Formalizing an Extensional
Semantics for Units-of-Measure

o
Andrew Kennedy I
Microsoft Research §
Cambridge)
=

T

Introduction

* The F# programming language supports checking and
inference of units-of-measure

let speedOfImpact : float<m/s> =
sgrt (2.0 * gravityOnEarth * heightOfMyOfficeWindow)

val variance : float<'u> list -> float<'u ~ 2>

val areaUnderCurve :
(float<'u> -> float<'v>) * float<'u> * float<'u> ->
float<'u 'v>

* Type inference works well, with principal types and a practical

algorithm

— Come to my talk at the ML workshop (9am Sunday)
— Visit http://blogs.msdn.com/andrewkennedy

— Download F# Community Technology Preview from
http://msdn.microsoft.com/fsharp

http://blogs.msdn.com/andrewkennedy
http://msdn.microsoft.com/fsharp

Introduction

* Today’s talk: the semantics of units-of-measure
— What does it mean for unit-incorrect programs to go wrong?
— How do unit-polymorphic functions behave?
— What is the analogue of classical results from dimensional analysis?

* And: formalize the semantics in Coq,.

Going wrong, intensionally

* “Well-typed programs don’t go wrong” (Milner, 1978)
— They don’t dump core or throw MissingMethodException

— Originally formalized by adding a wrong value to the semantics (e.g.
applying an integer as if it were a function reduces to wrong) and then
showing that well-typed expressions don’t reduce to wrong

— These days usually formalized as syntactic type soundness:

* Preservation: if e:T and e reduces in some number of steps to €, then e’:7,
and

* Progress: if e:Tthen either e is a final value (constant, lambda, etc) or e
reduces to some €’ (i.e. it doesn’t “get stuck”)

 What “goes wrong” if a program contains a unit error?
— Nothing!

— Unless runtime values are instrumented with their units-of-measure.
But that would be cheating!

Going wrong, extensionally

* Claim: the essence of unit correctness is invariance of
program behaviour under scaling. E.g.

let good(x:float<kg>, y:float<kg>) 1let bad(x:float<kg>, y:float<s>)
= if x<y then print “!” = if x<y then print
in good(1.0<kg>, 2.0<kg>) in bad(1.0<kg>, 2.0<s>)

l Convert kg into Ib l

let good(x:float<lb>, y:float<lb>) let bad(x:float<lb>, y:float<s>)
= if x<y then print “!” = if x<y then print
in good(2.2<1b>, 4.4<1b>) in bad(2.2<1b>, 2.0<s>)

1R
|

 Compare: invariance of physical laws under scaling

Polymorphism, extensionally

How do we know that we can safely assign a type

foo : float<u> -> float<u~2>
?

If foo is implemented in F#, then safety follows from
soundness of typing rules

But what if it’s implemented by

fmul st(l),st

fmul st(l),st

fld DWORD PTR [esp]
fxch st(l)

fmulp st(2),5t

fsub st,st (1)

Machine code human computer

analogue computer

http://upload.wikimedia.org/wikipedia/commons/d/d4/Brain_090407.jpg
http://upload.wikimedia.org/wikipedia/commons/7/7e/AKAT-1.JPG

Polymorphism, extensionally

* Claim: the essence of unit-polymorphism is invariance under

scaling. For
foo : Vu.numwu — numu?

this amounts to the property
Yz, foo(k * z) = k% x foo(x)

for any positive “scale factor” k.
* Thisis an example of a “free theorem”. Compare

bar : Va.oo — a X o

and the theorem

vz, bar(f(z)) = (f, f)(bar(z))

Extensional semantics of units

Semantics is based on scaling invariance
— Compare polymorphism as representation independence
— Similar technology: parameterized binary logical relations

See

Relational Parametricity and Units of Measure
Andrew Kennedy, POPL 1997

for original work, based on a System-F-like language.
Aim now: formalize in Coq, generalize results

— No terms yet. Instead, purely semantic results over Coq functions

— For crisper results, we assume an abstract base domain of positive
values forming a multiplicative Abelian group (e.g. R* or Q*)

Results

Theorems for Free. Another example: if
= d : Vuv.numvu — (numv — numov) — (numu — numov - w)

then
Ky h f(x*ky) x

Type isomorphisms. For example

Y

Vunumu — numu = num1

To see why, consider what functions have the left-hand type.

Ill

This is one an instance of the more general “Pi Theorem”.

Syntax: units and types

* Unit expressions have grammar pru=uw |1 pep|pt

* Axiomatize equational theory =, on units (Abelian group) :

1

identity 1-u =y u inverse u-u - =gy 1

ass0C (1 - p2) - ps =u pr - (p2 - p3) comm pig -t =y p2 -

* Type expressions have grammar

To=nump|7—7|7X7|7+7|Yur | unit| void

* No base units (e.g. kg, m, s)! Just quantify at top-level

Mechanizing Abelian groups

* Package operations and axioms in a record:

Record AbGroup := mkGroup {
carrier :> Set;
prod : carrier — carrier — carrier;
U I carrier — Carrier;
one : carrier;
assoc : ¥ x y z, prod x (prod y z) = prod (prod x y) z;
comm : ¥V x y, prod x y = prod y T,
td_r : ¥V x, prod T one = z;
inv_r : YV z, prod = (inv x) = one }.

e Similarly for group homomorphisms:

Record Hom (G:AbGroup) (H : AbGroup) := mkHom {
hom :> carrier G — carrier H,
preserves : ¥ z y : G, hom(prod x y) = prod (hom x) (hom y) }.

