
Native XML Processing
in a Statically Typed Language
A Progress Report on the Xtatic Project

Benjamin C. Pierce
University of Pennsylvania

1/51

Overview

Xduce [Hosoya, Pierce, Vouillon]: a tiny experimental
language with “native XML support” in the form of

�

regular types

�

regular pattern matching

Xtatic project: equip a full-blown OO language (C

�

) with
these features

This talk: a status report on Xtatic, with some technical
details on the core language and the current
implementation.

2/51

Background

3/51

A missed opportunity

XML documents frequently come with precise and detailed
schemas.

However, these schemas are not “understood by” the type
systems of any of the programming languages that are
commonly used to generate, manipulate, and analyze XML
documents.

I.e., schemas can be used to validate values, but not to
analyze programs.

4/51

Benefits of native static typechecking

�

Obvious: many opportunities for silly errors in XML
processing code (i.e., easy to produce documents not
conforming to the expected schema). Any help the
typechecker can give us would be welcome.

�

More interesting: putting these rich types within the
range of the typechecker’s understanding gives it a
substantial grip on the program’s underlying logic,
amplifying the “curious effectiveness” of static typing.

5/51

Regular Types

Key observations:

�

XML schema languages are based on regular tree
grammars (a simple extension of familiar regular
expressions on strings)

�

Core operations needed by typecheckers
(membership and subtype testing, etc.) correspond to
well-known operations on tree grammars

6/51

Regular types

� � � � � � � � � � leaf

	

type name

 �

empty sequence

�
�

�

concatenation

 � � �

tree labeled

� � � �

tree labeled anything

� � �

alternation (union)

Fix global set of (mutually recursive) definitions

	 � �

.

Recursive uses of variables only allowed in rightmost
positions and under labels (to keep things regular).

Standard regex operators (

� �

,

� � , etc.) definable

7/51

Regular Pattern Matching

Regular types suggest an elegant pattern-matching
mechanism...

�

statically typed “tree-grep”

�

typechecker can do standard tests for exhaustiveness
and irredundancy

�

includes all of ML-style “algebraic pattern matching”
as a special case

�

experience in XDuce: very pleasant for programming

8/51

Regular Patterns

Regular patterns are just regular types decorated with
variable bindings:

� � � � � � � � � � leaf

	

pattern name

 �

empty sequence

�
�

�

concatenation

 � � �

tree labeled

� � � �

tree labeled anything

� � �

alternation

� � � � binding

Linearity: In

�
�
� �
� , the sub-patterns

�
� and

�
� must bind

the same set of variables. In

�
� �

�
� , disjoint sets.

9/51

XDuce

What we achieved:

�

basic definitions (regular types and pattern matching)

�

fundamental algorithms (subtyping, type-based
pattern optimization)

�

prototype implementation (good-quality front end +
simple interpreter)

What we did not achieve:

�

Full-blown language design / implementation

�

Inter-operability with established libraries, mainstream
programming idioms, and legacy code

10/51

Xtatic

Regular types for the masses...

11/51

Overall Goals

�

lightweight, source-level extension of a mainstream,
general purpose language with regular types and
patterns

� we are using C

�

as the host language; the same can easily
be done with Java

�

complete binary-level compatibility with existing
host-language APIs and legacy code

� � no changes to CLR abstract machine

�

efficiently compiled

�

“reasonably compatible” with existing standards (e.g.
XML-Schema)

12/51

Specific Research Goals

�

get inter-operability right...

� in the data model (smooth intermingling of objects and XML)

� in the type system (overloading, separate compilation, etc.)

� in the run-time system

� smooth transitions between statically and dynamically
typed processing

� fast re-validation when types get “lost”

� DOM proxies

�

deepen understanding of regular patterns

� high-performance compilation

� partial type inference

�

develop formal foundations of the core language

� subject reduction theorems and all that

13/51

Related Projects

�

XQuery (W3C)

� standard query language for XML

� type system based on XML-Schema

� no direct integration with objects

�

XJ (IBM)

� Java extension with native support for XML

� emphasis on standards (XML-Schema, XPath, DOM, ...)

