

Formalizing an Extensional Semantics for Units-of-Measure

Andrew Kennedy Microsoft Research Cambridge

Introduction

 The F# programming language supports checking and inference of units-of-measure

```
let speedOfImpact : float<m/s> =
   sqrt (2.0 * gravityOnEarth * heightOfMyOfficeWindow)
val variance : float<'u> list -> float<'u ^ 2>
val areaUnderCurve :
   (float<'u> -> float<'v>) * float<'u> * float<'u> ->
   float<'u 'v>
```

- Type inference works well, with principal types and a practical algorithm
 - Come to my talk at the ML workshop (9am Sunday)
 - Visit http://blogs.msdn.com/andrewkennedy
 - Download F# Community Technology Preview from http://msdn.microsoft.com/fsharp

Introduction

- Today's talk: the semantics of units-of-measure
 - What does it mean for unit-incorrect programs to go wrong?
 - How do unit-polymorphic functions behave?
 - What is the analogue of classical results from dimensional analysis?
- And: formalize the semantics in Coq.

Going wrong, intensionally

- "Well-typed programs don't go wrong" (Milner, 1978)
 - They don't dump core or throw MissingMethodException
 - Originally formalized by adding a wrong value to the semantics (e.g. applying an integer as if it were a function reduces to wrong) and then showing that well-typed expressions don't reduce to wrong
 - These days usually formalized as syntactic type soundness:
 - *Preservation*: if e: τ and e reduces in some number of steps to e', then e': τ , and
 - *Progress*: if e: τ then either e is a final value (constant, lambda, etc) or e reduces to some e' (i.e. it doesn't "get stuck")
- What "goes wrong" if a program contains a unit error?
 - Nothing!
 - Unless runtime values are instrumented with their units-of-measure.
 But that would be cheating!

Going wrong, extensionally

• Claim: the essence of unit correctness is *invariance of* program behaviour under scaling. E.g.

Compare: invariance of physical laws under scaling

Polymorphism, extensionally

How do we know that we can safely assign a type

```
foo : float<'u> -> float<'u^2>
```

- If foo is implemented in F#, then safety follows from soundness of typing rules
- But what if it's implemented by

```
fmul st(1),st
fmul st(1),st
fld DWORD PTR [esp]
fxch st(1)
fmulp st(2),st
fsub st,st(1)
```

Machine code

FPGA

analogue computer

human computer

Polymorphism, extensionally

• Claim: the essence of unit-polymorphism is *invariance under scaling*. For

foo: $\forall u.\text{num } u \rightarrow \text{num } u^2$

this amounts to the property

$$\forall x, \mathtt{foo}(k*x) = k^2 * \mathtt{foo}(x)$$

for any positive "scale factor" k.

• This is an example of a "free theorem". Compare

$$bar: \forall \alpha.\alpha \rightarrow \alpha \times \alpha$$

and the theorem

$$\forall x, \mathtt{bar}(f(x)) = \langle f, f \rangle (\mathtt{bar}(x))$$

Extensional semantics of units

- Semantics is based on *scaling invariance*
 - Compare polymorphism as representation independence
 - Similar technology: parameterized binary logical relations
- See

Relational Parametricity and Units of Measure
Andrew Kennedy, POPL 1997

for original work, based on a System-F-like language.

- Aim now: formalize in Coq, generalize results
 - No terms yet. Instead, purely semantic results over Coq functions
 - For crisper results, we assume an abstract base domain of *positive* values forming a multiplicative Abelian group (e.g. \mathbb{R}^+ or \mathbb{Q}^+)

Results

Theorems for Free. Another example: if

$$\models d: \forall uv.\mathtt{num}\, u \to (\mathtt{num}\, u \to \mathtt{num}\, v) \to (\mathtt{num}\, u \to \mathtt{num}\, v \cdot u^{-1})$$

then

$$\forall k_1, k_2, d \ h \ f \ x = \frac{k_2}{k_1} * d \left(\frac{h}{k_1}\right) \left(\lambda x. \frac{f(x * k_1)}{k_2}\right) \left(\frac{x}{k_1}\right)$$

Type isomorphisms. For example

$$\forall u.\mathtt{num}\, u \to \mathtt{num}\, u \cong \mathtt{num}\, \mathbf{1}$$

To see why, consider what functions have the left-hand type. This is one an instance of the more general "Pi Theorem".