Units, in Coq

To mechanize in Coq, we could define syntax inductively:

Inductive Unt :=
| UntVar : nat — Unt | UntOne : Unt
| UntProd : Unt — Unt — Unt | Untlnv : Unt — Unt.

But then we’d need to quotient by =,. So instead:
Definition Unt := nat —Z.
Unit equivalence is then just extensional equality on functions. We

can define operators and prove the Abelian group laws:
Axiom UntEztensional : ¥ py pe @ Unt, (V i, p1 @ = po 1) — p1 = pa-

Definition UntProd (u1 po : Unt) := fun v = p1(v) + pa(v).
Notation "u * v’ := (UntProd u v).

Lemma UntProd_comm : YV p1 o, 41 * o = o * 1.

Canonical Structure UntGroup :=
AbGrp.mkGroup Unt UntProd UntInv UntNone
UntProd_assoc UntProd_comm UntProd_id_r UntProd_inv_r.

Substitutions, in Coqg

e A substitution is just a homomorphism:
Definition Subst := Hom UntGroup UntGroup.

* We can define e.g. singleton substitutions, identity, etc. We can also
easily define the de Bruijn “shift” operator as a homomorphism:

Definition shift (u:Unt):Unt :=
fun ¢ = match i with O = 0| S j = u j end.

Lemma shift_prod : ¥ p1 po:Unt, shift (1 * po) = shift py * shift ps.
Proof.

intros p; pe. unfold shift. apply UntErtensional. intro j.
case j; compute; auto.
Qed.

Definition shiftAsSubst : Subst.
exact (mkHom UntGroup UntGroup shift shift_prod).
Defined.

Types, in Coq

* We define types inductively

Inductive Ty :=
* Bound variablein Y is | Num : Unt — Ty
| Arrow : Ty — Ty — Ty
encoded using de Brujn | Prod : Ty — Ty — Ty
| Sum : Ty — Ty — Ty
| Unit : Ty
| Void : Ty
| All : Ty — Ty.

The base domain

* We assume a numeric domain. We could be concrete, e.g. use
Coq’s Q (rationals) or R (reals)
— But results are crisper if we restrict to positive values

* Instead, we assume enough axioms to get our results: just
that we have a non-trivial (multiplicative) Abelian group

Parameter Base : Set. Axiom BaseProd_id_r : V z,z x 1 = .

Parameter BaseProd. Axiom BaseProd_assoc : ¥V z y z, z % (y *x 2) = (z * y) * 2.
Base — Base — Base. Axiom BaseProd_inverse_r : ¥ z, z * / x = 1.
Parameter BaseOne : Base. Axiom BaseProd_comm : ¥V z y, z * y =y * .

Parameter Baselnv : Base — Base. Axiom BaseNonTrivial : 3 x:Base, x # 1.

Notation "x % y” := (BaseProd z v).
Notation ”1” := (BaseOne).
Notation ”/ x” := (Baselnv x).

Notation ”x / y” := (BaseProd x (Baselnv y)).

The underlying semantics

Fixpoint usem 7 := Units ignored

(match 7 with

| Num p = Base
| Arrow 11 T = usem T — usem T
| Prod 11 T2 = usem T1 X usem Ty Shallow embedding
| Sum 11 T = usem T + usem To in Coq types

| Unit = unit
| Void = Fualse

| All 7 = usem T Units ignored

end) %type.

Scaling environments

A scaling environment ¢ assigns to each unit variable u a scale
factor from Base

Extend 1) to unit expressions homomorphically i.e.

Y(pr - p2) = P(pa) X Y(p2)
Yp™t) = 1/¢(p)
P(1) = 1

In Coq, just

Definition SEnv := Hom UntGroup BaseGroup.

Parametric logical relation

Definition SEnvExtends (¢':SEnv) (¢:SEnv) :=V u, ¢ (shift pu) = ().

Y’ extends 1 with

assignment for variable 0 _ ,
Binary relation over
underlying semantics

Fixpoint sem (¢:SEnv) (1 : Ty) : usem T — usem T — Prop :=

match 7 with

| Num p = funz y = y = ¢¥(u) *x z

| Arrow 11 T = RelArrow (sem i 1) (sem Y 1)

| Prod 11 79 = RelProd (sem v T1) (sem 1 T3)

| Sum T 19 = RelSum (sem ¢ 1) (sem ¢ T2) Standard relational
| Unit = fun _ _ = True operators

| Void = fun _ _ = False

| All T = fun z y = V o', SEnvExtends V' ¥ — sem ' 7 x y
end.