� imperative programming idiom (dynamically validated)

�

Xact (BRICS)

� Java extension with novel “template filling” programming
idiom for XML processing

� global static analysis plays role of Xtatic’s type system

14/51

More Related Projects

�

CDuce

� full-blown language design emphasizing statically typed XML
processing

� based on CLOS-like multi-method dispatch

� ambitious semantic foundations and typechecking algorithms,
generalizing XDuce type system with intersection and
function types

�

Xen (Microsoft)

� “deep integration” of XML and C

�

type structures

� little technical information available

� Xobe (german)

� Java-based design similar to Xtatic

� few published details so far

15/51

Language Overview

16/51

Core Data Model and Type System

�

Allow arbitrary host-language objects as tags in XML
documents.

�

Add regular types

� � � � �

to the class types from the
host language.

�

Treat XML structures as objects by introducing a
special type

	 � and making

� � � � � � � 	 � for every

�

.

�

Allow (dynamically checked) downcasts from

	 � to

� � � � �

, so that XML values can be manipulated by
unmodified host-language programs and libraries
(stored in generic data structures, etc.) and later
passed back in to Xtatic modules.

17/51

Xtatic Subtype Hierarchy

Object

{| Any |}

{| Email* |}

{| Email |} {| Email? |} {| Email,Email |}

StringWindow

TextWindow
downcast = document validation

XmlXml

18/51

Compilation scheme

After typechecking, Xtatic programs are transformed into
pure host-language programs by:

�

rewriting all XML types

� � � � �

to the single class type

	 �

�

rewriting all XML values as host-language data
structures (objects of class

	 �)

�

compiling regular pattern matches into nested
combinations of host-language � � � � � �es and
conditionals [and, for good performance, method
calls, arrays, exceptions, etc.]

(Same intuition as GJ)

19/51

Example

� � � � � � � � � � � 	 	
 � � � � � � � � � �
 � � � �

� � � � � � � � � � 	 	
 � � � � � � � � �
 � � � �

� � � � � � � � � � � � 	 	
 � � � �
� � � � � � � �
 � � � �

� � � � � � � � � � � � 	 	
 �
 � � � �

� � � � � � � � � � � � � � � 	 	
 � � � � � � � � � � � � � � �
 � � � �

� � � � � � � � � � � � � � 	 	 �
 � � � � � � � � � � � � �
 � � � � �

20/51

Example

� � � � � � � � � � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � � � � �
� � �
� � � � � � � � � 	 � � � � � � � � � � � � � � � 	 �

� � � � 	 	
 � � � � � � � � � � � � � � � � � � �
 � � � �

� �

� � � � � � �
� � �
� � � � � � � 	 � � � � � � � � � � � 	

� � � � � �

� � � � 	 	 � � � � �

� � � � � � �
� � � � � � � � � � � � � � � � 	 � � � � � � � 	 �

�

� �

21/51

Example

� � � � � � � � � � � � � � � � � 	 	 � � � � � � � � � � �

� � � � � � � � �

� � � � 	 	
 � � � � � � �

 � � � � � � � � � � � � �
 � �

 � � � � � � � � � � � �
 � �

� � �

 � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � 	 	
 � � � � � �
 � � � � � �
 � �
 � � � � �
 � �
 � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � 	 	
 � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � � �

� �

� � � � 	 	 � �
 � � � � � � 	 	 � � �

� �

22/51

Core Language Design

23/51

FX: a core calculus for Xtatic

FX: a tiny core language combining objects and classes
with regular expression types and patterns.

Based on Featherweight Java [Igarashi, Pierce, Wadler,
1999], a tiny core language retaining the key type
structures and OO features of Java/C

�

(classes, methods,
fields, inheritance,

� � � �) and nothing else.

24/51

FX types

Full language:

� � � � �

“host type” (class name)

� � � � �

XML type

regular types:

� � � � 	

type name

 �

empty sequence

�
�

�

concatenation

� � �

alternation

�
 � � � � � � �

tree labeled with

�

object

25/51

FX values

objects:

� � � � � � � �
 �
�

object of class
�

with constructor args �

trees:

� � � � �
 �
� � � � � �

tree with label �

and contents

�

full lang: � � � � �

host value

� � � � �

sequence of trees

(overbar stands for sequences)

