
Mechanized Metatheory for User-Defined Type Extensions∗

Daniel Marino Brian Chin
Todd Millstein

University of California, Los Angeles
{dlmarino,naerbnic,todd}@cs.ucla.edu

Gang Tan
Boston College
gtan@cs.bc.edu

Robert J. Simmons
David Walker

Princeton University
{rsimmons,dpw}@cs.princeton.edu

Motivation Type systems are a natural discipline for ensuring that
programs maintain certain runtime invariants. Of course, language
designers cannot anticipate all the invariants that programmers will
want to enforce. Therefore, it is desirable to allow programmers to
specify and statically check invariants of interest for their applica-
tions.

Researchers have designed expressive type systems that allow
programmer-defined invariants to be directly encoded as types.
However, there is a tradeoff between type-system expressiveness
and ease of use for programmers. First, the more expressive the type
system, the more annotation burden there is on the programmer.
For example, expressive type systems often require programmers
to manually discharge proof obligations to ensure that a program
fragment meets its specified type. Second, the more expressive the
type system, the more difficult it is for programmers to understand.
In traditional type systems, each type has a relatively simple set of
syntax-directed rules, which constitutes aprogramming discipline
for programmers to obey. As type systems become more expres-
sive, it becomes more difficult for programmers to understand what
programming idioms can and cannot be typechecked and why. As a
result, languages with expressive type systems may be challenging
for programmers to use effectively.

Our Approach We are pursuing an approach to enriching tradi-
tional type systems with support for user-defined invariants while
maintaining ease of use. The key idea is to partition the task of
proving invariants about programs into two distinct roles: thetype-
system extender(TSE) and the programmer. A TSE can define a
new type annotation along with a set of typing rules that constitutes
the associated programming discipline. The TSE manually proves
once and for all that an annotation’s programming discipline is suf-
ficient to ensure a desired runtime invariant. Separately, any num-
ber of programmers may employ the new annotation in programs,
which are statically checked to obey the annotation’s typing rules.

As a nontrivial example, consider ensuring that programs have
no runtime race conditions. A TSE can define a new annotation
guardedBy(l), which allows programmers to associate a lock with
each variable, along with a set of rules that conservatively ensure
a variable’s lock is held whenever the variable is accessed. For a
program to typecheck, the programmer need only obey this simple
locking discipline, with no manual proof obligations required. Of-
fline, the TSE proves once and for all that every program obeying
this discipline avoids race conditions on “guarded” variables.

In our approach, programmers need not be provers; all proving
is done by the TSE, and this proving is done once per annotation
rather than once per program. Further, programmers are provided
with an explicit programming discipline to obey. While this disci-

∗ This material is based upon work supported by the National Science Foun-
dation under Grant Nos. CCF-0238328, CCF-0427202, CCF-0545850, and
CNS-0627650, as well as by a gift from Microsoft Research.

pline likely rules out some useful ways to satisfy a particular in-
variant, we expect this loss of flexibility to be worth the gain in
simplicity and understandability for programmers. Essentially, our
approach corresponds to proving invariants of a set ofprogramming
idioms, which can then be safely used inanyprogram, rather than
proving invariants about each program individually.

A useful analogy exists with the idea of domain-specific pro-
gramming languages (DSLs). Although DSLs are often less expres-
sive than general-purpose languages, the intent is that a DSL will
be expressive enough for its target domain and significantly eas-
ier for programmers to use and understand. Our approach to prov-
ing invariants about programs amounts to allowing TSEs to define
domain-specific typing rules that conservatively ensure an invari-
ant. The hope is that these rules are expressive enough to admit the
desired programming idioms and significantly easier for program-
mers to use than a single general-purpose type system.

Current Status We previously built the CLARITY framework for
user-defined type qualifiers in C based on this approach [1]. User-
defined typing rules in CLARITY were restricted to a very simple
form, and user-defined invariants were restricted to a decidable
logical theory. These restrictions allowed a TSE’s proofs to be
discharged automatically but severely limited expressiveness.

We are building a much more flexible framework for user-
defined type extensions using the Twelf proof assistant [2]. Our
framework extends a Twelf formalization of an imperative lan-
guage that includes a standard type system and type soundness
proof [3]. A TSE will define new type annotations and associated
typing rules in a stylized language that desugars into Twelf syntax.
The TSE will also define each annotation’s associated invariants.
Finally, the TSE will define the relevant cases of the lemmas and
theorems that make up an extended type soundness proof, which
guarantees that each annotation’s rules ensure the intended invari-
ants.

The LF type theory that underlies Twelf provides a powerful
platform, allowing TSEs to conveniently encode the syntax, typing
rules, and metatheory for a type system extension in a unified
representation. Twelf’s support for totality checking will be used
to verify the metatheory, and Twelf’s logic programming engine
will allow Twelf itself to be used as the typechecker for programs.

References
[1] B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiers. In

PLDI ’05: Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 85–95,
New York, NY, USA, 2005. ACM Press.

[2] F. Pfenning and C. Schürmann. System description: Twelf — A
meta-logical framework for deductive systems. In H. Ganzinger,
editor,Proceedings of the 16th International Conference on Automated
Deduction (CADE-16), pages 202–206, Trento, Italy, 1999. Springer-
Verlag LNAI 1632.



[3] R. Simmons. Twelf as a unified framework for language formal-
ization and implementation. Undergraduate honors thesis, Princeton
University, 2005.


