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XDuce is a statically typed programming language for XML processing. Its basic data values
are XML documents, and its types (so-called regular expression types) directly correspond to
document schemas. XDuce also provides a flexible form of regular expression pattern match-
ing, integrating conditional branching, tag checking, and subtree extraction, as well as dynamic
typechecking. We survey the principles of XDuce’s design, develop examples illustrating its key
features, describe its foundations in the theory of regular tree automata, and present a complete
formal definition of its core, along with a proof of type safety.

Categories and Subject Descriptors: D.3.3 [Programming Languages|: Language Constructs
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1. INTRODUCTION

XML is a simple, generic format for structured data that has been standardized
by the World-Wide Web Consortium [Bray et al. 2000]. Data (or documents) in
XML are ordered, labeled tree structures. The core XML standard imposes no
restrictions on the labels that appear in a given context; instead, each document
may be accompanied by a document type (or schema) describing its structure.!

IMany schema languages have been proposed. The original specification of XML defines a schema,
language called DTD (Document Type Definition) [Bray et al. 2000]. Other schema languages
include XML-Schema [Fallside 2001], RELAX NG [Clark and Murata 2001], and DSD [Klarlund
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2 . Hosoya and Pierce

The most common use of schemas by programs that manipulate XML is for dy-
namic typechecking. Applications can use schema validators both to ensure that
their input documents actually conform to their expectations and to double-check
their own outputs. A more ambitious approach that has recently drawn the at-
tention of many researchers is static typechecking—using document schemas as
the basis of compile-time analyses capable of ensuring that invalid documents can
never arise as outputs or intermediate states of XML processing code [Cluet and
Siméon 1998; Wallace and Runciman 1999; Sun Microsystems 2001; Asami 2000;
Meijer and Shields 1999; Ferndndez et al. 2001; Murata 1997; Milo et al. 2000;
Papakonstantinou and Vianu 2000; Hosoya and Pierce 2000, etc.].

In this paper we describe a statically typed XML processing language called
XDuce (officially pronounced “transduce”). XDuce is a functional language whose
primitive data structures represent XML documents and whose types—called reg-
ular expression types—correspond to document schemas. The motivating principle
behind its design is that a simple, clean, and powerful type system for XML pro-
cessing can be based directly on the theory of regular tree automata.

Tree automata are finite-state machines that accept trees, just as ordinary reg-
ular automata accept strings. The mathematical underpinnings of tree automata
are well understood [Comon et al. 1999]—in particular, the problem of deciding
whether the language accepted by one automaton is included in that accepted by
another (which corresponds to the familiar operation of subtyping in programming
languages) is known to be decidable, as are the intersection and difference of tree
automata (which turn out to be very useful for pattern matching, as we describe
below).

On the other hand, tree automata in full generality are quite powerful, and
these worst-case complexity of these fundamental operations is correspondingly
high (in particular, language inclusion checking can take exponential time in the
size of the automata [Seidl 1990]). The most important choice in the XDuce design
has been to accept this worst-case complexity, in return for a clean and powerful
language design, rather than imposing language restrictions to reduce it. This
choice entails significant work in the implementation to develop algorithms that
are efficient enough for practical use; our results in this area are described in three
companion articles [Hosoya et al. 2000; Hosoya and Pierce 2001; Hosoya 2003].

Another novel feature of XDuce is a powerful form of pattern matching derived
directly from the type system, called regular expression pattern matching. Regu-
lar expression patterns combine conditional branching, tag checking, and subtree
extraction. They are related to the pattern matching constructs found in many
functional languages, but extend these constructs with the ability to write “recur-
sive patterns” that precisely describe trees of arbitrary size; also, arbitrary type
expressions may appear inside patterns, essentially incorporating dynamic type-
analysis of tree structures into the pattern matching mechanism.

