
To arrive where we started: experience of mechanizing binding

Tom Ridge
University of Cambridge

Thomas.Ridge@cl.cam.ac.uk http://www.cl.cam.ac.uk/∼tjr22

We discuss experience gained from several case studies in-
volving binding. Our main goal is a representation and libraries
which enable fast mechanization of metatheory. Our secondary
goal, which is not universally shared, is that mechanized proofs
should be as close as possible to informal proofs.

The mechanized case studies are: type soundness for MiniML;
type soundness for TAPL fragments; a verified theorem prover for
first-order logic; an investigation into transferring results between
binding representations using isomorphisms; Craig’s interpolation
theorem; various POPLmark solutions; generalised term models;
operational reasoning for Caml programs. The verified prover, and
the operational reasoning for Caml, are both published research
papers. Most of the material can be found at the author’s homepage.

The case studies illustrate the move from naive approaches
(variables as strings, manual alpha conversion), to simple ap-
proaches (de Bruijn), to more sophisticated approaches (variants
on locally nameless and Gordon’s approach), to generality (a uni-
versal datatype for terms with binding, with libraries of supporting
lemmas). We believe our conclusion is surprising.

We first make the point that most theorem provers provide
the basic support for mechanizing metatheory. The experience
of the author, together with Gilles Peskine and Scott Owens, on
POPLmark and TAPL proofs in Isabelle, HOL and Coq, is that
differences in foundations (e.g. constructive v. classical, simple
types v. dependent types) do not make much difference to mech-
anization. However, strong automation can be crucial. Especially,
HOL’s first-order automation is extremely powerful, which avoids
the need, common in other systems, to write custom tactics.

A naive variables-as-strings, capturing-substitution approach
can work well in practice. Close attention to the language used in
definitions can reveal a lot about the properties that are required
(and not required) of a representation during proof, particularly
whether a naive approach is workable. For example, since ML
programs never substitute open terms under binders, no alpha-
renaming is required, moreover type schemes are compared up to
subsumption, never up to equality. We therefore mechanized the
syntax and semantics of MiniML using a naive approach at both
type and term level. We applied the same technique to mechanize
metatheory for substantial fragments of TAPL, and operational
reasoning for Caml programs. Peskine and Owens have formal-
ized operational semantics and metatheory for OCaml in this style.
However, sometimes one wants more from the representation.

Our mechanization of a verified theorem prover used de Bruijn
notation. Whilst the representation is fixed, the language is rela-
tively flexible: [s/x](Lamt) = Lam([↑s/↑x]t), but from there one
can choose to generalise in a number of ways (tradition involves
a lift primitive which, whilst sufficient, is not necessary, and is
arguably over complicated). Regardless of this choice, de Bruijn is
an extremely effective representation. We mechanised POPLmark
1a using de Bruijn, and note that the most successful POPLmark
solutions also use de Bruijn. On the other hand, informal proofs
use a language of named terms.

What is the cost of moving to a named representation? Isomor-
phisms provide an easy way to lift results from de Bruijn to named
representations. Since the isomorphisms are (almost) trivial, the
overhead of namedtermsis (almost) nothing. Forderivations, go-
ing under a binder in de Bruijn always creates “room at the bottom”
for a new free variable. The isomorphic image of this operation in
named representations is extremely unnatural, and one prefers to
choose fresh variables. In short, for terms there is nothing to choose
between representations. For derivations there is a clear difference.

We failed to heed this evidence, and pursued a named approach
with alpha equivalence as equality, broadly similar to Gordon’s ap-
proach, and the recently popular locally nameless (but with named
abstraction). The underlying model is de Bruijn, but the language
is that of named terms. We mechanized standard results from proof
theory, including Craig’s interpolation theorem, along these lines.
For the POPLmark challenge, we mechanized 1a and 2a using this
approach. However, each mechanization follows the same outline,
but with different term datatypes. Proving the same properties over
and over for each mechanization is tiresome.

To capture commonalities, we abstracted from the case stud-
ies by declaring a universal type of terms-with-binding, together
with a library of useful theorems. For example, POPLmark term
V

X <: S. T is represented asNode Forall [S,Bind X T].
The library was developed in HOL, and ported to Coq by Robert
Atkey. The library incorporates variables (with an associated type,
e.g. term or type variables for POPLmark), swapping, substitutions
(from variables to variables, of a term for a variable), and so on.
Using these general library lemmas in a particular mechanization
is easy. One defines the particular terms one is interested in, using
the universal datatype, then rewrites library lemmas, using these
definitions, to obtain the results in the particular setting. To exer-
cise the library, we rewrote our POPLmark 1a and 2a solutions.

However, the gain in treating alpha as equality is mitigated by
the difficulty of performing case analysis over terms: in a naive
approachLam x t = Lam x′ t′ iff (x, t) = (x′, t′), however, if
alpha equivalence is equality, we know only thatx′ 6∈ fv Lamx t∧
x 6∈ fv Lam x′ t′ ∧ swap x x′ t = t′. Moreover, the alpha
varying properties of terms are also shared by derivations, so that it
seems sensible to generalise the library to derivations with binding.
However, derivations are less regular than terms, and capturing this
commonality appears difficult without using a naive approach.

Therefore we conclude that a naive approach, with names as
strings and explicit handling of alpha equality, is preferable. By
building a library of lemmas for a general datatype of terms-and-
derivations-with-binding using this representation we hope to miti-
gate the work this representation requires, but capture binding uni-
formly at the term and derivation levels. To demonstrate this ap-
proach, we are currently mechanizing POPLmark in this style.

We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.


