The EXxperience

ViIadimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce,
and Alan Schmitt

University of Pennsylvania

Regular pattern matching for the masses

. Extension of Cjj for statically typed XML processing

Offspring of the XDuce family
Regular types for XML and regular patterns

Goals:
Simplicity: easy to use and understand
Flexibility: processing of values of (partially) unknown type

Lightweight extension of and tight integration with C1j

Current status:
Xtatic to CIj source to source compiler

Several applications written in Xtatic

Online bibtex to HTML / RSS generator
Used weekly to generate the Caml Weekly News

Alan Schmitt The Experience

Outline

Xtatic: for statically typed XML processing

This talk: some language design issues encountered
What type system for XML values?
What XML inspection mechanism(s) to use?

How to realize a with Cﬂ?

Alan Schmitt The Experience

Typing an address book

XML types: based on regular tree grammars
Several classes, based on restrictions on the content model

Content model of an element: sequence of types of its subtrees

A simple address book:

<entry> <name>Pat</>, <tel>314-1593</> </entry>
<entry> <name>Jo</>, <tel>271-8282</> </entry>

with type:

regtype Name <name>pcdata</>
regtype Tel <tel>pcdata</>
regtype AddrBk <entry> Name, Tel </entry>*

Local tree grammar: tag specifies content model (DTD)

(Classification of [Murata, Lee, Mani — EML'01])

Alan Schmitt The Experience 4

Typing an address book

Adding and new data:

<entry> <name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</> </entry>

<entry> <name>Jo</>, <tel>271-8282</>, <email>JoQ@jo.com</> </entry>

with type:
regtype Addr = <addr>pcdata</>
regtype Email = <email>pcdata</>
regtype FunEntry = <entry> Name, Tel, Addr? </entry>
regtype WorkEntry = <entry> Name, Tel, Email </entry>
regtype AddrBk = (FunEntry | WorkEntry)

Single-type tree grammar: downward path from root specifies
content model (Schema)

Alan Schmitt The Experience

Typing an address book

Putting category information each entry:

<entry> <name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</> </entry>

<entry> <name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</> </entry>

with type:
regtype FunEntry = , <entry> Name, Tel, Addr? </entry>
regtype WorkEntry = , <entry> Name, Tel, Email </entry>
regtype AddrBk = (FunEntry | WorkEntry)

Restrained-competition tree grammar: downward path and left
siblings specifies content

Alan Schmitt The Experience

Typing an address book

Putting category information

<entry>

<name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</>,
</entry>
<entry>

<name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</>,
</entry>

with type:

regtype FunEntry = <entry> Name, Tel, Addr?, </entry>
regtype WorkEntry = <entry> Name, Tel, Email, </entry>
regtype AddrBk = (FunEntry | WorkEntry)

Regular tree grammar: no restriction for content model (RelaxNG)

Alan Schmitt The Experience

Choosing a type system

Simpler tree grammars (Local, Single-type) have simple and
efficient validation and subtyping algorithms

More powerful grammars have algorithms that remain
implementable and practical (the XDuce experience)

Every grammar is closed under intersection

Only Regular tree grammars are also closed under union,
difference, and concatenation (useful for type inference)

Reasonable choices:
tree grammar: efficiency and Schema compliance

tree grammar: versatility and closure properties

Alan Schmitt The Experience

Outline

» \What type system for XML values?
» What XML inspection mechanism(s) to use?

» How to realize a tight integration with Cﬁ?

Alan Schmitt The Xtatic Experience

A taste of patterns

Where does my friend Pat live?

value:

<entry>

<name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</>, <fun />
</entry>
<entry>

<name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</>, <work />
</entry>

Alan Schmitt The Experience

10

A taste of patterns

Where does my friend Pat live?

Pattern: type annotated with [Hosoya, Pierce — POPL'01]
Context around and type of the

pattern:
any,
<entry>

<name>Pat</>, any, <addr>pcdata x</>, Fun
</entry>,

any

value:
<entry>
<name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</>, <fun />
</entry>
<entry>
<name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</>, <work />
</entry>

Alan Schmitt The Experience 11

A taste of patterns

Where does my friend Pat live?

Pattern: type annotated with [Hosoya, Pierce — POPL'01]
Context around and type of the

pattern:
any,
<entry>
<name>Pat</>, any, <addr> </>, Fun
</entry>,

any

value:

<entry>

<name>Pat</>, <tel>314-1593</>, <addr> </>, <fun />
</entry>
<entry>

<name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</>, <work />
</entry>

Alan Schmitt The Experience 12

A taste of patterns

Where does my friend Pat live? 42, \Wallaby \Way

Pattern: type annotated with variables [Hosoya, Pierce — POPL'01]
Context around and type of the value(s) to be extracted

pattern:
any,
<entry>

<name>Pat</>, any, <addr>pcdata x</>, Fun
</entry>,

any

value:
<entry>
<name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</>, <fun />
</entry>
<entry>
<name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</>, <work />
</entry>

