Mechanizing a Decision Procedure for Coproduct Equality

Arbob Ahmad Daniel R. Licata Robert Harper
Carnegie Mellon University

In many applications of\-calculi, it is essential to compareterms for equality. For example, type checking a
dependently typed programming language requires decitijoglity of its terms and types. Whereas it is relatively
simple to decide3n-equality for function and product types, deciding the fitl-equational theory for coproduct
(disjoint sum) types is less straightforward. The coargeastle for sum types, which is the uniqueness condition of
the categorical universal mapping property for coprodustthe following:

[E/z]E" = case(E,x1.[inl x1/z]E’, xo.[inT 25 /x]E") if £:A; + Ay

The non-local nature of this rule makes it difficult to givg@aiithmic formulations of this equational theory. Sev-
eral decision procedures for coproduct equality have baetiesl, using techniques such as rewriting [Ghani, 1995,
Lindley, 2007] and normalization by evaluation [Altenkiret al., 2001]. However, these decision procedures and
their correctness proofs are quite complex and subtle. iBeceoproduct equality is both theoretically and pradiical
interesting, and because it is a difficult problem, we belithat it is an excellent candidate for a mechanization.

In this work, we are giving a new decision procedure for cdpat equality and mechanizing this algorithm and
its proof of correctness in Twelf. Our algorithm is an apation of the canonical-forms methodology invented by
Watkins et al. [2002]. Specifically, traditional simply sgA-calculus (STLC) terms are translated into an internal
canonical forms language, with the property that many e§UI&IC terms are mapped to the same internal language
term. The remaining equalities are implemented by a comgeieslation on canonical forms, similar to the permuting
conversions in CLF [Watkins et al., 2002]. We have choseretelbp this new algorithm, rather than to start from
existing work, both because the canonical forms methogotgends well to dependent types, which is crucial to
many of our applications, and because this style of algorithamenable to mechanization in Twelf.

Both our algorithm and its Twelf formalization are works irogress. The above coprodugtule can be decom-
posed into individual rules stating thetse commutes with each syntactic form of the language. On pagehave
validated most of these equalities—we have shown that casmates with the principal premise of each elimination
form and with the premises of each introduction form. We angently investigating the remaining equalities. In
Twelf, we have represented the STLC and the canonical faungulage, mechanized the translation of terms, proved
that every STLC term has a unique canonical form, and foradlsome of the aforementioned equalities. Our mech-
anization is currently a medium-size development, coimgjsif approximately 10,000 lines of Twelf code. It was
written primarily by the first author, a CMU undergraduatedsint who had given paper proofs of the mechanized
theorems but who had no previous Twelf experience. At theksfmp, we will report on both our algorithm for
coproduct equality and the process of mechanizing it in iwel

References

T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. Normalization byleston for typedX\-calculus with coproducts. IFEEE
Symposium on Logic in Computer Science, pages 203-210. IEEE Press, 2001.

N. Ghani. 8n-equality for coproducts. Ilhnternational Conference on Typed Lambda Calculi and Applications, volume 902 of
Lecture Notes in Computer Science, pages 171-185. Springer-Verlag, 1995.

S. Lindley. Extension rewriting with sums. International Conference on Typed Lambda Calculi and Applications, 2007.

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurtegical framework I: Judgments and properties. Technical
Report CMU-CS-02-101, Department of Computer Science, Caiégllon University, 2002. Revised May 2003.



