
Towards a Coq Library for Programming Languages Metatheory with Concrete Names

Aaron Stump
Washington University in St. Louis

The goal of this work in progress is to build a library in Coq to support the development of programming
languages (PL) metatheories. The library accounts for commonalities in PL metatheories in two ways. First,
we make use of the Coq module system to define a datatype of abstract terms, parameterized by a signature
module and a names module. The names module must provide a countably infinite set of names with
decidable equality. The signature module must provide a Coq Set of operators, together with three arity
functions telling, for each operator, 1) how many variables are bound by uses of the operator, 2) how many
subterms such uses have which are not in the scope of those variable (“non-governed” subterms), and 3) how
many subterms such uses have which are in the scope of those variables (“governed” subterms). Abstract
terms are then either uses of variables or compound expressions built from an operator, an annotation of
some operator-determined type, a list of non-bound subterms, a list of names bound by the expression,
and a list of bound subterms (annotations will also be supported). This notion of abstract terms covers a
large range of PL syntaxes. Using Coq’s dependent types, the constructor for compound terms insists that
the lists of non-governed subterms, bound variables, and governed subterms are of the lengths specified by
the signature. The library may then define syntactic notions (indeed, the following currently are defined)
like the set of free variables of a term, the alpha-canonization from d of a term (where consecutive bound
variables starting with the d’th are used on every path from the root of the term), substitution of one term
for a variable in another, etc. once and for all on abstract terms. Appropriate lemmas can also be proved
once and for all about those notions. Particular PL developments may then import those lemmas for their
syntaxes.

The second way in which the library under development accounts for commonalities in metatheory is
by providing an abstract means for defining contextual functions on terms. These are functions defined by
recursion on the structure of terms, making use of a context for free variables. The functions mentioned
above for the first part of the library are all of this kind. The library enables definition of such functions
as contextual term interpretations (CTIs). Useful lemmas may be proved abstractly for any CTI, including
permutation, contraction, and weakening of the context, and a property equating the interpretation of
certain alpha-canonizations of a term with the interpretation of the original term. Any function which can
be defined as a contextual term interpretation inherits these lemmas for free. The essential idea of CTI
is the following. A domain of interpretation A is given. Contexts are ordered lists of pairs of names and
objects from A. Variables are interpreted by looking up their first occurrence in the context. A user-specified
function interprets all variables not found in the context. Operators are interpreted as functions taking in
the interpretations of the “non-bound” subterms, as well as a function from interpretations for the bound
variables to interpretations for the “bound” subterms, and returning an interpretation for the application of
the operator. Terms are then interpreted homomorphically. The library supports this interface by building
up explicit contexts in cooperation with the user-provided interpretations.

The current milestone is to prove type preservation for a call-by-value simply typed lambda calculus
with two kinds of λ-abstractions: one where execution does not pass into the body of the abstraction, and
one where it does. A small-step evaluation relation and a simple type checker are both defined as CTIs.
Since CTIs are called only with interpretations of terms, it turns out that evaluation most naturally gives
the resulting term in alpha-canonical form. Since evaluation is defined as a CTI, we can use a substitution
lemma proved for arbitrary CTIs in the library. While evaluation and simple type checking are currently
implemented, the exact formulation and application of the substitution lemma are (as of 8/31/2006) still
under development. It is anticipated that a first release of the above described CTI library will be made
available by the date of the workshop (9/21/2006) at http://cl.cse.wustl.edu/cti-lib/.

Acknowledgements: The author gratefully acknowledges undergraduates Aayush Munjal and Michael
Zeller for implementation of weakening and contraction, respectively; and the NSF under contract CCF-
0448275.