26/51

Type membership

instances

� � � �

� � � � � � �

for arbitrary
� �

if

�

=

	 �

� � � � �
 �
� �

for arbitrary �
�

otherwise

� � � � � �

� � � � � � � �

subclass of

� �

� �
 � � �

�

� �

empty seq
	 �

� � �
 � � � � � � � � � �

� �
 �
� � � � � � �

�
 � � � � � � �
 � � � � � �

� � �
�

�
�

� �

�

� �
�

�
�

� �
�
 � � �
�

� �

and

�
�
 � � �
�

� � �

� � �
�
� �
�

� �

�

� � �
�

� � � � � �
�

� �

� � 	 � � �

� � � � �

where

	 � �

in the global definitions

27/51

Subtyping

� � � �

iff

� � � � � � � � � � �

Note that subtyping is generated “semantically” from the
declared subclass relation. The simplicity of this
construction is made possible by

�

the nominal character of the host type system

�

the absence of function types

28/51

Patterns

� � � � �

class pattern

� � � � class pattern plus binder

� � � � �

XML pattern

� � � � 	

type name

 �

empty sequence

�
�

�

concatenation

� � �

alternation

�
 � � � � � � �
tree

� � � � XML pattern plus binder

29/51

Expressions

� � � � � value variable

� � � �
 � � new object creation

�
�

�

field access

�
�

�
 � � method call

�
 � � � � � � � tree

� � � � �

sequence of trees

� � � � �

�
� �

� � � �

 � � � �

�

pattern match

30/51

Adding Primitives

Naturally, it is easy to enrich this tiny language with
primitive types such as

� � � �.

Interestingly, though, we can simulate such primitive types
using just the mechanisms that we already have.

(Doing so will suggest a nice way of representing XML
structures...)

31/51

Representing

� � � �

Introduce a new class

� � � � and 256 subclasses
� � � � � ,

� � � � �, etc.

Char Char Char ...

Char

a b c

<:
<:

<:
<:

Each subclass contains one object (written � � � � � � � �

 �

,

� � � � � � � �

 �

, etc.), which stands for the corresponding
character constant.

32/51

Representing

� � � �

To recover the standard syntax of character literals, we
can write

�
�

�

to stand for � � � � � � � �

 �

in values.
Then, by subsumption, we have

�
�

�
 � � � �,
� � �
 � � � �, etc.

I.e.,

� � � � is isomorphic to the standard primitive type of
characters.

33/51

Representing

� � � �

If, moreover, we let

�
�

�

stand for

� � � � � in types, then we
can recover the behavior of C

�

’s ordinary � � � � � �

statement from regular pattern matching:

� � � � � �

�
� �

� � � �

 �
�
� �
�

� � �

� � � �

 � � � � �

� � �

� � � �

 �
�
� �
�

� � �

�

stands for

� � � � �

�
� �

� � � �

 � � � � �
�
�

� � �

� � � �

 � � � � �
�
�

� � �

� � � �

 � � � �
�

�
�

� � �

�

34/51

Representing

� � � �

Define

	 � � � � =

�
 � � � � � � � � � �

I.e., an element of

	 � � � � is a trivial tree containing a
single character

Now define

� � � � � �

=

	 � � � � �

I.e., PCDATA is an arbitrary length sequence of characters.

(We’ll see in a bit why this is better than defining

� � � � � �

as

�
 � � � � � � � � � � � .)

35/51

Representing XML Tags

The same idea gives us a convenient representation of the
tags in XML structures.

1. Introduce a new class

� � �

2. Introduce an infinite collection of “singleton subclasses”
—

� � � � � � � � � � ,

� � � � � � ,

� � �
� � � � � , ...

3. In values, write

� � � � �
� � �

� � �

as syntactic sugar for

�
 � � � � � � � � �
� �
� � �

� � �

4. In types, write
� � � � �
� � �

� � �

as syntactic sugar for

�
 � � � � � �
� �
� � �

� � �

36/51

Representing XML Tags

The class-membership test of our � � � � � statement now
functions as a tag test

� � � � �
 � � �

� � � �

� �

� � �

�

stands for

� � � � �
 � � �

� � � �

� � �
 � � �
� � � � � �

� � �
 � � �
� � � �

� � � � � � � � � � � � � � � � � � �

� � �

�
37/51

Representing XML Tags

This representation also supports dynamic investigation of
XML documents with unknown (or partially known)
schemas.

1. Provide primitive methods for converting back and
forth between

� � � and

� � � � � �

E.g., equip class

� � � with a method

� � � � � � � � and a
constructor that takes a

� � � � � � argument

2. Pattern-match against class

� � � instead of

� � �
� � �

38/51

Representing XML Tags

� � � � � � � �

� � � � 	 	 � �

� � � � � � �
� � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � 	 �

� � � � 	 	
 � � � � � � � � � � � �
 � � � �

� � � � � � �
� � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	

� � � �
� � � � � � � � � �

� � � � 	 	 � � � � �

� � � � � � �
� � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � 	 �

�

39/51

Challenges

40/51

Polymorphism

�

if patterns are just types decorated with variable
binders...

