
Mechanizing a Decision Procedure for Coproduct Equality

Arbob Ahmad Daniel R. Licata Robert Harper
Carnegie Mellon University

In many applications ofλ-calculi, it is essential to compareλ-terms for equality. For example, type checking a
dependently typed programming language requires decidingequality of its terms and types. Whereas it is relatively
simple to decideβη-equality for function and product types, deciding the fullβη-equational theory for coproduct
(disjoint sum) types is less straightforward. The coarsestη-rule for sum types, which is the uniqueness condition of
the categorical universal mapping property for coproducts, is the following:

[E/x]E′
≡ case(E, x1.[inl x1/x]E′, x2.[inr x2/x]E′) if E : A1 + A2

The non-local nature of this rule makes it difficult to give algorithmic formulations of this equational theory. Sev-
eral decision procedures for coproduct equality have been studied, using techniques such as rewriting [Ghani, 1995,
Lindley, 2007] and normalization by evaluation [Altenkirch et al., 2001]. However, these decision procedures and
their correctness proofs are quite complex and subtle. Because coproduct equality is both theoretically and practically
interesting, and because it is a difficult problem, we believe that it is an excellent candidate for a mechanization.

In this work, we are giving a new decision procedure for coproduct equality and mechanizing this algorithm and
its proof of correctness in Twelf. Our algorithm is an application of the canonical-forms methodology invented by
Watkins et al. [2002]. Specifically, traditional simply typedλ-calculus (STLC) terms are translated into an internal
canonical forms language, with the property that many equalSTLC terms are mapped to the same internal language
term. The remaining equalities are implemented by a congruence relation on canonical forms, similar to the permuting
conversions in CLF [Watkins et al., 2002]. We have chosen to develop this new algorithm, rather than to start from
existing work, both because the canonical forms methodology extends well to dependent types, which is crucial to
many of our applications, and because this style of algorithm is amenable to mechanization in Twelf.

Both our algorithm and its Twelf formalization are works in progress. The above coproductη-rule can be decom-
posed into individual rules stating thatcase commutes with each syntactic form of the language. On paper,we have
validated most of these equalities—we have shown that case commutes with the principal premise of each elimination
form and with the premises of each introduction form. We are currently investigating the remaining equalities. In
Twelf, we have represented the STLC and the canonical forms language, mechanized the translation of terms, proved
that every STLC term has a unique canonical form, and formalized some of the aforementioned equalities. Our mech-
anization is currently a medium-size development, consisting of approximately 10,000 lines of Twelf code. It was
written primarily by the first author, a CMU undergraduate student who had given paper proofs of the mechanized
theorems but who had no previous Twelf experience. At the workshop, we will report on both our algorithm for
coproduct equality and the process of mechanizing it in Twelf.

References
T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. Normalization by evaluation for typedλ-calculus with coproducts. InIEEE

Symposium on Logic in Computer Science, pages 203–210. IEEE Press, 2001.

N. Ghani. βη-equality for coproducts. InInternational Conference on Typed Lambda Calculi and Applications, volume 902 of
Lecture Notes in Computer Science, pages 171–185. Springer-Verlag, 1995.

S. Lindley. Extension rewriting with sums. InInternational Conference on Typed Lambda Calculi and Applications, 2007.

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrentlogical framework I: Judgments and properties. Technical
Report CMU-CS-02-101, Department of Computer Science, Carnegie Mellon University, 2002. Revised May 2003.