Alan Schmitt The Xtatic Experience 13

Pattern matching in Xtatic

match (addrbk) {
case [[<entry>
<name>‘Pat ‘</>, any, <addr>pcdata x</>, Fun
</entry>,
any rest 1]:

case [[(FunEntry | WorkEntry), any rest]]:

case [[1]:

Similar to CIi switch, first match policy

Support from the type checker
Matching checked to be - every pattern is

of the type of bound variables
(rest has type (FunEntry | WorkEntry)*)

Alan Schmitt The Experience

14

XML manipulation: Patterns vs XPath

Patterns: types annotated with binders
Convenient for splitting XML values

Multiple binders — extraction of multiple subtrees

Paths: hierarchical XML navigation
Convenient for inspection of XML values

Multi match: return all leaves satisfying the path

In practice, Patterns and Paths are complementary
Extension of Xtatic with a subset of XPath in development

Common foundation for the two approaches

Alan Schmitt The Experience 15

Schema evolution

Typical case: extension of a type

Friends now have an optional
regtype FunEntry = <entry> Name, Tel, Addr?, , Fun </entry>

Paths are too robust confronted to such evolution
//entry[fun] [name/text () = "Pat"]/addr/text()
The program still works, the new information is ignored

What if the program was printing the data~?

Precise patterns flag an error: match clause not

The type checker guides the programmer
with an example of a value not matched

Very useful in practice

Alan Schmitt The Experience 16

Outline

» \What type system for XML values?
» What XML inspection mechanism(s) to use?

» How to realize a tight integration with ch?

Alan Schmitt The Xtatic Experience

17

XML in the class hierarchy

Sequences are objects of class XML

May be used in collections

Object\

\ Char
/C String XML

D1 D2

R-Types

Most languages follow this approach

Alan Schmitt The Experience

18

Objects in XML

LLabels are objects, Label types are

T:() | 11,15 | Tl‘TQ | T % ‘ < >T</>

XML tags are singleton classes, conceptually subclasses of Tag:
<addrbk> - - </> = <(Tagaqarvx)> " - </>

Characters are singleton classes, conceptually subclasses of
Char: ‘Pat‘ = <(Charp)/><(Char,)/><(Chary)/>
Pattern matching used for string regular expressions

regtype url_protocols [[‘http¢ | ‘ftp‘ | ‘https‘ 1]
regtype url [[url_protocols , ‘://¢ , (url_char *)]]

case [[url u, any rest 1] :

res = [[res , u</>]]; p = rest;

Alan Schmitt The Experience 19

Imperative idioms: XML modification

For static type safety reasons, XML values are immutable
—> no direct assignment as in XJ

To modify a value, its context must be and recreated
match (addrbk) {

case [[
Email?
11
return [[bef, <entry>
<name>‘Pat‘</>, a, <email>‘pat@pat.net‘</>, f
</entry>, after 1];
case [[any no_pat]]:

return no_pat;

¥

Simpler in Xact: a primitive creates holes, another fills them

Alan Schmitt The Experience 20

Imperative idioms: repeated concatenation

Case study: creation of a sequence

Efficient imperative approach: mutation of the end of the list
Requires mutable values

Efficient functional approach: insert all elements at the

beginning then reverse the sequence

Efficient if good tail recursion compilation

Xtatic's approach:

Naive concatenation of sequences

[[AddrBk 1] p = [[1];
while (some_condition) {

p = [[p, <entry> ... </> 1];
}

Compiled to lazy data structures

Alan Schmitt The Experience

21

More In the paper...

Nominal vs Structural type systems
Simple (as in easy to use) type system for attributes
Fast downcasting for XML values in collections

Dealing with legacy representations

Alan Schmitt The Experience

22

Conclusions

Convenient type grammars for XML values
Single type (standard compliance, ease of implementation)
Regular (power, closure properties)

Efficient implementation of the latter is practical

Regular pattern matching is a powerful XML processing tool
Complements XPath inspection mechanisms
Very helpful for dealing with schema evolution

Extension of Xtatic with a subset of XPath in development

of XML processing with OO language possible
Sequences as objects, objects as labels; Simple and flexible
Tension between OO idioms and declarative XML lessened

Tighter integration (with objects in sequences) studied in
Cw, at the cost of the richness of the type system

Alan Schmitt The Experience 23

The experience

Xtatic's language design but enlightening
Goal of keeping things simple requires self-control

Many things go “under the hood”

Type checker and run-time structures optimizations
Transparent interaction with Cjj (separate compilation)

Building applications is crucial
Caml Weekly News rely on Xtatic

Takes a lot of time

There is a future for statically typed XML processing in
mainstream languages

Alan Schmitt The Experience 24

Questions?

http://www.cis.upenn.edu/ "bcpierce/xtatic/

Alan Schmitt The Experience

25