�

then parametric patterns are just polymorphism!

�

parametric patterns (i.e., run-time pattern
construction) seem to come up all over the place in
practice

�

unfortunately, they raise significant theoretical and
algorithmic challenges!

(N.b.: What’s hard is polymorphism over regular types —
polymorphism over classes in the style of GJ is not
problematic.)

41/51

Playing nice with existing standards

The XML world has some well established standards:

� XML-Schema: Standard schema language
(replacement for DTDs)

� XPath: Standard notation for expressing “paths”
to parts of documents.

Both are messy, complex beasts — we can’t include
all their features, verbatim.
However, they are the real world. Need to be able to
interpret at least a large subset of each.

How close are we now?

42/51

XML-Schema

Disclaimer: Schema is full of bells and whistles — most of
them we have not thought about very much!
Here’s one interesting one, though...

Schema supports precise descriptions of string formats.
(Not just “a phone number is a string” but “a phone
number is a string of three digits, a hyphen, three more
digits, etc.”)

43/51

In Xtatic, we get the same effect “for free” from our
definition of

� � � � � �

as

	 � � � � � . I.e., instead of

� � � � � � � � � � � � � � � � � � � � � � � � � �

we write

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�

� �

�
� � � � � � � � � � �

�
� � �

� � � � � � � � � � � � � � � � � � � � � � �

�
� � � � � � � � � � � � � � �

� 	 � � �
 � �

� � � � � � � � � � � � � � � � � � � �

44/51

Conversely, regular pattern matching can be used to
extract the parts of phone numbers:

� � � � � � � � � �

� � � � 	 	 � � � 	 � � � � � � � � � �

� � � � � � � � �

� �

� � � � 	 	 � � � 	 � � � � � � � � �

� �

�

(Statically typed PERL, anyone?...)

45/51

XPath

XPath includes some features that we definitely do not
want in Xtatic.

�

“go to root of document; find any subtree labeled

� � ; go up to its parent; move to the right; ...”

However, at least two ideas from XPath look very useful.

�

Find all occurrences of a given pattern.

�

Find a given pattern at arbitrary depth in a tree.

The first requires a (straightforward?) change in the
semantics of pattern matching. The second, though...

46/51

We can desugar a pattern of the form

� � �

(“find

�

anywhere”) as a regular pattern:

� �

� � � � �
 �

where

� � � is the type of arbitrary sequences of XML
trees:

� � � � � � � � � � �
 � � �
 � � � � � � � � � � � � � � � � �

47/51

Finishing Up

48/51

Status

�

language design stable

�

source-to-source compiler, emphasizing good pattern
matching performance

� not yet handling all of C

�

�

several small demos

�

work proceeding on...

� larger demos

� polymorphism

� even better (type-based) pattern compilation

49/51

Contributors

The Xtatic team:

Vladimir Gapeyev
Michael Levin
Benjamin Pierce
Alan Schmitt

Also, thanks to Eijiro Sumii for the ASP.NET work on the
demo!

50/51

Any Questions?

http://www.cis.upenn.edu/

�

bcpierce/xtatic

51/51

	Overview
	Background
	A missed opportunity
	Benefits of native static typechecking
	Regular Types
	Regular types
	Regular Pattern Matching
	Regular Patterns
	XDuce
	Xtatic \[5ex] small Regular types for the masses...
	Overall Goals
	Specific Research Goals
	Related Projects
	More Related Projects
	Language Overview
	Core Data Model and Type System
	Xtatic Subtype Hierarchy
	Compilation scheme
	Example
	Example
	Example
	Core Language Design
	FX: a core calculus for Xtatic
	FX types
	FX values
	Type membership
	Subtyping
	Patterns
	Expressions
	Adding Primitives
	Representing {	t Char}
	Representing {	t Char}
	Representing {	t Char}
	Representing {	t PCDATA}
	Representing XML Tags
	Representing XML Tags
	Representing XML Tags
	Representing XML Tags
	Challenges
	Polymorphism
	Playing nice with existing standards
	XML-Schema
	
	
	XPath
	
	Finishing Up
	Status
	Contributors
	Any Questions?