In our prototype implementation of XDuce, most of the sophistication lies in
the algorithms for typechecking and for analysis of patterns; the back end is a
simple (and not terribly fast) interpreter. We have used this prototype to develop a
number of small XML-processing applications. During this development, we often

et al. 2000]. We use the word “schema” generically.
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found that the typechecker discovered subtle programming mistakes that would
have been quite troublesome to find by hand. For example, in XHTML, a table
tag is required to have at least one tr (table row) tag in it and, if the table is empty,
the table tag itself must not exist at all. It is easy to write code that violates these
rules, and the static type system was helpful in detecting such mistakes early. The
source code of our implementation is publically available; interested readers are
invited to visit the XDuce home page at http://xduce.sourceforge.net.

In earlier work [Hosoya et al. 2000; Hosoya and Pierce 2001; Hosoya 2003], we
studied the consituent features of XDuce in isolation, concentrating on semantic and
algorithmic issues. The focus of this article is on the language design as a whole.
We illustrate the key features of its type system and pattern matching primitives
and discuss the considerations motivating their design (Sections 2 to 4), present a
formal definition of the complete core language and a proof of type soundness (Sec-
tion 5), discuss a range of related work (Section 6), and sketch ongoing extensions
(Section 7).

2. BASIC CONCEPTS

This section introduces the basic features of the XDuce language: values, types,
pattern matching, and functions.

2.1 Values

Run-time values in XDuce are fragments of XML documents. These fragments
can be built from scratch or by combining smaller fragments, or can result from
destructing existing values using pattern matching.

For example, consider the following XML document.

<addrbook>
<person> <name> Haruo Hosoya </name>
<email> hahosoya@kyoto-u </email>
<email> hahosoya@upenn </email> </person>
<person> <name> Benjamin Pierce </name>
<email> bcpierce@upenn </email>
<tel> 123-456-789 </tel> </person>
</addrbook>

A node is written as a pair of an open tag <label> and its corresponding closing
tag </label>. The children of the node appear between these tags, and the order
of the children of a node is significant. The above document can thus be described
as a tree where the root node is labeled addrbook and contains two nodes with label
person. The first person contains a name and two emails; similarly the second
person contains a name, an email, and a tel. Each name, email, or tel node
contains a string.

To be precise, each value in XDuce is a sequence of nodes.? (Le., the whole
document above is actually a singleton sequence; the sequence of children of each
node forms a single value.) XDuce provides several operations for constructing

2Supporting XML attributes in XDuce is ongoing work. See Section 7 for a related discussion.
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such sequences. For example, here is a fragment of program code that produces the
document shown above.?

addrbook [
person[name ["Haruo Hosoya"l],
email ["hahosoya®@kyoto-u"],
email ["hahosoya®@upenn"]],
person[name["Benjamin Pierce"],
email ["bcpierce@upenn"],
tel["123-456-789"]11]

An expression of the form 1[e] constructs a singleton sequence of a label 1 con-
taining a sequence resulted from evaluating the expression e. Comma is a binary
operator that concatenates two sequences. Note that comma is associative—both
(el1,e2),e3and el, (e2,e3) produce the same sequence—we therefore drop paren-
theses from such expressions. String literals are written "...". In addition to these
operations, we also have a constructor () for creating the empty sequence.

2.2 Types

Types are descriptions of sets of structurally similar values. For example, the type
person[name[String], email[String], tel[String]l]

describes values consisting of the single label person containing a sequence of name,
email, and tel labels, each containing a string. Now let us slightly complicate this

type.

person[name[String], email[Stringl*, tel[String]?]

The difference between this type and the previous one is that zero or more emails
can follow after the name label, as indicated by the “*,” and the tel label may be
omitted, as indicated by the “?7”.

XDuce’s types are called regular expression types because they closely resemble
ordinary string regular expressions, the only difference being that they describe
sequences of tree nodes, whereas string regular expressions describe sequences of
characters. As “atoms,” we have labeled types like label [T] (which denotes the
set of sequences containing a single subtree labeled label), base types such as
String, and the empty sequence type (). Types can be composed by concatena-
tion (comma), zero-or-more-times repetition (*), one-or-more-times repetition (+),
optionality (?), and alternation (|, also called union).

