this
purpose. For every binder to be opened, we need to compute a
sufficiently fresh atom. This is problematic when one reasons about
such functions, as one often needs to use another atom than the
one that was chosen to open a binder. We consequently preferred
to define them as relations using the cofinite quantification and
then prove they indeed define functions. This necessitated renaming
lemmas to prove the existence of an image for every argument.

2.3 Reduction under binders
In Core F., reduction proceeds under some constructs that bind type
variables. As a consequence, the contextual closure of the reduction
relation uses cofinite quantification when traversing binders. This is
automatically done by Ott’s experimental locally nameless backend.

For instance the reduction rule that says να.M να.M ′

providedM M ′ is expressed in Coq as follows, whereL denotes
a finite set of atoms:

∀α /∈ L, open_termM α open_termM ′ α

νM νM ′

http://gallium.inria.fr/~montagu/proofs/FzipCore/

But it is often the case (as in the proof of progress) that one wants
to conclude while the premise is true only for some atom α, hence
the need for the rule:

M M ′

ν (close_term αM) ν
(
close_term αM ′)

It is well known that the proof of validity of this rule is not direct: it
requires a renaming lemma.

2.4 Nested binders
Let us now consider the following reduction rule: νβ.Σ 〈β〉 (α =
τ) r r [β← α] [α← τ], provided β]τ and r satisfies the result
predicate. In this rule, the ν construct binds β, while α is bound in
r by the Σ construct. The problem is that the cofinite quantification
method makes this rule much less readable:
∀β /∈ L, ∀α /∈ L ∪ {β},

open_term (Σ 0 τ M)β = Σβ (open_typ τ β)M1 →
open_termM1 α = M2 →

β /∈ open_typ τ β ∧ resultM2

∧M ′ = M2 [β← α] [α← open_type τ β]

ν (Σ 0 τ M) M ′

Notice that we need to consider M under all its bindings, hence
the introduction of M1 and M2. It is here rather easy to prove
that the relation really has an image, i.e. M ′ is well defined, since
M2 = open_term

(
open_term1M β

)
α (the 1 in superscript

refers to the De Bruijn indice 1; we simply omit it if it is 0).
We could not directly define M ′ in the conclusion, since it

would use atoms that are cofinitely bound in the hypothesis. As
the encoding is not obvious, we proved the admissibility of the rule:

result r β] τ

ν (close_term β (Σβ τ (close_term αM)))
M [β← α] [α← τ]

This kind of rule, that we name “in closed form” as they use close
in their conclusion and avoid the use of open, closely resembles the
original definition, as the occurrences of binders are indicated by
occurrences of close.

2.5 Extrusion of binders
Another set of reduction rules implement the extrusion of the Σ
construct, for instance through pairs: (Σ 〈β〉 (α = τ) r1, r2)
Σ 〈β〉 (α = τ) (r1, r2 [β← α]) provided α] r2 and r1 and r2 are
results. As previously, the created binder in the result cannot be
completely defined in the conclusion, since it would use cofinitely
quantified atoms. We had to encode this rule as follows:

result (Σβ τ M1) resultM2

∀α /∈ L, open_termM ′
2 α = M2 [α← β]

(Σβ τ M1,M2) Σβ τ
(
M1,M

′
2

)
where the term M ′

2 in the conclusion is specified in the premise by
considering its opened version. Again, we proved the validity of
the following rule in closed form, to convince ourselves that the
encoding was correct.

resultM1 resultM2 α] M2

(Σβ τ (close_termαM1) ,M2)
Σβ τ (close_termα (M1,M2 [β← α]))

2.6 Swapping of binders
The situation is worse when considering operations that swap
binders, as specified by the following reduction rule: Σ 〈β1〉 (α1 =
τ1)Σ 〈β2〉 (α2 = τ2)r Σ 〈β2〉 (α2 = τ2 [α1← τ1])Σ 〈β1〉 (α1 =
τ1)r, provided r is a result and α2] τ1. We expressed this rule with

cofinite quantification as follows:

∀α1 /∈ L,∀α2 /∈ L ∪ {α1},
result

(
open_term

(
open_term1M α2

)
α1

)
∧

τ1 = open_typ τ ′1 α2 ∧
open_term

(
open_term1M α1

)
α2

= open_term
(
open_term1M ′ α2

)
α1

Σβ1 τ1(Σβ2 τ2M) Σβ2 (open_typ τ2 τ1)
(
Σβ1 τ

′
1M

′)
As in the previous examples, we had to consider the term M under
its binders, hence we have to open it twice (once at the De Bruijn
level 1, as specified in superscript, and another time at level 0) to
implement the swapping of binders. But since it is very easy to get
the levels or the order of openings wrong, we were only convinced
by the correctness of our encoding, once we proved the validity of
the rule in closed form, that mimics the definition on paper:

result r α2] τ1

Σβ1 τ1 (close_term α1 (Σβ2 τ2 (close_term α2 r)))
Σβ2 (τ2 [α1←τ1])(close_termα2 (Σβ1τ1 (close_termα1r)))

The proof of validity not only required a renaming lemma, but also
a specific one about indices, that was hard to state well:

Lemma 2.1. For any α, α1, α2, M and n,
open_termn α1

(
open_termn+1 α2

(
close_termn+1 αM

))
= open_termn α2

(
open_termn+1 α1 (close_termn αM)

)
It was an unpleasant surprise, that we had to work with the

implementation of binding: the user should not be confronted to it.
We must admit that we tried several versions of this lemma, until
we eventually got it right by chance.

3. Conclusive remarks
Although it provides powerful induction principles, cofinite quan-
tification is not the panacea when it is used as a specification: it
can render your judgments hard to understand, and the encoding is
sometimes not obvious and error prone. Moreover, we sometimes
had to deal with De Bruijn indices, which is unsatisfactory.

Instead, we think that rules in closed forms are easier to under-
stand and hence should be preferred in specifications. But this would
require some support to derive strong induction principles, as done
in Nominal Isabelle [5]. Rules in closed forms also naturally appear
when one requires that each quantified term in a rule is also locally
closed. Moreover, we think that using closed forms would simplify
the work for Ott and extend its range of applicability.

To our limited knowledge, defining and reasoning on functions
over terms with bindings in Coq is still an annoying problem, for
which tool support would be much appreciated.

Although dealing with binders with Coq has improved a lot over
the past years, some efforts are still needed, so that we can claim
that mechanized metatheory is accessible to the masses.

References
[1] Brian Aydemir and Stephanie Weirich. LNgen: Tool support for locally

nameless representations. Draft.
[2] The Coq development team. Reference manual of the Coq proof assistant,

version 8.2 edition.
[3] Benoît Montagu and Didier Rémy. Modeling abstract types in mod-

ules with open existential types. In Proceedings of ACM SIGPLAN
Symposium on Principles of Programming Languages, January 2009.

[4] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine,
Thomas Ridge, Susmit Sarkar, and Rok Strnivsa. Ott: Effective tool
support for the working semanticist. JFP, 20(1):71–122, 2010.

[5] Christian Urban. Nominal reasoning techniques in Isabelle/HOL.
Journal of Automatic Reasoning, 40(4):327–356, 2008.

http://www.cis.upenn.edu/~baydemir/papers/lngen.pdf
http://coq.inria.fr/refman/
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://www.cl.cam.ac.uk/~pes20/ott/ott-jfp.pdf
http://www4.in.tum.de/~urbanc/Publications/nom-tech.ps

	Fzip and its formal proof in a nutshell
	Encountered issues
	A syntax that is not closed under substitution
	Definition of functions over structures with binders
	Reduction under binders
	Nested binders
	Extrusion of binders
	Swapping of binders

	Conclusive remarks