Syntax: units and types

- Unit expressions have grammar $\mu := u \mid \mathbf{1} \mid \mu \cdot \mu \mid \mu^{-1}$
- Axiomatize equational theory =,, on units (Abelian group) :

identity
$$\mathbf{1} \cdot \mu =_U \mu$$
 inverse $\mu \cdot \mu^{-1} =_U \mathbf{1}$ assoc $(\mu_1 \cdot \mu_2) \cdot \mu_3 =_U \mu_1 \cdot (\mu_2 \cdot \mu_3)$ comm $\mu_1 \cdot \mu_2 =_U \mu_2 \cdot \mu_1$

Type expressions have grammar

$$\tau ::= \operatorname{num} \mu \mid \tau \to \tau \mid \tau \times \tau \mid \tau + \tau \mid \forall u.\tau \mid \operatorname{unit} \mid \operatorname{void}$$

No base units (e.g. kg, m, s)! Just quantify at top-level

Mechanizing Abelian groups

Package operations and axioms in a record:

```
Record AbGroup := mkGroup {
carrier :> Set;
prod : carrier \rightarrow carrier \rightarrow carrier;
inv : carrier \rightarrow carrier;
one : carrier;
assoc : \forall \ x \ y \ z, \ prod \ x \ (prod \ y \ z) = prod \ (prod \ x \ y) \ z;
comm : \forall \ x \ y, \ prod \ x \ y = prod \ y \ x;
id\_r : \forall \ x, \ prod \ x \ one = x;
inv\_r : \forall \ x, \ prod \ x \ (inv \ x) = one }.
```

Similarly for group homomorphisms:

```
Record Hom\ (G:AbGroup)\ (H:AbGroup) := mkHom\ \{ hom: > carrier\ G \to carrier\ H; preserves: \forall\ x\ y:\ G,\ hom(prod\ x\ y) = prod\ (hom\ x)\ (hom\ y)\ \}.
```

Units, in Coq

To mechanize in Coq, we could define syntax inductively:

```
\begin{array}{l} \textbf{Inductive} \ Unt := \\ \mid \ Unt Var : \ nat \rightarrow \ Unt \ \mid \ Unt One : \ Unt \\ \mid \ Unt Prod : \ Unt \rightarrow \ Unt \ \mid \ Unt Inv : \ Unt \rightarrow \ Unt. \end{array}
```

• But then we'd need to quotient by $=_{U}$. So instead:

```
Definition Unt := nat \rightarrow Z.
```

 Unit equivalence is then just extensional equality on functions. We can define operators and prove the Abelian group laws:

```
Axiom UntExtensional: \forall \mu_1 \ \mu_2: Unt, \ (\forall i, \mu_1 \ i = \mu_2 \ i) \rightarrow \mu_1 = \mu_2.
Definition UntProd \ (\mu_1 \ \mu_2: Unt) := \text{fun} \ v \Rightarrow \mu_1(v) + \mu_2(v).
Notation "u * v" := (UntProd \ u \ v).
Lemma UntProd\_comm: \forall \mu_1 \ \mu_2, \ \mu_1 * \mu_2 = \mu_2 * \mu_1.
\vdots
Canonical Structure UntGroup := AbGrp.mkGroup \ Unt \ UntProd\_comm \ UntProd\_id\_r \ UntProd\_inv\_r.
```

Substitutions, in Coq

A substitution is just a homomorphism:

```
Definition Subst := Hom\ UntGroup\ UntGroup.
```