Type expressions can be given names in XDuce programs by type definitions.
For example:*

3The XDuce implementation supports two ways of creating values: use sequence constructors or
load an external XML document, e.g., from the file system. For the latter case, we perform a
validation check of the incorporated document against an intended type.

4 Again, the XDuce implementation supports two ways of declaring types: use type definitions
in the XDuce native syntax or import existing DTDs from the external environment. Note that
our types are more general than DTD, e.g., we allow the same label to have different contents
depending the context. See Section 3.3 for a related discussion. Also, note that type definitions
declare type names, not labels. Indeed, labels do not have to be declared at all (like record labels
or Lisp’s atomic symbols).
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type Person = person[Name,Email*,Tel?]
type Name = name [String]

type Email = email [String]

type Tel = tel[String]

That is, the type named Person is defined to be an abbreviation for the type
person[Name,Email#*,Tel?], which uses Name, Email, and Tel to refer to the types
associated with these names. Type definitions are convenient for avoiding repetition
of large type expressions in programs. More importantly, though, they may be
(mutually) recursive; we will discuss this possibility further in Section 3.1.

2.3 Typechecking

XDuce uses types for various purposes. The most important is in checking that
the values that may be consumed and produced by each function definition are
consistent with its explicitly declared argument and result types. For example,
consider the following function definition.

fun make_person (val nm as String)(val str as String) : Person =
person[name [nm] ,
(if looks_like_telnum(str) then tel[str] else emaill[str])]

The first line declares that the function make_person takes two parameters nm and
str of type String and returns a value of type Person. (The val keyword in the
function header is a signal that the following identifier is a bound variable.) In
the body, we create a tree labeled person that contains two subtrees. The first
is labeled name and contains the string nm. The second is labeled either tel or
email, depending on whether the argument str looks like a telephone number or
an email (according to some function looks_like_telnum defined elsewhere). The
typechecking of this function proceeds as follows. From the type String of the
variables nm and str, we can easily compute the type of each expression in the
body. A labeled expression has a labeled type; a concatenation expression has the
concatenation of the types of the subexpressions; an if expression has the union of
the types of the then and else branches. As a result, the type of the whole body
is this:

person[name[String], (email[String] | tel[String])]

Finally, we check that this type is a subtype of the annotated result type Person.

The next question, then, is when two types are in the subtype relation. The
standard answer would involve giving a collection of subtyping laws corresponding
to some intuitive notion of inclusion between sets of members. However, our types
based on regular expressions yield many algebraic laws (including associativity of
concatenation and union, commutativity of union, distributivity of union over con-
catenation or labelling) and all of these play crucial roles in XML processing as
described in our previous paper [Hosoya et al. 2000]; enumerating all these laws as
rules would make the specification rather complicated. We therefore adopt a more
direct strategy: we first define which values belong to each type (the details are
straightforward; see Section 5). We then say that one type is a subtype of another
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exactly when the former denotes a subset of the latter.’

This “semantic definition” yields a subtyping relation that is both intuitive and
powerful. For example, consider again the type from the example just above and
the Person type from the previous section. These types are syntactically quite
different. But we can easily check that they fall in the subtype relation, since, in
the first type, the sequence after the name is either one email (followed by no tel)
or one tel (preceded by zero emails); both of these cases are also described by the
second type.

The remaining question is how efficiently we can check subtyping. We know, from
the theory of finite tree automata, that this decision problem takes exponential time
in the general case. However, by choosing appropriate representations and applying
a few domain-specific heuristics, we can obtain an algorithm whose speed is quite
acceptable in practice. This algorithm is described in detail in [Hosoya et al. 2000].

