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Abstract

XTATIC is a lightweight extension of C] with native sup-
port for statically typed XML processing. It features XML
trees as built-in values, a refined type system based on
regular types à la XDUCE, and regular patterns for inves-
tigating and manipulating XML. We describe our experi-
ences using XTATIC in a real-world application: a program
for transforming XMLSPEC, a format used for authoring
W3C technical reports, into HTML. Our implementation
closely follows an existing one written in XSLT, facilitat-
ing comparison of the two languages and analysis of the
costs and benefits—both significant—of rich static typing
for XML-intensive code.

1 Introduction

A profusion of recent language designs, including
XDUCE [17, 18, 19], CDUCE [11, 2], XACT [25, 8],
XQUERY [4, 10], XJ [15], XOBE [23], and XTATIC [14, 26,
12, 13, 27], are founded on the belief that rich static type
systems based on regular tree languages can offer signif-
icant benefits for XML-intensive programming. Though
attractive, this belief can be questioned on a number of
counts. Are familiar XML processing idioms from untyped
settings easy to enrich with types, or are there important
idioms for which static typing is awkward or unwork-
able? Is it feasible to reimplement untyped applications
in a statically typed language in a “bug-for-bug compat-
ible” fashion? Does the need to please the typechecker
lead to too much repetitive boilerplate or too many type
annotations? Our aim is to put these questions to the
test by a detailed comparison of a non-trivial application
originally written in XSLT 1.0 [9] and a faithful reimple-
mentation of the same application in XTATIC.

For this experiment, we chose a task that has also been
used as a case study in the standard XSLT reference
[20, 21]: translation of structured documents from a
high-level document description language, XMLSPEC,
into XHTML. XMLSPEC is the format used for authoring
official W3C recommendations and drafts. This exam-
ple is non-trivial but of manageable size: the DTD for
XMLSPEC defines 102 elements and 57 type-like entities,
while the XHTML DTD defines 89 elements and 65 en-
tities; the XSLT stylesheet implementing the transforma-
tion is 770 lines long. Besides styling XMLSPEC elements
as HTML, its functions include formatting BNF gram-

mars, section numbering, setting up cross-references, and
generating the table of contents. A useful effect of emu-
lating a finished untyped application is that both costs
and benefits are visible all at once, rather than arising
and being dealt with incrementally, throughout the de-
sign and development process. To maximize the opportu-
nities for comparison, our XTATIC implementation closely
follows not only the behavior, but also, as far as possible,
the structure of the original XSLT implementation.

The contributions of the paper are as follows. First, we
draw attention to the XMLSPEC problem itself. This prob-
lem offers a good balance of size, complexity, and fa-
miliarity, and we hope that it can be re-used by others
as a common benchmark for XML processing languages.
Second, we present a detailed analysis of the costs and
benefits of expressive static types for XML manipulation,
both of which were substantial in this application. The
main cost is the difficulty of inferring appropriate types
for multiple, mutually recursive transformations. The
main benefit is the expected one: design flaws in the
XMLSPEC DTD—which show up in the XSLT stylesheet
as behavioral bugs—are instead exposed as type incon-
sistencies. Third, we demonstrate that the type sys-
tem and processing primitives of XTATIC are sufficiently
powerful and flexible to fix (or gracefully work around)
these bugs without modifying the XMLSPEC DTD. Fix-
ing some of them in the XSLT stylesheet appears more
difficult. Finally, reimplementing an existing stylesheet
gives us many opportunities for head-to-head compar-
isons of XSLT and XTATIC, highlighting areas where each
shines. In particular, we observe that XTATIC-style regu-
lar pattern matching is more natural than XSLT’s style—
structural recursion augmented with “context probing”—
when processing structures, such as the BNF grammar
descriptions found in XMLSPEC, where ordering is im-
portant. Conversely, XSLT is very convenient for straight-
forward structural traversions with local transformations,
where XTATIC requires a heavier explicit-dispatch control
flow. Also, XSLT’s data model, which treats the original
document as a resource for the computation, is more nat-
ural for certain tasks, though we can mimic some of its
uses with generic libraries in XTATIC.

Section 2 summarizes XMLSPEC and gives a high-level
explanation of the transformation task. Section 3 de-
scribes the main challenges of expressing the core XSLT
processing model in XTATIC. Section 4 compares the pro-
cessing of structured data such as BNF grammars in XSLT



and XTATIC. Section 5 describes the auxiliary data struc-
tures that our application uses in place of the global doc-
ument access primitives offered by XSLT. We close with
an overview of other evaluations of XML processing lan-
guages in Section 6 and some concluding thoughts in Sec-
tion 7. The paper is intended to be self-contained, but it
does not present the motivations or technical details of
the XTATIC design in depth; for these, the reader is re-
ferred to our earlier papers, especially [14, 13], and to
Gapeyev’s forthcoming PhD dissertation.

2 The Problem

The history of both XSLT and XMLSPEC goes back to
1998, when the standards for XML and XSLT themselves
were still under development. Newer versions of the DTD
and the stylesheet (available from the XMLSPEC web
page, http://www.w3.org/2002/xmlspec/) continue to
be used for developing W3C specifications.

Our development is based on the 1998 version of
XMLSPEC—the one used for the original XML Recom-
mendation. Our primary reason for using this some-
what dated version was the public availability of the
XML sources for the Recommendation, which we used
as testing data; more recent W3C specifications, devel-
oped with newer versions of XMLSPEC, were only avail-
able only in formatted (HTML, PS, PDF) form when we
began the project. (Starting in September 2005, XML
sources of some newer W3C specification drafts—e.g.,
XPATH, XSLT, and XQUERY—have again become avail-
able.) The XMLSPEC Guide [29] is a useful resource for
understanding the XMLSPEC DTD (although it describes
a later, slightly more feature-rich version). The original
1998 XSLT stylesheet is described in detail in the 2nd edi-
tion of Michael Kay’s XSLT reference [20]. Both the DTD
and the stylesheet are available from the book’s web page
(http://www.wrox.com).

