
The Xtatic Experience

Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce,

and Alan Schmitt

University of Pennsylvania

Alan Schmitt The Xtatic Experience 2

Regular pattern matching for the masses

Xtatic: Extension of C] for statically typed XML processing

I Offspring of the XDuce family

. Regular types for XML and regular patterns

I Goals:

. Simplicity: easy to use and understand

. Flexibility: processing of values of (partially) unknown type

. Lightweight extension of and tight integration with C]

I Current status:

. Xtatic to C] source to source compiler

. Several applications written in Xtatic

¦ Online bibtex to HTML / RSS generator

¦ Used weekly to generate the Caml Weekly News

Alan Schmitt The Xtatic Experience 3

Outline

Xtatic: Extension of C] for statically typed XML processing

This talk: some language design issues encountered

I What type system for XML values?

I What XML inspection mechanism(s) to use?

I How to realize a tight integration with C]?

Alan Schmitt The Xtatic Experience 4

Typing an address book

I XML types: based on regular tree grammars

I Several classes, based on restrictions on the content model

I Content model of an element: sequence of types of its subtrees

A simple address book:
<entry> <name>Pat</>, <tel>314-1593</> </entry>

<entry> <name>Jo</>, <tel>271-8282</> </entry>

with type:
regtype Name <name>pcdata</>

regtype Tel <tel>pcdata</>

regtype AddrBk <entry> Name, Tel </entry>*

Local tree grammar: tag specifies content model (DTD)

(Classification of [Murata, Lee, Mani – EML’01])

Alan Schmitt The Xtatic Experience 5

Typing an address book

Adding categories and new data:
<fun>

<entry> <name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</> </entry>

</fun>

<work>

<entry> <name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</> </entry>

</work>

with type:
regtype Addr = <addr>pcdata</>

regtype Email = <email>pcdata</>

regtype FunEntry = <fun> <entry> Name, Tel, Addr? </entry> </fun>

regtype WorkEntry = <work> <entry> Name, Tel, Email </entry> </work>

regtype AddrBk = (FunEntry | WorkEntry)*

Single-type tree grammar: downward path from root specifies

content model (Schema)

Alan Schmitt The Xtatic Experience 6

Typing an address book

Putting category information before each entry:
<fun />

<entry> <name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</> </entry>

<work />

<entry> <name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</> </entry>

with type:
regtype Fun = <fun />

regtype Work = <work />

regtype FunEntry = Fun, <entry> Name, Tel, Addr? </entry>

regtype WorkEntry = Work, <entry> Name, Tel, Email </entry>

regtype AddrBk = (FunEntry | WorkEntry)*

Restrained-competition tree grammar: downward path and left

siblings specifies content

Alan Schmitt The Xtatic Experience 7

Typing an address book

Putting category information in each entry:
<entry>

<name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</>, <fun />

</entry>

<entry>

<name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</>, <work />

</entry>

with type:
regtype FunEntry = <entry> Name, Tel, Addr?, Fun </entry>

regtype WorkEntry = <entry> Name, Tel, Email, Work </entry>

regtype AddrBk = (FunEntry | WorkEntry)*

Regular tree grammar: no restriction for content model (RelaxNG)

Alan Schmitt The Xtatic Experience 8

Choosing a type system

I Simpler tree grammars (Local, Single-type) have simple and

efficient validation and subtyping algorithms

I More powerful grammars have algorithms that remain

implementable and practical (the XDuce experience)

I Every grammar is closed under intersection

I Only Regular tree grammars are also closed under union,

difference, and concatenation (useful for type inference)

I Reasonable choices:

Single-type tree grammar: efficiency and Schema compliance

Regular tree grammar: versatility and closure properties

Alan Schmitt The Xtatic Experience 9

Outline

I What type system for XML values?

I What XML inspection mechanism(s) to use?

I How to realize a tight integration with C]?

Alan Schmitt The Xtatic Experience 10

A taste of patterns

Where does my friend Pat live?

Pattern: type annotated with variables

Context around and type of the value(s) to be extracted

pattern:

value:
<entry>

<name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</>, <fun />

</entry>

<entry>

<name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</>, <work />

</entry>

Alan Schmitt The Xtatic Experience 11

A taste of patterns

Where does my friend Pat live?

Pattern: type annotated with variables [Hosoya, Pierce – POPL’01]

Context around and type of the value(s) to be extracted

pattern:
any,

<entry>

<name>Pat</>, any, <addr>pcdata x</>, Fun

</entry>,

any

value:
<entry>

<name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</>, <fun />

</entry>

<entry>

<name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</>, <work />

</entry>

Alan Schmitt The Xtatic Experience 12

A taste of patterns

Where does my friend Pat live?

Pattern: type annotated with variables [Hosoya, Pierce – POPL’01]

Context around and type of the value(s) to be extracted

pattern:
any,

<entry>

<name>Pat</>, any, <addr>pcdata x</>, Fun

</entry>,

any

value:
<entry>

<name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</>, <fun />

</entry>

<entry>

<name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</>, <work />

</entry>

Alan Schmitt The Xtatic Experience 13

A taste of patterns

Where does my friend Pat live? 42, Wallaby Way

Pattern: type annotated with variables [Hosoya, Pierce – POPL’01]

Context around and type of the value(s) to be extracted

pattern:
any,

<entry>

<name>Pat</>, any, <addr>pcdata x</>, Fun

</entry>,

any

value:
<entry>

<name>Pat</>, <tel>314-1593</>, <addr>42, Wallaby Way</>, <fun />

</entry>

<entry>

<name>Jo</>, <tel>271-8282</>, <email>Jo@jo.com</>, <work />

</entry>

Alan Schmitt The Xtatic Experience 14

Pattern matching in Xtatic

match (addrbk) {

case [[<entry>

<name>‘Pat‘</>, any, <addr>pcdata x</>, Fun

</entry>,

any rest]]:

...

case [[(FunEntry | WorkEntry), any rest]]:

...

case [[]]:

...