In the example above, the subtype checker was invoked to verify that the actual
type of a function’s body is a subtype of the programmer-declared result type.
Another use of subtyping is in checking the type of an argument to a function call
against the parameter type given by the programmer. For example, if we have the
function definition

fun print_fields (val fs as (Name|Tel|Email)*) : () =

we can apply it to an argument of the following type:
Name,Email*,Tel?

Note, again, that, though they are syntactically quite different, the argument type
and the parameter type are in the subtype relation (the ordering constraint in the
argument type is lost in the parameter type, yielding a strictly larger set).

2.4 Pattern matching

So far, we have focused on building values. We now turn our attention to decom-
posing existing values by pattern matching.

As a simple example, consider the following pattern match expression for creating
a URL string from a value labeled with the protocol name. (The binary operator
" is a string concatenation.)

match v with

www[val s as String] -> ‘"http://" " s
| email[val s as String] -> "mailto:" " s
| ftplval s as String] -> "ftp://" " s

This pattern match branches depending on the top label (www, email, or ftp) of
the input value and evaluates the corresponding body expression, which prepends

5We should note a somewhat special fact about XDuce’s type system that makes this direct
construction attractive. Since XDuce is a first-order language (functions cannot be passed as
arguments to other functions), the type system does not need to deal with arrow types, unlike
most functional languages. The absence of arrow types greatly simplifies the semantics of types
in XDuce. Recently, however, Frisch, Castagna, and Benzaken have shown how the semantic
construction can be extended to include arrow types [Frisch et al. 2002].
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the appropriate string to the variable s, which is bound to the content the label in
the input value v.

In general, a pattern match expression takes an input value and a set of clauses
of the form “pattern —-> ezpression.” Given an input value, the pattern matcher
finds the first clause whose pattern matches the value. It extracts the subtrees cor-
responding to bound variables in the pattern and then evaluates the corresponding
body expression in an environment enriched with these bindings.

Patterns can be nested to test for the simultaneous presence of multiple labels
and extract multiple subtress. For example, the pattern

person[name[val n as String], emaill[val e as String]]

matches a person label whose content is a name label followed by an email label.
Also, the logical-or can be expressed by the union operator.

email[val s as String] | tellval s as String]

Indeed, XDuce patterns have exactly the same form as type expressions, except
that they may include variable binders of the form “val x as pattern” (which
matches the input value against pattern as well as binding the variable x to the
whole value). We demand that, for any input value, a pattern yields exactly one
binding for each variable (we call this condition “linearity.” See Section 5.4.2 for
the precise definition.) Thus, a pattern like

email[val e as String] | tel[val t as String]
or
email[val e as String]*

is forbidden.
Since patterns are just types decorated with variable binders, we can even use
patterns to perform dynamic typechecking. For example, the pattern

person[Name, Email+, Tel+]

matches the subset of elements of Person that contain a value of type Name followed
by one or more values of type Email and then one or more values of type Tel. This
capability is beyond the expressiveness of pattern matching facilities in conventional
functional languages such as ML and Haskell.

XDuce’s pattern matching has a “first-match” semantics. That is, a pattern
match expression tries its clauses from top to bottom and fires the first matching
one. This semantics is particularly useful to write default cases. For example, in
the following pattern match expression

match v with
person[name[val n as String], Email+, Tel+] ->
| person[name[val n as String], Any] ->

the first clause matches when the input person value contains both emails and
tels, and the second clause matches otherwise. (Any is a type that matches any
values. See Section 3.2.) If such overlapping patterns were not permitted, we would
have to rewrite the second pattern so as to negate the first one, which would be
quite cumbersome.
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What if none of the clauses match? XDuce performs a static exhaustiveness
check so that such a failure can never arise. In Section 4, we will discuss in detail
various static checks on patterns, including exhaustiveness (every value is matched
by some clause), irredundancy (every clause can match some value, so that every
clause body is reachable) and non-ambiguity (every pattern yields a unique binding
for every value that it matches).