XMLSPEC is similar to more elaborate XML-based docu-
ment schemas, such as DOCBOOK (http://www.docbook.
org/) and the Text Encoding Initiative (http://www.
tei-c.org/), in that it encodes the “logical” structure
of a document so that the same information can be pre-
sented in different styles and media. Here, we consider
only the task of transforming an XMLSPEC document into
a single HTML page, as shown in Figure 1.

Since both XMLSPEC and XHTML are used for document
markup, there are many similarities between their DTDs.
In both, a valid document file has distinct sections for
meta-data and for the content proper. The content has
three kinds of markup: top-level, or sectional, for hier-
archical document organization; medium-, or paragraph-
level, for chunks of actual content; and low-, or phrase-
level, for the content flow itself. More interesting for
our task, though, are the differences, which stem from
differences in purpose between logical and presentation
markup: XMLSPEC uses markup to indicate the role of a
piece of text in the discussion of a subject matter, while
HTML uses markup to instruct a browser how a piece of
text should be visually presented to the reader.

For example, the hierarchical document structure is rep-

resented explicitly in XMLSPEC by nested sectional ele-
ments div1, . . . , div4, while in HTML it is implied by
heading elements h1, . . . , h6 that interrupt the flow of
paragraph-level markup. Both formats include generic
paragraph-level elements—for example, enumerated and
bulleted lists (ol and ul in HTML vs olist and ulist in
XMLSPEC) and paragraphs (p in both). But XMLSPEC

also defines special-purpose variants like blist, which is
a list containing only bibliographic entries, and vcnote—
a special kind of paragraph for technical snippets called
validity constraint notes. Finally, at the phrase level,
where HTML elements like em, i, b decorate the flow of
character text with visual emphasis and the anchor ele-
ment a provides simple linking points and links for exter-
nal resources or locations in the document, their XML-
SPEC counterparts play more semantically-loaded roles.
For example, a termdef element encloses a phrase that
defines the meaning of a term (whose occurence in the
definition is marked by a term element) and can be linked
to from other parts of the document by element termref.
There are many more elements for specific roles, such as
language keywords (kw), references (specref) to other
parts of the specification, etc. This semantic specializa-
tion of elements allows one to vary independently not
only their visual representation, but also additional pro-
cessing such as creation of indexes and glossaries.

Another category is XMLSPEC elements containing
“structured data” of various kinds. The most interest-
ing example is the scrap element, which encapsulates
BNF rules for grammar productions; its formatting is dis-
cussed in detail in Section 4.

Most of the task of an XMLSPEC to HTML transformer is
thus a straightforward (often literally one-to-one) map-
ping from XMLSPEC to HTML element tags. But there
are several aspects that are more interesting, including
displaying structured data in a readable form, computing
section numbers based on the hierarchical positioning of
div elements, creating a table of contents, with entries
hyperlinked to the corresponding sections, and format-
ting the cross-references occurring in the document so
that they properly mention features of the referent, such
as title or its computed section number.

3 Structural Recursion

The processing model of XSLT is rather different from
the explicit control flow of traditional programming lan-
guages, including XTATIC, being based on an implicit re-
cursive traversal of the input document. After introduc-
ing the XSLT processing model and sketching how an
XTATIC application can simulate it explicitly, this section
discusses the main challenges of making this implemen-
tation strictly typed: (1) structuring its code to accomo-
date the constraints of typing and (2) fixing the typing
bugs inherited from the stylesheet.

3.1 Implicit Structural Recursion in
XSLT

An XSLT stylesheet is a collection of templates, each speci-
fying a computation to be performed on document nodes



<body>
<div1 id=’sec-intro’> <head>Introduction</head>
<p>XML is an application profile or restricted form of SGML
<bibref ref=’ISO8879’/>.</p>

<div2 id=’sec-origin-goals’> <head>Origin and Goals</head>
<p>The design goals for XML are:
<olist>
<item><p>XML shall be usable over...</p></item>
<item><p>XML shall support...</p></item>
</olist></p>
</div2>
<div2 id=’sec-terminology’> <head>Terminology</head>
<p>The terminology used to describe XML...</p>
</div2></div1>
</body>

<back>
<div1 id=’sec-bibliography’> <head>References</head>
<blist>
<bibl id=’ISO8879’ key=’ISO 8879’>
ISO. <emph>ISO 8879:1986(E). Standard Generalized Markup
Language (SGML).</emph> First edition 1986-10-15.
[Geneva]: ISO, 1986. </bibl>
</blist>
</div1>
</back>

Figure 1. A sample XMLSPEC document fragment and its rendering via HTML

that satisfy a specified test condition. The execution of
a stylesheet proceeds in a single recursive pass over the
input document, in document order. For each node en-
countered during the traversal, the run time system se-
lects the most specific template whose test is satisfied by
the node and executes it. Consider, for example, the fol-

lowing template:1

<xsl:template match="olist">
<ol> <xsl:apply-templates/> </ol>

</xsl:template>

The test (match="olist") says that the template is ap-
plicable to XMLSPEC olist elements; for each such
element, the template produces an HTML ol ele-
ment. The contents of the ol are the result of a fur-
ther recursive traversal of the input: the instruction
<xsl:apply-templates> designates the location receiv-
ing the result of applying the same procedure of select-
ing and executing an appropriate template, to each child
node of the olist, in order. Since, according to the XML-
SPEC DTD, the only possible children of olist are item
elements, the template that gets invoked on them is

<xsl:template match="item">
<li> <xsl:apply-templates/> </li>

</xsl:template>

which similarly constructs an HTML li element from
each XMLSPEC item element. The recursive descent of
the traversal terminates either on the document’s text
nodes, which get copied into the output, or on templates
that do not call others via <xsl:apply-templates/> or a
similar instruction.

1The XML-based syntax is a controversial aspect of
XSLT. Readers unfamiliar with the language only need
to know that elements starting with the xsl: prefix are
XSLT instructions, while others are literal elements con-
structing the output.

In general, the test condition in a template’s match at-
tribute is specified by an XSLT pattern, which is written in
the downward subset of XPATH. A template is applicable
to an element when its pattern matches it, i.e., there is
an ancestor node, starting from which the pattern (as a
path) would select the element. More than one template
can be applicable to a document node, but there is always
at least one, since XSLT predefines a default template ap-
plicable to any element, whose action is to proceed with
the traversal without producing any output. In the case
of multiple applicable templates, only one of them gets
selected for execution according to a set of priority rules
whose particulars are not important for this discussion.