 We can define e.g. singleton substitutions, identity, etc. We can also easily define the de Bruijn "shift" operator as a homomorphism:

```
Definition shift\ (\mu : Unt) : Unt := \\ \text{fun } i \Rightarrow \text{match } i \text{ with } O \Rightarrow 0 \mid S \ j \Rightarrow \mu \ j \text{ end.} Lemma shift\_prod: \forall \ \mu_1 \ \mu_2 : Unt, \ shift\ (\mu_1 * \mu_2) = shift\ \mu_1 * shift\ \mu_2. Proof.

intros \mu_1 \ \mu_2. unfold shift. apply UntExtensional. intro j. case\ j; compute; auto. Qed.

Definition shiftAsSubst: Subst. exact (mkHom\ UntGroup\ UntGroup\ shift\ shift\_prod). Defined.
```

Types, in Coq

- We define types inductively
- Bound variable in ∀ is encoded using de Brujn

```
\begin{array}{l} \textbf{Inductive} \ Ty := \\ \mid Num : \ Unt \rightarrow Ty \\ \mid Arrow : \ Ty \rightarrow Ty \rightarrow Ty \\ \mid Prod : \ Ty \rightarrow Ty \rightarrow Ty \\ \mid Sum : \ Ty \rightarrow Ty \rightarrow Ty \\ \mid Unit : \ Ty \\ \mid Void : \ Ty \\ \mid All : \ Ty \rightarrow Ty. \end{array}
```

The base domain

- We assume a numeric domain. We could be concrete, e.g. use Coq's Q (rationals) or R (reals)
 - But results are crisper if we restrict to positive values

Notation "/x" := $(BaseInv \ x)$.

Notation "x / y" := $(BaseProd\ x\ (BaseInv\ y))$.

 Instead, we assume enough axioms to get our results: just that we have a non-trivial (multiplicative) Abelian group

```
Parameter Base : Set.  
Axiom BaseProd\_id\_r : \forall \ x, \ x*1 = x.  
Parameter BaseProd :  
Axiom BaseProd\_assoc : \forall \ x \ y \ z, \ x*(y*z) = (x*y)*z.  
Axiom BaseProd\_assoc : \forall \ x \ y \ z, \ x*(y*z) = (x*y)*z.  
Axiom BaseProd\_inverse\_r : \forall \ x, \ x*/x = 1.  
Axiom BaseProd\_inverse\_r : \forall \ x, \ x*/x = 1.  
Axiom BaseProd\_comm : \forall \ x \ y, \ x*y = y*x.  
Axiom BaseNonTrivial : \exists \ x:Base, \ x \neq 1.  
Notation "x*y" := (BaseProd \ x \ y).  
Notation "1" := (BaseOne).
```

The underlying semantics

```
Fixpoint usem \ \tau :=
(\mathsf{match} \ \tau \ \mathsf{with})
|\ Num \ \mu \Rightarrow Base
|\ Arrow \ \tau_1 \ \tau_2 \Rightarrow usem \ \tau_1 \rightarrow usem \ \tau_2
|\ Prod \ \tau_1 \ \tau_2 \Rightarrow usem \ \tau_1 \times usem \ \tau_2
|\ Shallow \ \mathsf{embedding}|
|\ Sum \ \tau_1 \ \tau_2 \Rightarrow usem \ \tau_1 + usem \ \tau_2
|\ Unit \Rightarrow unit
|\ Void \Rightarrow False
|\ All \ \tau \Rightarrow usem \ \tau
|\ All \ \tau \Rightarrow usem \ \tau
|\ Units \ \mathsf{ignored}|
|\ All \ \tau \Rightarrow usem \ \tau
|\ Units \ \mathsf{ignored}|
```

Scaling environments

- A scaling environment ψ assigns to each unit variable u a scale factor from Base
- Extend ψ to unit expressions homomorphically i.e.

$$\psi(\mu_1 \cdot \mu_2) = \psi(\mu_1) \times \psi(\mu_2)
\psi(\mu^{-1}) = 1/\psi(\mu)
\psi(\mathbf{1}) = 1$$