2.5 A Complete Example

Let us now look at a small but complete program. The task of this program is to
create, from an address book document, a telephone book document by extracting
just the entries with telephone numbers.

We first show the type definitions for input documents (partly repeated from
above)

type Addrbook = addrbook[Personx*]

type Person = person[Name,Emailx,Tel?]
type Name = name [String]

type Email = email [String]

type Tel = tel[String]

and output documents.

type TelBook = telbook[TelPersonx*]
type TelPerson = person[Name,Tel]

The first thing we do is to load an address book document from a file and validate
it against the type Addrbook. (We do not assume loaded documents to conform to

any type.)

let val doc = load_xml("mybook.xml")
let val valid_doc = validate doc with Addrbook

We then extract the content of the top label addrbook and send it to the func-
tion make_tel book (defined below). Finally, we enclose the result with the label
telbook and save it to a file.

let val out_doc =
match valid_doc with
addrbook[val persons as Personx] ->
telbook [make_tel_book(persons)]
save_xml ("output.xml") (out_doc)

The function make_tel book takes a value ps of type Person* and returns a value
of type TelPersonx.

fun make_tel_book (val ps as Person*) : TelPerson* =
match ps with
person[name[val n as String], Email*, tel[val t as String]l],
val rest as Person*

-> person[name[n], tel[t]], make_tel_book(rest)

| person[name[val n as String], Email*], val rest as Personx*
-> make_tel_book(rest)

IO
-> 0O
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The body of the function uses a pattern match to analyze ps. In the first case, the
input sequence has a person label that contains a tel label; we pick out the name
and tel components from the person, construct a new person label with them,
and recursively call make_tel_book to process the remainder of the sequence. In
the second case, the input sequence has a person label that does not contain a tel
label; we simply ignore this person label and recursively call make_tel_book. In
the last case, the input sequence is empty; we return the empty sequence itself.

3. MORE ON TYPES

This section gives some examples of more interesting uses of XDuce types.

3.1 Recursive Types

Like most programming languages, XDuce supports recursive types for describing
arbitrarily nested structures. Consider the following definitions.

type Fld = Rcdx
type Rcd = name[String], folder[F1d]
| name[String], url[String], (good[] | broken[])

(The form label[] is a short hand for 1abel [()], where () is the empty sequence
type.) The mutually recursive types F1d (“folder”) and Rcd (“record”) define a
simple template for storing structured lists of bookmarks, such as might be found
in a web browser: a folder is a list of records, while a record is either a named folder
or a named URL plus either a good or a broken tag indicating whether or not the
link is broken.

We can write another pair of types

type GoodFld = GoodRcd*
type GoodRcd = name[String], folder[GoodF1d]
| name[String], url[String], goodl[]

which are identical to F1d and Recd except that links are all good. Note that GoodF1ld
is a subtype of F1d (it describes values with the same structure, but with stronger
constraints).

3.2 Label Classes

The labeled types that we have seen so far have the form 1 [T] and describe singleton
sequences labeled exactly with 1. XDuce actually generalizes such types to allow
more complex forms called “label class” that represent sets of possible labels. (This
idea is also present in other XML type systems such as RELAX NG [Clark and
Murata 2001].) The 1 in the form 1[T] is a label class representing a singleton set.

The label class ~ represents the set of all labels. Using ~, we can define a type
Any that denotes the set of all values:

type Any = ("[Any] | Int | Float | String)*

That is, any value can be any repetition of either any label containing any value
or any base value. (At the moment, XDuce supports only Int, Float, and String
as base types. If we added more base types, we would have to modify the above
definition of Any accordingly.)