The bulk of the XMLSPEC stylesheet consists of tem-
plates similar to these, performing simple tag-to-tag
transformations—sometimes augmented with other out-
put whose generation depends only on the current ele-
ment. This processing style, known as structural recur-
sion [1, 5, 6], is the backbone of the XSLT processing
model. However, since a simple one-pass structural re-
cursion alone would not be sufficient for many appli-
cations, XSLT augments it with more features, some of
which we will see later.

3.2 Types and Patterns in XTATIC

Before describing our implementation of the formatter,
let us pause, briefly, to review the XML types and patterns
found in XTATIC.

XTATIC’s types are composed from XML element tags
using the familiar regular expression operators of con-
catenation (“,”), alternation (“|”), repetition (“*”), and
non-empty repetition (“+”). They can also contain type
names, which are bound to their definitions by top-level
regtype declarations. For example, here is a fragment of
the XTATIC type declarations corresponding to the XML-
SPEC DTD:



regtype s_olist [[ <olist> s_item+ </> ]]
regtype s_item [[ <item> s_obj_mix+ </> ]]
regtype s_obj_mix [[ s_p | s_olist | s_ulist |

... ]]

We use the prefix s_ for type names coming from XML-
SPEC, and, later, h_ for names coming from XHTML.
The double square brackets are used to separate regu-

lar types, patterns, and XML values from surrounding C]

code. (The ellipsis ... is not part of XTATIC syntax; it just
indicates that the definition of s_obj_mix is larger than
shown.)

The semantics of XML types is similar to that of regu-
lar expressions on strings: a type is the set of values
described by the type’s definition, except that the val-
ues are XML document fragments—i.e. sequences of
trees built from XML element tags and characters. For
example, the values of type s_item are single XML el-
ements of the form <item> . . .</item> whose contents
are non-empty sequences of elements described by the
union type s_obj_mix. The predefined type xml describes
all well-formed XML values. The brackets with no con-
tent, [[]], denote the type containing only the empty
sequence (when used where a type is expected), as well
as the empty sequence value itself (when used where a
value is expected).

A regular pattern is a type annotated with variables. For
example,

[[<olist> s_item first, s_item+ rest </>]]

is a pattern with variables first and rest that will be
bound to values of types s_item and s_item+ after a suc-
cessful match. An XML value matches a pattern when
the value belongs to the type obtained by erasing the
bound variables. These patterns are the main construct
that XTATIC programs use to analyze XML.

3.3 Explicit Structural Recursion in
XTATIC

Implementing an untyped equivalent of the XMLSPEC

stylesheet’s behavior in XTATIC is straightforward: it can
be written as a collection of mutually recursive static class
methods, one per template, plus a dispatcher method that
simulates the role of the XSLT run-time system. Figure 2
shows the fragments of this implementation correspond-
ing to the two XSLT templates discussed above.

The two template methods have a similar structure.
TemplateItem, for example, declares s_item, the type of
XMLSPEC elements on which it can operate, as its in-
put type; then, relying on the fact that the argument
elt can only contain an item element, it uses a pat-
tern assignment to extract the element’s content into the
variable cont; finally, it builds and returns the result-
ing HTML li element. The contents of li come from a
call to the method Dispatch, which plays the role of the
<xsl:apply-templates> instruction. Note that the pat-
tern in the assignment follows the definition of the type
s_item.

The Dispatch method uses a combination of C] while
and XTATIC match statements to consume the input se-
quence from the variable seq and produce the output se-
quence in the variable res. XTATIC’s match statement is

similar to C]’s switch, but its case tests are patterns and
therefore can assign fragments of the input to variables
for use in the clause’s body. The full code of Dispatch
contains a case for each XMLSPEC element, except for
elements involved in presenting structured data, which
are not covered by the dispatching framework (see Sec-
tion 4).

3.4 Typing the Recursion

Our goal, however, is to implement a well-typed
formatter—i.e., one whose output is, by construction,
valid HTML for any valid XMLSPEC input. Therefore, we
need to give more precise output types to our methods.

Almost every template method returns a sequence of one
or more HTML elements that it creates itself; in these
cases, the precise output type for the method can be in-
ferred from its code alone. For example, TemplateItem is
intended to return values of type h_li. Precise template
method types induce a precise result type for Dispatch,
which, instead of xml, now yields the union of the result
types of all the templates it invokes.

This type, however, is too large. For example, in order for
TemplateOlist to return a valid ol element, the static re-
sult type of the recursive call to Dispatch at this point
must contain only li elements. Thus, instead of a single
Dispatch method, we need to define several dispatchers,
each invoking only the subset of template methods suit-
able for a particular context and therefore ensuring ap-
propriate input and output types. For example, the typed
version of TemplateItem becomes:

static [[h_li]] TemplateItem ([[s_item]] elt){
[[<item>s_obj_mix+ cont</>]] = elt;
return [[<li>DispatchInItem(cont)</>]];

}

Besides the precise return type and the call to the cus-
tom dispatcher DispatchInItem, it also analyzes input
elt by a pattern that strictly follows the definition of type
s_item and therefore gives the variable cont a more pre-
cise type, on which DispatchInItem can rely.

In general, the dispatcher used by a template must be
prepared to handle any input that the template can pass
to it, and its output must be acceptable for the use the
template has for it. Any collection of dispatchers that
satisfy these constraints for all templates would give a
type-correct formatter. For a few of the templates, how-
ever, it is not possible to compose a well-typed dispatcher
from the template methods that would faithfully repro-
duce the operation of the stylesheet’s templates. These
are instances of genuine processing bugs in the original
XSLT application, which can only be fixed by modifying
existing or writing additional template code.

