
Mechanized metatheory: ready for prime time?

James Cheney

University of Edinburgh
jcheney@inf.ed.ac.uk

The POPLMark challenge has inspired, and work-
shops such as WMM and LFMTP have documented,
great progress in mechanizing proofs of properties of
programming languages. There is growing evidence
that several current techniques are adequate for ensur-
ing the correctness of syntactic proofs of results in pa-
pers in top conferences and journals, or verifying com-
pilers for existing languages. These are excellent goals
for mechanized metatheory research. Nevertheless, we
should aim higher.

Is mechanized metatheory ready for prime time?
Can it be used to inform the design of new languages,
rather than for postmortem analysis of existing ones? I
think the answer is still no. I suggest that the commu-
nity of researchers interested in mechanized metathe-
ory consider targeting some new languages that are in-
teresting to people outside this community, and trying
to use mechanized metatheory to inform and improve
these languages. Doing so will give us a clearer idea
of what (engineering and research) challenges remain
to realize the full potential of mechanization. Doing
so may also help differentiate techniques in terms of
scalability, expressiveness and ease of use, in ways that
(relatively) small benchmarks such as the POPLMark
problems or formalization tours de force have not. Here
is one suggestion.

The World Wide Web consortium (W3C) is design-
ing new languages and language extensions at a break-
neck pace: ten W3C Recommendations have been pub-
lished so far in 2010 as of this writing (though only
one or two of these are programming languages, as
such). With a few exceptions, these languages are not
formally specified, let alone mechanically checked. If
mechanized metatheory is to have impact beyond the
programming language research community, then we
need to figure out how to mechanize the metatheory
of real, evolving language designs, fast and effectively
enough to inform overworked standards committees.

There are many obstacles that prevent this from be-
ing easy or rewarding in the short term. Standards or-
ganizations are subject to many pressures, and careful
formal thinking about language design and semantics
is not necessarily recognized (and sometimes actively
discouraged). Standards committees include both aca-
demic and industry representatives with a wide variety
of backgrounds, meaning that involvement from pro-
gramming languages researchers will likely require pa-
tience and compromise. However, some recent W3C
standards efforts have been receptive to the idea of for-
mal semantics; in the case of XQuery [2], a partial for-
mal semantics was adopted as part of the standard [4].
We should build upon these encouraging signs.

XQuery is a language for querying XML databases.
It is a W3C Recommendation (that is, a Web standard).
Although intended primarily for database applications,
XQuery has many features of general-purpose lan-
guages, and it includes functions, recursion, and arith-
metic, making it Turing-complete. XQuery is becom-
ing an important language, and one for which subtle
reasoning is needed to ensure that optimization and
compilation techniques are correct. Moreover, because
of its comparatively simple and clean design, it appears
within reach to completely formalize the semantics of
XQuery expressions, and verify standard optimization
and compilation techniques. I think this can be done
within, say, two years using at least some current tools.

Many papers on implementing, analyzing or opti-
mizing XQuery have been published (including [6, 5,
1], among others). Yet these results are generally based
on a simplified fragment of XQuery whose semantics is
relatively clean, which for convenience I will call mini-
XQuery. Results about mini-XQuery may not transfer
directly to the full language. Many equational opti-
mization rules or transformations hold on-the-nose for
mini-XQuery but can be invalid in full XQuery. For ex-

ample, the identity:

let $x = e1 return e2 ≡ e2[e1/$x]

does not hold if, for example, e1 is an expression such
as 〈foo〉bar〈/foo〉 that constructs a new XML element
node (with a fresh identity) and e2 performs an opera-
tion that is sensitive to the node identity of the value of
$x, such as $x is $x or count($x union $x).

XQuery is a more appealing target for formalization
than other related languages. It is small compared to the
relational database query language SQL, and its speci-
fication is freely and publicly available. In comparison
with other recent W3C standards, XQuery already has
a relatively clean (although partial) formal semantics
that can be used as a starting point for mechanization.
There are also open-source implementations of XQuery
that pass most of the W3C’s informal benchmarks, and
these implementations can be used to determine how
implementers have addressed ambiguities in the stan-
dard.

XQuery is also appealing because it is still a work in
progress: version 1.0 leaves out many features that are
considered important, such as updates. Well-targeted
work on formalizing the metatheory of XQuery or other
W3C standards could have an impact on future versions
as they are developed, particularly as advanced features
are added.

I have begun working on a formalization of mini-
XQuery in Nominal Isabelle [8], and plan to develop
this into a complete formalization that handles all inter-
esting aspects of the language. In this talk I will present
the background described above, discuss what has been
formalized so far and enumerate the challenges remain-
ing. Many of the challenges do not immediately relate
to name-binding:

1. XML trees are modeled using explicit identifiers
that can be accessed through the language by fea-
tures such as is (which tests whether two nodes
have the same identity). Other features are sensitive
to node identity, including union, which removes
duplicate nodes. Node identifiers can be generated
at run time when new data is constructed.

2. XQuery builds on the XPath language which per-
mits navigating a tree data structure in any direc-
tion. For example, given a node we can always find
its parent, ancestors, and siblings. The most obvious
way to model this semantics is to use node identities,

but formalizing this seems likely to become compli-
cated quickly.

3. XQuery also includes features such as unordered
processing modes that make the semantics nonde-
terministic and may further complicate equational
reasoning about optimization rules.

4. There are also several optional or high-level fea-
tures, such as modules, namespaces, and schema
importing that might be (at least bureaucratically)
challenging to formalize. These are a lower priority,
since optimization is usually performed only at the
level of expressions.

5. Several extensions to XQuery are being developed,
including updates [3], and (for XQuery 1.1) higher-
order functions, exceptions and more advanced
querying features [7]. These extensions are not de-
fined by a formal semantics.

References
[1] Michael Benedikt and James Cheney. Schema-based

independence analysis for XML updates. PVLDB,
2(1):61–72, 2009.

[2] S. Boag, D. Chamberlin, M. Fernández, D. Florescu,
J. Robie, and J. Siméon. XQuery 1.0: An XML query
language. W3C Recommendation, January 2007.

[3] D. Chamberlin, M. Dyck, D. Florescu, J. Melton,
J. Robie, and J. Siméon. XQuery update facility 1.0.
W3C Candidate Recommendation, August 2008.

[4] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra,
K. Rose, M. Rys, J. Siméon, and P. Wadler. XQuery 1.0
and XPath 2.0 formal semantics. W3C Recommenda-
tion, January 2007.

[5] Giorgio Ghelli, Nicola Onose, Kristoffer Høgsbro Rose,
and Jérôme Siméon. XML query optimization in the
presence of side effects. In SIGMOD, pages 339–352,
2008.

[6] Christopher Ré, Jérôme Siméon, and Mary F. Fernández.
A complete and efficient algebraic compiler for XQuery.
In ICDE, page 14, 2006.

[7] Jonathan Robie, Don Chamberlin, Michael Dyck, and
John Snelson. XQuery 1.1: An XML query language.
W3C Working Draft, December 2009.

[8] Christian Urban. Nominal techniques in Isabelle/HOL.
J. Autom. Reasoning, 40(4):327–356, 2008.