ACM TOIT, Vol. V, No. N, Month 20YY.
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We also allow a label class of the form (1;1..11,), representing the choice be-
tween several labels. Such label classes are useful for describing a labeled type that
has multiple possible labels, all with the same content type. For example, HTML
headings may be labeled h1 through h6é, all with the content type Inline:

type Heading = (h1|h2|h3|h4|h5|h6) [Inline]

Finally, we allow “negation” label classes of the form ~(1;1..11,), which repre-
sent the set of all labels except 11, ..., and 1,,. For example, we can use such label
classes in the following way

match v with
~(h1|h2) [Inline]l*, (h1|h2)[val c as Inline]l, Any -> ...

where we extract the content of the first hl or h2 label in the given value, ignoring
all the other labels prior to this.

3.3 Union Types

Functionality similar to union types is provided in most schema languages for XML.
However, some schema languages make restrictions on what types can be joined by
a union, leading to significant differences in expressiveness. For example, XML
Schema [Fallside 2001] and the XML Query Algebra [Ferndndez et al. 2001] re-
quire that the types to be unioned should have disjoint sets of top-level labels.
On the other hand, XDuce and RELAX NG [Clark and Murata 2001] impose no
restriction.®

The main advantage of having no restriction is that we can express dependencies
between subtrees. Consider the following example (suggested by Murata). Suppose
that we are designing a schema for I TEX-like documents. We want to express a
division into structures such as chapter, section, and subsection, with the following
requirements. A chapter can contain only sections, a section can contain only
subsections, and so on. Also, both chapters and sections can appear at the top
level. One obvious way of implementing these division structures is to directly use
labels chapter, section, etc., as in the following type definitions.

type Top = (Chapter | Section | Text)=*

type Chapter = chapter[(Section | Text)=*]
type Section = section[(Subsection | Text)x*]
type Subsection = subsection[...]

(Text represents normal texts and is assumed to be defined somewhere else.)

However, in some cases, we may prefer to use the same label div to represent all
divisions for programming convenience. To distinguish between different kinds of
divisions, we add a field kind containing a discriminating tag:

type Top = (Chapter | Section | Text)x*
type Chapter = div[kind[chapter[]],
(Section | Text)x*]

6This difference corresponds to different kinds of tree automata. Types with the label-disjointness
restriction correspond to deterministic top-down tree automata, whereas those with no restriction
correspond to more general nondeterministic (top-down) tree automata. See [Comon et al. 1999]
for more details.

ACM TOIT, Vol. V, No. N, Month 20YY.



XDuce: A Typed XML Processing Language . 11

type Section = div[kind[section[]],
(Subsection | Text)=*]
type Subsection = div[kind[subsection[]], ...]

Notice that, in a div label appearing at the top level (in either Chapter or Section),
the content of the kind label (either chapter[] or section[]) and the type com-
ing after it (either (Section|Text)* or (Subsection|Text)*) are interdependent.
That is, we cannot have both chapter[] in kind and a value of type Subsection
at the same time, for example. Such a dependency cannot be expressed in type
systems that adopt the label-disjointness restriction mentioned above.

When programming with this set of type definitions, we may wish to process
any division uniformly, forgetting the dependency just discussed. For this, XDuce’s
subtyping facility is useful. The type Top (which has the dependency) is a subtype
of the following type

type Top2 = div[kind[chapter[] | section[]],
(Section | Subsection | Text)*]*

which collapses the dependency. This can be useful when we want to perform
exactly the same operation on each top-level div, whether it is a chapter or a
section (e.g., counting the maximum depth of divisions).

4. MORE ON PATTERN MATCHING

XDuce performs a number of static analyses on pattern matches: exhaustiveness,
irredundancy, ambiguity checks, and local type inference. In this section, we illus-
trate these analyses by example.