In a few cases, the bugs are caused by subtle incompat-
ibilities between XMLSPEC and HTML that are possible



static [[xml]] TemplateOlist ([[s_olist]] elt){
[[<olist>xml cont</>]] = elt;
return [[<ol>Dispatch(cont)</>]];

}

static [[xml]] TemplateItem ([[s_item]] elt){
[[<item>xml cont</>]] = elt;
return [[<li>Dispatch(cont)</>]];

}

static [[xml]] Dispatch ([[xml]] seq) {
[[xml]] res = [[]];
while (!seq.Equals([[]])) {
match (seq) {

case [[s_olist elt, xml rest]]:
res = [[res, TemplateOlist(elt)]];
seq = rest;

case [[s_item elt, xml rest]]:
res = [[res, TemplateItem(elt)]];
seq = rest;

//...... }}
return res; }

Figure 2. A fragment of the untyped structural recursion code in XTATIC.

(though a bit tricky) to smooth out in XTATIC, but appar-
ently not in XSLT, so it is instructive to discuss them and
our solutions in some detail.

3.5 Bugs and Fixes

XMLSPEC defines an element ednote for recording ed-
itorial remarks. The DTD allows ednote to appear in
both paragraph- and phrase-level contexts, but the XSLT
stylesheet contains only one template for ednote, which
formats it as blockquote, a paragraph-level HTML ele-
ment presented in browsers as an indented paragraph.
Clearly, appearances of ednote in phrase-level contexts
(e.g., inside head elements of section titles) should be
formatted differently. To handle this, we implement a
second template method for ednote, with a phrase-level-
friendly return type. A dispatcher that has the ednote
element in its input type processes it with whichever of
the two template methods that is compatible with the dis-
patcher’s return type.

A similar, but trickier, problem arises in the formatting
of another phrase-level XMLSPEC element, quote. This
element is different from most others: rather than cre-
ating a new HTML element or two, the corresponding
template just surrounds the result of recursively format-
ting the quote’s contents with quotation mark characters.
The content type of quote is such that it gets transformed
into output belonging to the most general HTML phrase-
level type, h_Inline. One of the elements that can occur
inside h_Inline is the anchor element a, and the content
of the latter is described by the subtype h_a_content of
h_Inline, which disallows a elements, prohibiting nested
anchors. The quote element itself, however, can occur in
an XMLSPEC context that ends up formatted inside an a
element, possibly producing a nested anchor. The resolu-
tion in XTATIC is similar to the one for ednote: we write
two template methods for quote, both just adding quota-
tion marks, but to the results coming from two different
dispatchers.

The solutions for these two problems work because, by
explicitly implementing the recursive traversal as a com-
bination of calls to several distinct dispatcher methods,
our algorithm tracks (static) information about its cur-
rent context in the input document. In principle, an
XSLT stylesheet could also implement processing alter-
natives for ednote and quote elements, but making the
context-dependent decision of which one of them to in-

voke would be more difficult. (None of the several pos-
sibilities we can see is completely satisfactory. Using
more complex path patterns in match attributes, such as
div1/ednote and head/ednote, which test for the par-
ent element, would require writing as many templates
for ednote as there are possible parents—each such tem-
plate’s body duplicating one of the only two handlers. We
can write a single template for ednote that accesses the
parent node and determines its type via a <xsl:choose>
or a chain of <xsl:if> instructions, which again have to
list all the possibilities. Other options include use of tem-
plate modes and template parameters, but these are also
quite heavy.)

The typing bug that required the most sophisticated fix
in our reimplementation is caused by one of the most
straightforward-looking templates in the stylesheet:

<xsl:template match="p">
<p> <xsl:apply-templates/> </p>

</xsl:template>

This template transforms the XMLSPEC paragraph ele-
ment p into an HTML element of the same name. The
trouble is, an HTML p can contain only character data
and phrase-level elements, while an XMLSPEC p can also
contain select paragraph-level elements. Consequently,
this template can produce an HTML p with paragraph-
level elements, such as lists (ol, etc.), as children.

The sources of the XML Recommendation actually con-
tain quite a few instances of p elements that tickle this
bug. Since it affects validity of the generated HTML, the
bug was addressed in the later versions of the stylesheet
by a hack: when an element like ol appears inside a
paragraph, the stylesheet adds to the output tree a text
node whose content is “</p>”, then formats the ol, and
then generates another text node whose content is “<p>”.
This does not restore the validity of the in-memory tree
produced by the stylesheet, but only of its textual seri-
alization, implying that the stylesheet cannot be used in
pipelining scenarios without re-parsing and re-validation
of its output. We do not see any natural way to fix this
bug in XSLT without changing the XMLSPEC DTD.

Our method TemplateP implements the above fix in a
fully typed way. It uses a dispatcher that transforms
the contents of XMLSPEC p into a sequence of text and
phrase- and paragraph-level HTML elements, and then
processes it to find (with the use of XTATIC patterns)



static [[h_block*]] FlowIntoBlocks ([[h_Flow]] flow) {
[[h_block*]] res = [[]];
while (!flow.Equals([[]])) {
match (flow) {

case [[(pcchar | h_inline | h_misc_inline)+ inl, h_Flow rest]]:
res = [[res, <p>inl</>]];
flow = rest;

case [[h_block+ blocks, h_Flow rest]]:
res = [[res, blocks]];
flow = rest;

case [[(h_form | h_noscript) unexpected, h_Flow rest ]]:
Error("Unexpected input in FlowIntoBlocks");
flow = rest;

case [[]]:Error("empty case");
}}
return res;

}
Figure 3. The method performing an HTML processing pass to detect implicit paragraphs.

longest subsequences of text and phrase-level elements
and wrap them as HTML p elements. Figure 3 shows the
method that performs the HTML processing pass. The
final result of TemplateP is paragraph-level content.

From what we have said so far, it might appear that
there is another way to implement TemplateP, not in-
volving HTML post-processing: we could use patterns to
find longest subsequences of XMLSPEC elements and text
to be transformed into phrase-level HTML, apply an ap-
propriate dispatcher to them, and wrap the results as p
elements. In fact, the approach we sketched above is
the only one that works, because of another problem—
this one caused by XMLSPEC termdef elements occur-
ring in the content of p. These elements are used to
designate boundaries of formal definitions in a specifica-
tion. As with quote, the processing of a termdef does not
create an HTML element—it just returns an anchor ele-
ment a followed by the sequence resulting from process-
ing the contents. This sequence can contain both phrase-
and paragraph-level elements. If termdef elements only
occurred surrounded by paragraph-level elements, we
could implement TemplateTermdef like TemplateP. How-
ever, when an occurrence of termdef in p is directly pre-
ceded by phrase-producing content and the result pro-
duced by the termdef also starts with phrase-level con-
tent, the two must be joined into a single HTML para-
graph. Therefore, to avoid creating spurious paragraph
breaks, we define TemplateTermdef to just return the
result of recursive processing of its contents. The lat-
ter joins the surrounding HTML and gets processed in
TemplateP to detect the paragraphs.