}

I Similar to C] switch, first match policy

I Support from the type checker

. Matching checked to be exhaustive; every pattern is useful

. Inference of the type of bound variables

(rest has type (FunEntry | WorkEntry)*)

Alan Schmitt The Xtatic Experience 15

XML manipulation: Patterns vs XPath

I Patterns: types annotated with binders

. Convenient for splitting XML values horizontally

. Multiple binders =⇒ extraction of multiple subtrees

I Paths: hierarchical XML navigation

. Convenient for vertical inspection of XML values

. Multi match: return all leaves satisfying the path

I In practice, Patterns and Paths are complementary

. Extension of Xtatic with a subset of XPath in development

. Common foundation for the two approaches

Alan Schmitt The Xtatic Experience 16

Schema evolution

I Typical case: extension of a type

I Friends now have an optional Email
regtype FunEntry = <entry> Name, Tel, Addr?, Email?, Fun </entry>

I Paths are too robust confronted to such evolution

. //entry[fun][name/text() = "Pat"]/addr/text()

. The program still works, the new information is ignored

. What if the program was printing the data?

I Precise patterns flag an error: match clause not exhaustive

. The type checker guides the programmer

¦ with an example of a value not matched

. Very useful in practice

Alan Schmitt The Xtatic Experience 17

Outline

I What type system for XML values?

I What XML inspection mechanism(s) to use?

I How to realize a tight integration with C]?

Alan Schmitt The Xtatic Experience 18

XML in the class hierarchy

I Sequences are objects of class XML

. May be used in collections

I Most languages follow this approach

Alan Schmitt The Xtatic Experience 19

Objects in XML

I Labels are objects, Label types are classes

T = () | T1, T2 | T1|T2 | T ∗ | <(C)>T</>

I XML tags are singleton classes, conceptually subclasses of Tag:
<addrbk> · · ·</> ≡ <(Tagaddrbk)> · · ·</>

I Characters are singleton classes, conceptually subclasses of

Char : ‘Pat‘ ≡ <(CharP)/><(Chara)/><(Chart)/>

. Pattern matching used for string regular expressions

regtype url_protocols [[‘http‘ | ‘ftp‘ | ‘https‘]]

regtype url [[url_protocols , ‘://‘ , (url_char *)]]

...

case [[url u, any rest]] :

res = [[res , u</>]]; p = rest;

Alan Schmitt The Xtatic Experience 20

Imperative idioms: XML modification

I For static type safety reasons, XML values are immutable

=⇒ no direct assignment as in XJ

I To modify a value, its context must be captured and recreated
match (addrbk) {

case [[any bef, <entry>

<name>‘Pat‘</>, any a, Email?, Fun f

</entry>, any after]]:

return [[bef, <entry>

<name>‘Pat‘</>, a, <email>‘pat@pat.net‘</>, f

</entry>, after]];

case [[any no_pat]]:

return no_pat;

}

I Simpler in Xact: a primitive creates holes, another fills them

Alan Schmitt The Xtatic Experience 21

Imperative idioms: repeated concatenation

I Case study: creation of a sequence one element at a time

I Efficient imperative approach: mutation of the end of the list

. Requires mutable values

I Efficient functional approach: insert all elements at the

beginning then reverse the sequence

. Efficient if good tail recursion compilation

I Xtatic’s approach:

. Naive concatenation of sequences
[[AddrBk]] p = [[]];

while (some condition) {

p = [[p, <entry> ... </>]];

}

. Compiled to lazy data structures

Alan Schmitt The Xtatic Experience 22

More in the paper. . .

I Nominal vs Structural type systems

I Simple (as in easy to use) type system for attributes

I Fast downcasting for XML values in collections

I Dealing with legacy representations

Alan Schmitt The Xtatic Experience 23

Conclusions

I Convenient type grammars for XML values

. Single type (standard compliance, ease of implementation)

. Regular (power, closure properties)

. Efficient implementation of the latter is practical

I Regular pattern matching is a powerful XML processing tool

. Complements XPath inspection mechanisms

. Very helpful for dealing with schema evolution

. Extension of Xtatic with a subset of XPath in development

I Tight integration of XML processing with OO language possible

. Sequences as objects, objects as labels; Simple and flexible

. Tension between OO idioms and declarative XML lessened

. Tighter integration (with objects in sequences) studied in

Cω, at the cost of the richness of the type system

Alan Schmitt The Xtatic Experience 24

The Xtatic experience

I Xtatic’s language design difficult but enlightening

. Goal of keeping things simple requires self-control

. Many things go “under the hood”

¦ Type checker and run-time structures optimizations

¦ Transparent interaction with C] (separate compilation)

I Building applications is crucial

. Caml Weekly News rely on Xtatic

. Takes a lot of time

There is a future for statically typed XML processing in

mainstream languages

Alan Schmitt The Xtatic Experience 25

Questions?

http://www.cis.upenn.edu/~bcpierce/xtatic/