4.1 Exhaustiveness and Irredundancy Checks

During typechecking, XDuce checks each pattern match expression for exhaustiveness—
i.e., it makes sure that every possible input value should be matched by some
clause. For example, suppose that the variable p has type Person (defined as
person[Name,Email*,Tel?]) and consider the following pattern match:

match p with
person[Name, Email+, Tel?] ->
| person[Name, Email*, Tell ->

The first clause matches person values with at least one email and the second
matches person values with one tel. This pattern match is not exhaustive since
it does not cover the case when the input person value contains neither an email
nor a tel. Thus, the XDuce typechecker rejects this pattern match. In order to
make it exhaustive, we could add the following clause:

| person[Name] ->

A related check is for irredundancy of pattern matches. XDuce rejects a pattern
match expression if it has a clause whose pattern will never be able to match any
input value. For example, consider the following pattern match.

match p with
person[Name, Emailx, Tel?] ->
| person[Name, Email+, Tel] ->

ACM TOIT, Vol. V, No. N, Month 20YY.
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This pattern match is redundant, since all values that might be matched by the
second clause are already covered by the first clause. Therefore we report an error
for this pattern match.

It may appear that irredundancy checks are not particularly important since
this situation where a clause is completely covered by the preceding ones happens
rather infrequently. However, irredundancy checks are also valuable for detecting
two other much sillier and more common kinds of mistakes. One is misspelling of
labels, which usually makes a clause never match any input value. The other is
misunderstanding of the structure among labels (e.g., switching the order of Email
and Tel types in the above example), which also tends to make a clause redundant.
In many cases, these two can also be detected by an exhaustiveness check since
the values that are intended to be matched by the clause are actually not covered.
However, an exhaustiveness check becomes useless when the pattern match contains
a default case. For example, consider the following

match v with
preson[Name, Email+, Tel] ->
| Any ->

where the label preson is a misspelling. An exhaustiveness check cannot find the
error since the pattern match is vacuously exhaustive, whereas an irredundancy
check can detect it since the first clause never matches.

In exhaustiveness and irredundancy checks, the theory of finite tree automata
plays an important role. An exhaustiveness check is done by examining whether
“the set of values in the input type is included in the set of values matched by each
of the patterns.” Since patterns are essentially the same as types, this is just a
subtype check. Similarly, irredundancy is checked by examining whether “the set
of values that are both in the input type and matched by a pattern is included in
the set of values matched by the preceding patterns.” Here, we rely on the fact
that we may always calculate the intersection of two tree automata. A detailed
discussion of the required algorithms can be found in a companion paper [Hosoya
and Pierce 2001].

The XML Query Algebra [Fernandez et al. 2001] provides “case expressions” for
performing matching of input values against a series of patterns (similar to our
patterns but somewhat simpler). However, XML Query Algebra supports neither
exhaustiveness nor irredundancy checks. Exhaustiveness check would not make
sense in their setting, since their case expressions are syntactically required to have
a default case. On the other hand, irredundancy checks in the style of XDuce seem
to make sense in their setting.

4.2  Ambiguity Checking

We say that a pattern is ambiguous if it yields multiple possible “parses” of some
input value.

Given an input value and a pattern, pattern matching assigns each label in the
value to a correspondingly labeled subpattern. This assignment is called a parse.
For example, consider the following pattern match with the input type (al[] b [1)*.

match v with
a[l*, (val x as b[l), (alllb[D)* ->
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The behavior of this pattern is to skip all the consecutive a labels from the beginning
of the input sequence, bind the variable x to the first b label after these, and then
ignore the remaining sequence of as and bs. Thus, the parse yielded by this pattern
matching assigns all the skipped a labels to the leftmost a[] pattern, the first b label
to the b[] pattern in the middle, the other a labels to the rightmost a[] pattern,
and the other b labels to the rightmost b[] pattern. This pattern is unambiguous.

A pattern is ambiguous if it may yield multiple parses for some input value. For
example, the following is ambiguous.

match v with

(alllb[1)*, (val x as b[]1), (alllb[)*x ->

Take the input value b[],b[]. There are two parses for this value. One assigns
the first b to the leftmost b[] pattern and the second b to the middle b[] pattern.
The other parse assigns the first b to the middle b[] pattern and the second b to
the rightmost b[] pattern. Note that, in the pattern match shown first, the only
possible parse for this input value is the second one. A more formal definition of
ambiguity can be found in Section 5.4.6.