Along with these significant typing difficulties, XTATIC’s
typechecker uncovered several more minor bugs in the
stylesheet that also affected validity, but that were easy
to fix by small changes to the output.

4 Structured Data

XMLSPEC defines several collections of elements for
structured data. This section employs the most so-
phisticated of these—elements for representing BNF
grammars—as an example showing how XTATIC and

Figure 4. An HTML table generated from an XMLSPEC

grammar

XSLT handle the challenges of rendering structured data
for visual presentation.

4.1 BNF Productions

A grammar fragment is represented in XMLSPEC as a
sequence of production elements prod, each having the
structure described by the following DTD declaration:

<!ELEMENT prod (lhs, (rhs, (com|wfc|vc)*)+)>

That is, a production consists of a left-hand side con-
taining exactly one lhs element, which introduces the
non-terminal defined by the production, and a right-hand
side, which defines the unfolding of the non-terminal and
consists of a sequence of one or more element groups.
Each group contains exactly one rhs element, which rep-
resents a fragment of the unfolding (usually, an alter-
native BNF clause), possibly accompanied by side con-
ditions in the form of a comment (com), or a reference
to a well-formedness (wfc) or validity (vc) constraint. It
is not important to know about the internals of the ele-
ments inside prod. Each of them gets formatted in the
usual way as an HTML fragment to be placed inside a
table cell; the layout of this table is our present concern.

Figure 4 shows an example. The generated table has five
columns containing, respectively, an automatically gen-
erated sequence number for the production, the name of
the non-terminal being defined, the symbol ::=, the frag-



ments of the non-terminal’s definition, and the comments
and constraints.

The challenge here is assigning appropriate contents to
the table’s cells based on the relative positioning of var-
ious elements in the flat sequence of prod’s children,
rather than by simply reflecting a nested structure that
is already present in the input.

4.2 XTATIC Solution

XTATIC’s patterns address this challenge naturally. Note
that, in each production, the element lhs contributes
only to the starting of the first table row corresponding
to the production, while the rest of the first row, as well
as each of the remaining rows, is generated from a small
“chunk” of prod’s children containing at most one rhs ele-
ment and at most one com, wfc or vc element. This chunk
can be described by the type

regtype xs_rhschunk
[[(s_rhs, xs_constr_mix?) | xs_constr_mix]]

regtype xs_constr_mix
[[s_com | s_wfc | s_vc]]

and, using this type, we can easily write patterns that split
the sequence of prod children into the chunks necessary
for creating the table row-by-row; the full code appears in
Figure 5. The method TemplateProd starts by extracting
from the production the name (lhs) of its non-terminal
and the first chunk of the definition. It uses these to con-
struct the first table row corresponding to the production
in the newly created variable res. The number placed in
the first table cell is extracted, based on the production’s
identifier (prodid), from an index data structure cre-
ated before processing the document (this process is de-
scribed in Section 5). The contents of chunk is processed
by a separate method, MkRhsChunk, which performs a
straightforward match on the two alternatives in the defi-
nition of xs_rhschunk type and invokes TemplateRhs and
DispatchFlow to process the chunk’s elements. The sec-
ond part of TemplateProd is a foreach statement that
iterates over the rest of the production by cutting con-
secutive chunks off it with the [[xs_rhschunk chunk]]
pattern, while adding to res a new table row for each
chunk.

4.3 XSLT Solution

Performing the same computation in XSLT is more diffi-
cult. We start with a high-level outline of the stylesheet’s
structure.

A child element of an instance of prod can be classi-
fied as a “starter” element if it provides data for the first
non-empty cell in the HTML table’s row; otherwise as a
“follow-up” element. Accordingly, the stylesheet defines
two templates for each child element type of prod: a
“cell” template that just performs formatting inside the
HTML table’s cell (in other words, a cell template is an or-
dinary structural recursion template in the sense of Sec-
tion 3), and a “starter” template that is supposed to be
executed only on starter elements, performing, among
other things, row padding with empty cells.

Now, the order of template execution on an instance of
prod is as follows. First, the template for prod detects
all the starter elements among the prod’s children and
invokes a type-appropriate starter template on each. The
starter template pads the row with empty cells (or, in case
of lhs, starts a new row, and makes cells with a running
sequence number and the ::= symbol), calls an appro-
priate cell template on the current element to format its
own cell, and finally formats any remaining cells in the
row by applying cell templates to the appropriate follow-
ing siblings of the current element.

This algorithm requires features of XSLT that go beyond
structural recursion—the ability to control selection of
both templates and nodes during traversal (to invoke ei-
ther starter or cell templates as appropriate) and to ob-
tain information about the surroundings of the current
node. The next few paragraphs review these XSLT fea-
tures.

The selection of templates to be considered for applica-
tion when executing xsl:apply-templates can be con-
trolled in XSLT by template modes. A template’s definition
can contain (in the start tag of xsl:template element) an
attribute mode specifying the mode of this template. E.g.,
the “cell” templates in our stylesheet are headed by tags
like

<xsl:template match="rhs" mode="cell">

Then, an xsl:apply-templates instruction that also
mentions the mode attribute, e.g.

<xsl:apply-templates mode="cell">

considers only the templates marked by the same mode.

To control the selection of nodes to be processed by fur-
ther traversal, the XSLT xsl:apply-templates instruc-
tion can be augmented with the attribute select speci-
fying the sequence of nodes to be processed next, instead
of the default children sequence of the current element.
For example, the prod template restricts further process-
ing to starter elements only by executing the instruction

<xsl:apply-templates
select="child::*
[self::lhs
or (self::rhs

and not(preceding-sibling::*
[1][self::lhs]))

or ((self::vc or self::wfc or self::com)
and not(preceding-sibling::*

[1][self::rhs]))
]"/>

The contents of select is an XPATH path expression that,
when applied to a node, produces a sequence (possibly
empty) of nodes from the document that are related to
the original node as specified by the path.