In Coq, just

Definition $SEnv := Hom\ UntGroup\ BaseGroup.$

Parametric logical relation

Definition SEnvExtends $(\psi':SEnv)$ $(\psi:SEnv) := \forall \mu, \psi'$ $(shift \mu) = \psi(\mu).$

 ψ' extends ψ with assignment for variable 0

Binary relation over underlying semantics

```
Fixpoint sem\ (\psi:SEnv)\ (\tau:Ty): usem\ \tau \to usem\ \tau \to Prop:= match \tau with  |\ Num\ \mu \Rightarrow \text{fun}\ x\ y \Rightarrow y = \psi(\mu)*x  x \text{ "scales" to } y   |\ Arrow\ \tau_1\ \tau_2 \Rightarrow RelArrow\ (sem\ \psi\ \tau_1)\ (sem\ \psi\ \tau_2)   |\ Prod\ \tau_1\ \tau_2 \Rightarrow RelProd\ (sem\ \psi\ \tau_1)\ (sem\ \psi\ \tau_2)   |\ Sum\ \tau_1\ \tau_2 \Rightarrow RelSum\ (sem\ \psi\ \tau_1)\ (sem\ \psi\ \tau_2)  Standard relational operators  |\ Unit \Rightarrow \text{fun}\ \_\ \_\Rightarrow True  operators  |\ Void\ \Rightarrow \text{fun}\ \_\ \_\Rightarrow False   |\ All\ \tau \Rightarrow \text{fun}\ x\ y \Rightarrow \forall\ \psi',\ SEnvExtends\ \psi'\ \psi \to sem\ \psi'\ \tau\ x\ y  end.
```

Quantify over all extensions of ψ

Using the relation

- Think of $sem\ \psi\ \tau\ f\ g$ as "f is equivalent to g at type τ under scaling ψ "
- For open types, we write
 - \models f \sim g : τ if for any ψ , sem ψ τ f g ("f is semantically equivalent to g at type τ ")
 - \models f : τ if for any ψ , sem $\psi \tau$ f f ("f semantically has type τ ")
- It's straightforward to show that base operations have the appropriate types semantically i.e.

```
\models BaseInv: \forall u.\mathsf{num}\, u \to \mathsf{num}\, u^{-1} \ \models BaseProd: \forall u_1. \forall u_2.\mathsf{num}\, u_1 \to \mathsf{num}\, u_2 \to \mathsf{num}\, u_1 \cdot u_2 \ \models BaseOne: \mathsf{num}\, \mathbf{1}
```

Isomorphisms

Define type isomorphism semantically:

```
Definition iso \tau_1 \ \tau_2 := \exists \ i, \ \exists \ j,
\models i \sim i : Arrow \ \tau_1 \ \tau_2 \ \land
\models j \sim j : Arrow \ \tau_2 \ \tau_1 \ \land
\models (\operatorname{fun} x \Rightarrow j(i(x))) \sim (\operatorname{fun} x \Rightarrow x) : Arrow \ \tau_1 \ \tau_1 \ \land
\models (\operatorname{fun} y \Rightarrow i(j(y))) \sim (\operatorname{fun} y \Rightarrow y) : Arrow \ \tau_2 \ \tau_2.
Notation "\tau_1 \approx \tau_2 ":= (iso \tau_1 \tau_2) (at level 70).
```

Straightforward to prove that

is a congruence, and some non-unit-specific isomorphisms e.g.

$$\tau_1 \times \tau_2 \cong \tau_2 \times \tau_1$$
 $(\tau_1 \times \tau_2) \to \tau_3 \cong \tau_1 \to \tau_2 \to \tau_3$

Primitive isomorphisms

Can then prove some primitive unit-specific isomorphisms e.g.

These can be composed to build isomorphisms such as

orall u.num u o num u o num $u\cong$ num $\mathbf{1}$

Dimensional analysis

 Old idea (Buckingham): given some physical system with known variables but unknown equations, use the dimensions of the variables to determine the form of the equations. Example: a pendulum.