Quantify over all extensions of

Using the relation

Think of sem ¢ 7 f g as “f is equivalent to g at type 7under
scaling ¢

For open types, we write
 Ef~g:7ifforanyy,semy rfg
(“f is semantically equivalent to g at type 7”)

e Ff:7rifforanyy,semy rff
(“f semantically has type 7’)

It’s straightforward to show that base operations have the
appropiate types semantically i.e.

= Baselnv : Vu.numu — numu ™ *

= BaseProd : Yuy Nus.numu; — numug — numug - Us
= BaseOne : num1

Isomorphisms

* Define type isomorphism semantically:

Definition iso 7 7 := 3 14, 3 J,
=i~ Arrow 71 T2 A
E=j~j: Arrow 1o 1 A
= (fun z = j(i(z))) ~ (fun z =) : Arrow 71 71 A
E (fun y = i(j(y))) ~ (fun y = y) : Arrow 1o 7.

Y

Notation ” 73 = 7o 7 = (iso 11 T2) (at level 70).

e Straightforward to prove that = is a congruence, and some
non-unit-specific isomorphisms e.g.

T1 X T9
(’7'1 X ’7'2) — T3

To X T1
T — T2 — T3

1211

Primitive isomorphisms

* (Can then prove some primitive unit-specific isomorphisms e.g.

TL— e = Ty = Tj == Ty = T
numu — 7T
num (g — NUM f4 — T

num,u_1—>7‘
num o - 4° = numpy — 7

211211

Yuq -+ - Vu, T
Yu.T
Yug.Vu.r

Vg - - Yun 7w = wj, uj — u)
Vu.r[u — ut
Vug.Vu.T[ug — ug - u?]

1211211

112

Vu.numu® — num (u¥** - p) num (u not free in w)

 These can be composed to build isomorphisms such as

Yu.numu — numu — numu = num1l — num1

T — =TTy =T, — 7 Cl

C2
C3

R1
R2
R3

D

Dimensional analysis

Old idea (Buckingham): given some physical system with known
variables but unknown equations, use the dimensions of the
variables to determine the form of the equations. Example: a

pendulum.

[

s

g

Worked example

Pendulum has five variables:

mass m M
length [L
gravity g LT
angle v, none
time period t T

Assume some relation f(m, [, g, 0, t) = 0

Then by dimensional invariance f(Mm, LI, LT-g, 6, Tt) = () for any "scale
factors" ML, T

Let M=1/m, L=1/I, T=1/t, so f(1,1,F’g/l, 6, 1) = 0
Assuming a functional relationship, we obtain

Dimensional analysis, formally

Pi Theorem
Any dimensionally-invariant relation

f(X], ""xn)ZO

for dimensioned variables x , ...,x, whose dimension exponents are
given by an m by n matrix 4 is equivalent to some relation

g(P]) ""Pn-r):()

where 7 is the rank of 4 and P, ...,P , are dimensionless products
of powers of x, ...,x,.

Proof: Birkhoff.

Pi Theorem, for first-order types

Suppose

T =VUl,...,Upn.NUM L —> -+ —> NUM Ly, — NUM L.

Let A be mxn matrix of exponents of variables in u,,...,u,. Let
B be m-vector of exponents in p,. If AX=B is solvable, then

n—r
7T=2numl —--- —=numl — numl

where ris the rank of A.

Proof. lteratively apply primitive isomorphisms C1-C3 and R1-R3 that
correspond to column and row operations on matrix A, producing the
Smith Normal Form of A. Then apply r instances of isomorphism D and
we’re done!

Experience of Coqg mechanization

* Nice
— Definition of logical relation just as on paper!

— |If extensionality is assumed, working with functions instead of
syntax works very well

— Canonical Structures used to good effect
— Setoid feature supports proofs of isomorphisms by rewriting

* Nasty

— An Abelian group tactic would be nice (ring and field are
standard)

— Substitution lemma for logical relations awkward (needs
equality coercions)

— Unfolding of canonical structures by tactic “simpl” is a pain

Problem: Substitution Lemma

* First attempt in COC]: Lemma SEnvSubstSem :

V71, Vs, VazyusemT,
sem (Y 0 s) T x y <> sem 1 (subst_ty s T) x y.

* This doesn’t even type-check! Type-checker needs to know

usem T = usem(subst_ty s T)

* Solution: explicit equality coercions.

Definition usem_subst : V 7,V (s:Subst), usem ™ = usem (subst_ty s 7).
induction 7....
Defined.

Definition up s 7 (z:usem 7) :=
(eq_rect _ (fun X : Set = X) x _ (usem_subst T s)).
Lemma SEnvSubstSem :

V1, Vs, Vazy:usem T,
sem (Y o0 s) T x y <> sem ¢ (subst_ty s T) (up) (up y).

Work in progress

Formalizing the proof of the Pi Theorem

— Cf fundamental theorem of finitely generated Abelian groups

Terms

— Already shown that semantics is preserved by typing rules

Formalizing proofs of non-definability

— Needs a more generous notion of scaling environment
(homomorphisms from subgroups of Unt) that model exactly the
primitive operations in the term language

Generalization of Pi Theorem to higher-order functions

Generalization to other domains with similar “invariance
under transformation” properties