For our current purposes, we can think of an XPATH path

as an expression of the form2 a::n[q1] . . .[qk] where a

2More precisely, the construction described here is a



static [[h_tr+]] TemplateProd ([[s_prod]] markup) {
[[<prod id=prodid> <lhs>pcdata lhs</>, (s_rhs, xs_constr_mix?) chunk,

xs_rhschunk* rest </prod>]] = markup;
[[h_tr+]] res =

[[ <tr valign=‘baseline‘>
<td><a name=prodid/>, ‘[‘,prodindex.Number(prodid),‘]‘</>,
<td>lhs</>, <td>‘::=‘</>, MkRhsChunk(chunk) </> ]];

foreach ([[xs_rhschunk chunk]] in rest) {
res = [[ res, <tr valign=‘baseline‘>

<td/>, <td/>, <td/>, MkRhsChunk(chunk) </tr> ]]; }
return res;

}
static [[h_td, h_td]] MkRhsChunk ([[xs_rhschunk]] chunk) {
match (chunk) {

case [[ s_rhs rhs, xs_constr_mix? constrOPT ]]:
return [[ <td>TemplateRhs(rhs)</>, <td>DispatchFlow(constrOPT)</>]];

case [[ xs_constr_mix constr ]]:
return [[ <td/>, <td>DispatchFlow(constr)</>]]; }

}
Figure 5. BNF production formatting in XTATIC.

is an axis, n is a node test, and qi are predicates. The
execution of a path consists of taking the sequence of
nodes specified by the axis a and successively pruning
it to contain only the nodes satisfying both the node
test n and all the predicates qi. XPATH predefines sev-
eral kinds of axes. The ones relevant to our examples
are self, that produces the single-element sequence con-
sisting of the current node, child, that gives the chil-
dren of the current node, and preceding-sibling and
following-sibling that give the corresponding sibling
elements of the current node. The preceding-sibling
axis produces the nodes in reverse document order, i.e.
the closest sibling comes first. A node test n is either an
element name (as in, e.g., self::lhs), which leaves the
node in the result only if the node’s name is the same
as the test’s, or a wildcard * (as in child::*), which is
satisfied by any node. A predicate q can be numeric or
boolean. A numeric predicate specifies a 1-based index
of the node to be selected from the current sequence.
E.g., the path preceding-sibling::*[1] selects the clos-
est sibling preceding the current node in the document
(or the empty sequence if the current node is the first
child of its parent). A boolean predicate is built, using
traditional boolean connectives and, or and not, from el-
ementary predicates, which coincide with path expres-
sions. When interpreted as a predicate, a path expression
is false when it returns the empty sequence, and is true
otherwise.

Taking these explanations into account, one can see
why the above select expression restricts operation of
xsl:apply-templates to elements that would start a new
row in the HTML table. Technically, the path selects (by
child::*) all children of prod that are (according to the
following predicate) either the lhs element, or an rhs
element not immediately preceded by the lhs, or a side
condition element not immediately preceded by an rhs.
The templates that get invoked on the elements so se-
lected are starter templates, since they, as well as the
xsl:apply-templates instruction, do not specify a mode
attribute. Since mode is specified by cell templates cor-

step expression s, and a general path expression p is ei-
ther a step s, or an expression of the form p/s.

responding to the same elements, the cell templates are
only invoked by instructions at the end of starter tem-
plates, like this one in the starter template for rhs:

<td><xsl:apply-templates mode="cell"
select="following-sibling::*
[1][self::vc or self::wfc or self::com]"/>

</td>

More detailed explanation of BNF formatting in the
stylesheet can be found in [20, 21].

4.4 Observations

The path expressions from the BNF formatting task
shown above are quite complicated—expressions of
such complexity rarely appear in document-oriented
stylesheets and their occurrences seem to indicate pro-
cessing of the islands of structured data embedded in-
side documents. The XPATH fragment needed for han-
dling structured data is more complicated and difficult
to master, we believe, than regular patterns, but it can
be learned. But even knowing this fragment, the major
difficulty for someone trying to understand how BNF for-
matting works in the XSLT stylesheet comes from the fact
that processing of a contiguous piece of data has to be
distributed across several non-contiguous pieces of code,
connections between which are only loosely indicated.
By contrast, the ability of XTATIC’s match statement to
keep together inspection and transformation of a piece
of data constituting a logical unit allowed us to write
processing methods (Figure 5) whose responsibilities can
be clearly specified in terms of their input-output behav-
ior and whose code explicitly indicates dependencies as
method calls.

Another small convenience available with regular pat-
terns but not with XPATH paths is the ability to name type
fragments and later reference them in patterns. For ex-
ample, our definition of the type xs_constr_mix could
have improved clarity of the later patterns, where it is
used multiple times, while no similar XPATH shortcut is
available for [self::vc or self::wfc or self::com],
which is also used several times in the stylesheet.



5 Gathering Global Information

The data model of XSLT is more complex than the one
of XTATIC, supporting the notion of a document as a
container of interconnected nodes and a correspond-
ing assortment of basic operations that take advantage
of the richer data model. Several parts of the XML-
SPEC stylesheet rely on these additional XSLT features.
This section explains how we handled these tasks in
XTATIC, sometimes finding a generic reusable solution,
other times relying on properties specific to XMLSPEC.

In XTATIC, XML values are lightweight, immutable, share-
able trees, which must be inspected in a top-down fash-
ion. By contrase, given a node in XSLT, one can re-
trieve the root of the document it belongs to, explore the
document in any direction—including towards ancestors
and siblings—and randomly access nodes that have been
marked by special ID attributes, which are specified to
be globally unique within a valid document. Supporting
all this structure makes run-time representations of XSLT
values more heavyweight, but it also provides behind-
the-scenes infrastructure for several common document-
processing tasks that require information about the doc-
ument as a whole. These include generation of section
numbers, creating the table of contents, and formatting
cross-references. An XTATIC version of the XMLSPEC for-
matter has to handle these tasks by explicitly computing
a good deal of information that is automatically provided
to a stylesheet by the XSLT run-time system.