Worked example

Pendulum has five variables:

```
mass m M length l L gravity g LT<sup>-2</sup> angle \theta none time period t T
```

- Assume some relation $f(m, l, g, \theta, t) = 0$
- Then by dimensional invariance $f(Mm, Ll, LT^2g, \theta, Tt) = 0$ for any "scale factors" M, L, T
- Let M=1/m, L=1/l, T=1/t, so $f(1,1,t^2g/l, \theta, 1) = 0$
- Assuming a functional relationship, we obtain

$$t = \sqrt{\frac{l}{g}}\phi(\theta) \text{ for some } \phi$$

Dimensional analysis, formally

Pi Theorem

Any dimensionally-invariant relation

$$f(x_1,...,x_n)=0$$

for dimensioned variables $x_1, ..., x_n$ whose dimension exponents are given by an m by n matrix A is equivalent to some relation

$$g(P_1,...,P_{n-r})=0$$

where r is the rank of A and $P_1, ..., P_{n-r}$ are dimensionless products of powers of $x_1, ..., x_n$.

Proof: Birkhoff.

Pi Theorem, for first-order types

Suppose

$$\tau = \forall u_1, \dots, u_m.$$
num $\mu_1 \to \dots \to$ num $\mu_n \to$ num μ_0 .

Let A be $m \times n$ matrix of exponents of variables in $\mu_1, ..., \mu_n$. Let B be m-vector of exponents in μ_0 . If AX=B is solvable, then

$$au\cong\operatorname{\mathsf{num}}\mathbf{1} o^{n-r}\!\to\operatorname{\mathsf{num}}\mathbf{1} o\operatorname{\mathsf{num}}\mathbf{1}$$

where *r* is the rank of *A*.

 Proof. Iteratively apply primitive isomorphisms C1-C3 and R1-R3 that correspond to column and row operations on matrix A, producing the Smith Normal Form of A. Then apply r instances of isomorphism D and we're done!

Experience of Coq mechanization

Nice

- Definition of logical relation just as on paper!
- If extensionality is assumed, working with functions instead of syntax works very well
- Canonical Structures used to good effect
- Setoid feature supports proofs of isomorphisms by rewriting

Nasty

- An Abelian group tactic would be nice (ring and field are standard)
- Substitution lemma for logical relations awkward (needs equality coercions)
- Unfolding of canonical structures by tactic "simpl" is a pain

Problem: Substitution Lemma

First attempt in Coq:

```
Lemma SEnvSubstSem: \forall \tau, \quad \forall s \ \psi, \quad \forall x \ y : usem \ \tau, \\ sem \ (\psi \ o \ s) \ \tau \ x \ y \leftrightarrow sem \ \psi \ (subst\_ty \ s \ \tau) \ x \ y.
```

This doesn't even type-check! Type-checker needs to know

```
usem \tau = usem(subst\_ty \ s \ \tau)
```

Solution: explicit equality coercions.

```
Definition usem\_subst: \forall \ \tau, \ \forall \ (s:Subst), \ usem \ \tau = usem \ (subst\_ty \ s \ \tau). induction \tau.... Defined.

Definition up \ s \ \tau \ (x:usem \ \tau) := (eq\_rect \ \_ \ (fun \ X : Set \Rightarrow X) \ x \ \_ \ (usem\_subst \ \tau \ s)). Lemma SEnvSubstSem:
\forall \ \tau, \quad \forall \ s \ \psi, \quad \forall \ x \ y:usem \ \tau, \\ sem \ (\psi \ o \ s) \ \tau \ x \ y \leftrightarrow sem \ \psi \ (subst\_ty \ s \ \tau) \ (up \ x) \ (up \ y).
```

Work in progress

- Formalizing the proof of the Pi Theorem
 - Cf fundamental theorem of finitely generated Abelian groups
- Terms
 - Already shown that semantics is preserved by typing rules
- Formalizing proofs of non-definability
 - Needs a more generous notion of scaling environment (homomorphisms from subgroups of Unt) that model *exactly* the primitive operations in the term language
- Generalization of Pi Theorem to higher-order functions
- Generalization to other domains with similar "invariance under transformation" properties