The XMLSPEC cross-referencing elements can be classi-
fied into three groups, depending on the computational
needs of their formatting: “hard-wired,” “fetched,” and
“synthesized.”

The XMLSPEC element for a hard-wired reference
like <termref def="dt-xml-doc"> XML documents
</termref> contains all the data that needs to ap-
pear in its HTML representation, which is <a href =
"#dt-xml-doc"> XML documents </a>. Such references
are straightforward to process both in XSLT and XTATIC.

In a fetched reference, data for the HTML presenta-
tion must be retrieved from the location in the in-
put document to which the reference points. The
elements wfc and vc (which appeared in Section 4)
are fetched elements. For example, the element <wfc
def="NoExternalRefs"/> points with its def attribute to
the element

<wfcnote id="NoExternalRefs">
<head>No External Entity References</head>
<p>Attribute values cannot contain

external entity references.</p>
</wfcnote>

and should be formatted as an HTML anchor

<a href="#NoExternalRefs">No External
Entity References</a>

whose contents are a heading fetched from the wfcnote
element. The stylesheet obtains the heading with the
XSLT instruction

<xsl:value-of select="id(@def)/head"/>

Here, @def is the value of the wfc’s def attribute, and
id() is a built-in XSLT function that, given a token, re-
turns the node of the current element that carries a so-
called ID attribute with the token as its value. In this
example, id() returns the above wfcnote element, and
the following XPATH expression extracts the contents of
its head child.

To replicate the functionality of id() in XTATIC, our for-
matter explicitly builds an index datastructure that maps
IDs to elements. Fortunately, this indexing procedure is
completely generic: our implementation is encapsulated
in an IdIndex class that can be reused in other appli-
cations requiring similar ID support. Its usage consists of
creating an IdIndex object, say idindex, at the beginning
of processing by passing the document’s root element to
the IdIndex constructor and then using method calls like
idindex.Id(x) to retrieve elements from the internally
maintained index.

A synthesized reference is yet more complicated: its
HTML formatting contains computed data not directly
present in the source document. For example, the el-
ement <specref ref="sec-predefined-ent"/> uses the
ID mechanism discussed above to point to the sectional
element that starts as follows:

<div2 id="sec-predefined-ent">
<head>Predefined Entities</head>

The HTML formatting of this reference,

<a href="#sec-predefined-ent">
[4.6 Predefined Entities]</a>

includes a computed section number.

The XSLT stylesheet computes the section number by
fetching the above div2 element via the id() function,
and then invoking on it the instruction

<xsl:number level="multiple"
count="inform-div1|div1|div2|div3|div4"
format="1.1 "/>

(which appears to have been specially designed for this
purpose!). This instruction uses the specifications in its
attributes to produce a formatted number.

To approximate the behavior of this instruction, we create
another index, encapsulated by the class NumberIndex,
that, for each sectional element in the document, maps
the element’s ID to the section’s number. Again, our im-
plementation is re-usable: the index’s creation is param-
eterized by a boolean function that recognizes section-
forming elements, and by an object of the Countkeeper
class that provides an ADT for keeping track of hierar-
chical section numbers and formatting them as strings.
These parameters roughly mimic the above three param-
eter attributes of xsl:number. We use another instance
of NumberIndex to keep track of the sequence numbers of
BNF grammar productions.



The correct operation of NumberIndex depends on the ex-
istence of a unique identity for each sectional element—
something that comes for free from the data model in the
XSLT version. We use the id attribute, when one is pro-
vided, for this purpose. Otherwise (in XMLSPEC, id is
optional on div elements), we create the identity by con-
catenating the words from the (mandatory) head element
located under the div. In general, this does not guaran-
tee uniqueness. However, the stylesheet uses the same
trick to generate hyperlinks from the table of contents to
titles in the main body, so we assume it is sufficient for the
present application. With more effort, it should be pos-
sible to implement the interface of NumberIndex so that
it mimics the xsl:number instruction with better fidelity,
but we did not yet pursue this direction.

Besides reference formatting, computed sequence num-
bers stored in NumberIndex objects are used when creat-
ing section titles and grammar production entries while
formatting the body of the document, as well as dur-
ing creation of the table of contents. This differs from
the stylesheet, which invokes the xsl:number instruc-
tion anew whenever a number needs to be generated—
indeed, a naive XSLT implementation could end up re-
peating the same computation many times.

The table of contents itself is created by a separate doc-
ument traversal, after the creation of the indexes but
before formatting the document. It is implemented by
three nested foreach loops, one for each of the three sec-
tional levels (div1, div2, div3) that need to be reflected
in the table of contents. This almost literally repeats the
code in the stylesheet, which also uses explicit traversal
(xsl:for-each instructions) for this task.

Each of the tasks discussed in this section (creating the
table of contents and the indexes for IDs, section num-
bers, and production numbers) requires a pass over the
document in addition to the main formatting pass. We
experimented with combining some of these traversals
(e.g., formatting the table of contents concurrently with
the body of the specification, or creating all the indexes
together), but concluded that increased complexity of the
application code did not justify the minor efficiency gains.

Overall, we have been satisfied, in this application, with
the ability of the general-purpose facilities of XTATIC

(those it inherits from C]) to simulate the whole-
document features of XSLT, even without direct support
from XTATIC’s XML data model.

6 Related Work

Further details about XTATIC can be found in several
earlier papers. The core language design is presented
in [14], which shows how to integrate the object and tree
data models and establishes basic soundness results. A
technique for compiling regular patterns based on match-
ing automata is described in [26] and extended to include
type-based optimization in [28]. The run-time system
of XTATIC is described in [12]. A critical evaluation of
the main language design choices can be found in [13].
These papers, particularly [13], also offer detailed com-

parisons between XTATIC and a number of related lan-
guage designs; we refer the interested reader to these
existing discussions, rather than repeating them here.

Most of the recent crop of statically typed XML processing
languages have been tested on non-trivial applications,
but only rarely have these experiences been recorded in
print. A notable exception is the XQUERY Use Cases[7]—
a collection of small examples specifically designed to il-
lustrate typical tasks for which XQUERY is expected to be
used. Although they were created to illustrate the ca-
pabilities of particular features of XQUERY rather than
to address a particular large application, they reflect the
practical experience of the XQUERY editors and cover a
usefully diverse set of small transformation and extrac-
tion tasks. In the absence of more practical benchmarks,
the XQUERY use cases have been used to demonstrate ca-
pabilities of competing technologies, such as XSLT and
CQL [3].

Kay’s book [20, 21], which suggested the XMLSPEC ap-
plication for our project, contains two more case studies
of substantial XSLT applications: HTML-based browsing
of structured genealogical data and an XSLT solution to
the classic problem of a knight’s tour of the chessboard.
A brief overview of typing errors from more than a dozen
real-life XSLT stylesheets appears in [30].

7 Conclusions

XSLT and XTATIC are quite different animals. XSLT is
a high-level language with processing model founded
in structural recursion, path-based XML manipulation
primitives, and no static type system. XTATIC extends a
general-purpose programming language with a more fa-
miliar imperative processing model and processes XML
using regular patterns, which are tightly coupled to its
static XML type system. The experience described in this
paper shows that, like XSLT, XTATIC is well suited for im-
plementing at least some document-processing applica-
tions, and that, unlike XSLT, its flexible static XML type
system is capable of exposing a range of design and im-
plementation errors and facilitating fixes. We have also
observed that, even in this single application, there are
some practical programming tasks that are much better
served by XSLT than by XTATIC and some where XTATIC is
significantly better than XSLT.

Designing a strictly typed structural recursion to match
the behavior of an existing untyped implementation
turned out to be a surprisingly labor-intensive process.
The discussion in Section 3 demonstrates that mimicking
the implicit structural recursion of XSLT by explicit re-
cursive code is possible, even while ensuring strict static
typing, smoothing architectural incompatibilities of the
input and output DTDs, and maintaining a clean pro-
gram organization that bears a close resemblance to the
original XSLT code. Unfortunately, the details of the so-
lution described there required significant effort to dis-
cover, over multiple cycles of trial and error. A major
difficulty that one faces during type debugging is finding
answers to lots of questions about relationships between
types from a large collection that a DTD like XMLSPEC

or XHTML constitutes. We hope that reading about our



experience could help programmers facing similar typ-
ing tasks to find their solutions faster. It is likely, how-
ever, that the amount and difficulty of work needed to
figure out a correct solution can be intimidating and pro-

hibitive for a typical XML-literate C] programmer in a
typical project. If worst comes to worst, XTATIC lets one
to escape typing quandaries (and postpone discovery of
typing problems till run time) by using the generic xml
type and unsafe casts. Taking these difficulties into ac-
count, the refined typing of XTATIC might be considered
overkill for one-time-use scripts, where it may be easier to
just fix the bugs upon running into their manifestations.
On the other hand, the benefits of early error discov-
ery and safety guarantees of well-typed code—compared
to the current mainstream technologies where only test-
ing is available—can outweigh the development costs in
projects aiming to create reusable document processing
tools.

Another conclusion from our experience is that XSLT
templates—especially in their simplest form, unburdened
by other XSLT features like non-downward paths—are a
very convenient approach to programming structural re-
cursion. A template-like construct for implementing local
structural recursion (i.e., traversals that can be explicitly
applied to chosen document fragments as opposed to be-
ing a carrier of the whole program’s computation) would
be a very useful addition to XML processing languages
with explicit control flow. It would be necessary, how-
ever, for this construct to be accompanied by expressive
and flexible typing rules that minimally burden the pro-
grammer.

However, having discussed these difficulties with XTATIC,
we should also emphasize that XSLT, for its part, turned
out to be convoluted (or worse) when faced with the
need to deviate from straightforward structural recur-
sion. For the most significant typing bugs discussed in
Section 3, we do not see how they could be eliminated
from the XSLT stylesheet in a natural and type-safe way
without revising the XMLSPEC DTD; also, processing of
structured data (Section 4) is much trickier in XSLT.

It would also be interesting to see how the original XML-
SPEC stylesheet might be adapted to a statically typed
variant of XSLT. Even though XSLT 1.0 [9] is officially
untyped, there is now a proposal [30] and implementa-
tion of data-flow based typechecking of XSLT stylesheets.
The draft of XSLT 2.0 [22] describes only a dynamic type
system, leaving possible static variants to the discretion
of implementations.

Some of the observations made in this paper in the con-
text of XTATIC and XSLT may be applicable to other
XML programming languages. The advantages of reg-
ular patterns over paths for processing structured data
(Section 4) would also hold in XDUCE and CDUCE, which
also use patterns as the primary data inspection mech-
anism, compared to XQUERY, XJ, XACT, or Cω, which
use paths. Any language in the XDuce family will have
to mimic the implicit structural recursion of XSLT by ex-
plicit traversal via mutually recursive functions, as we did
in Section 3. And since obtaining statically typed trans-
formations in these languages requires specifying types

of functions, they are likely to experience similar difficul-
ties statically typing this recursion. It is possible, how-
ever, that other features found in current descendants
of the original XDuce, such as Hosoya’s regular pattern
filters [16] and CDUCE’s overloaded functions with dy-
namic dispatch, could mitigate some of the difficulties.
On the other hand, we suspect that the nominal character
of the type systems of XQUERY, XJ, and Cω might compli-
cate the task. XACT citexact2003, by contrast, might have
an easier time with typing structural recursion, thanks
to its typechecking via data flow analysis, which requires
typing specifications only for inputs and outputs of whole
programs. (A new paper on XACT, presented at this work-
shop, introduces optional type annotations [24] with the
goal to improve modularity of typechecking; these might
interfere with the ease of the task in question.) Pro-
grams in all these languages, except XJ, XQUERY, and,
possibly, Cω, would need to maintain auxiliary data struc-
tures for global document information similar to ours
in Section 5, since all of them have chosen light-weight
shared tree representations for XML data. These are, of
course, only speculations on our part—real observations
can only come from implementations of similar applica-
tions in these languages.
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