Usually, an ambiguous pattern signals a programming error. However, we have
found that, in some cases, writing ambiguous patterns is reasonable. One typical
case is when the application program knows, from implicit assumptions that cannot
be expressed in types, that there is only one possible parse. For example, suppose
that we have a simple book database of type Book* where

type Book = book[key[String], title[String], author[String]]

where we assume that there is only one book entry with the same key field value.
We can extract a book with a specified key from this database by writing the
following pattern match.

match db with
Bookx*,
book [key["Pierce2002"],
title[val t as String],
author[val a as Stringl],
Book* ->

Note that the above assumption for keys guarantees that the entry yielded by this
pattern match is unique.

Since writing a nonambiguous pattern is sometimes much more complicated than
an ambigous one, requiring disambiguation even in situations that do not necessiate
it can be a heavy burden for the user. (In the above pattern, we would only have
to replace the first occurrence of Book with a type representing books with keys
other than "Pierce2002". However, this could become more cumbersome if keys
have a complex structure.) Therefore we decided to yield a warning for ambiguity
rather than an error. In the case that the user writes an ambiguous pattern and
ignores the warning, the semantics of pattern matching is to choose an arbitrary
parse among multiple possibilities (“nondeterministic semantics”).”

"Previously, XDuce used a first-match policy to resolve ambiguity even within a single pattern

ACM TOIT, Vol. V, No. N, Month 20YY.



14 . Hosoya and Pierce

4.3  Type Inference for Patterns

The type annotations on pattern variables are normally redundant. For example,
in the following pattern match taking values of type Personx,

match ps with
person[name[val n as String], Email*, Tel?], val rest as Personx*
->

the type (String) of the variable n and the type (Personx*) of the variable rest can
be deduced from the input type and the shape of the patterns. XDuce supports a
mechanism that automatically infers such type annotations.

Our type inference scheme is local and locally precise. By local, we mean that the
type of each pattern variable is inferred only from the input type and the pattern
itself. (We do not consider long distance dependencies, e.g., constraints on pattern
variables arising from the expressions in the bodies of the match branches.) By
locally precise, we mean that, if we match all of the values from the input type
against the pattern, the inferred type for a pattern variable precisely represents the
set of values that the variable can be bound to. (Note, again, that this is a semantic
definition: the specification of type inference depends on the dynamic semantics of
pattern matching.) With type inference, the example above can be rewritten as
follows.

match ps with
person[name[val n], Email*, Tel?], val rest
->

From the examples we have seen, it might appear that, whenever a pattern contains
a binding of the form (val x as T), the inferred type for x is T itself. It is not
always the case, however—our type inference may compute a more precise type than
T. Formally, the syntactic form (val x) is an abbreviation for (val x as Any)—
that is, we continue to require type annotations on all pattern variables, but we
allow them to be larger than necessary. The actual types of the variables are
inferred by combining the types given by the programmer with the types discovered
by propagating the input type through the pattern. For example, the pattern

match v with
(val head as ~[Any]), val tail ->

binds head to the first labeled value in the input sequence and tail to the rest
of the sequence. The types inferred for head and tail depend on the input type.
For example, if the input type is (Email|Tel)*, then we infer (Email|Tel) for
head and (Email|Tel)* for tail. If the input type is (Email*,Tel), then we infer

clause [Hosoya and Pierce 2001]. However, we decided to throw this idea away, first because pat-
terns behave in an quite unintuitive way once they become large, and second because guaranteeing
first match semantics makes the implementation more complicated. See [Hosoya 2003] for more
details.
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(Email|Tel) for head and (Email#*,Tel)? for tail.®This combination of declared
and inferred structure is useful since it is often more concise to write a rough pattern
(like the above ~ [Any] pattern) than a precise one. In addition, if the input type is
changed later on, we may not have to change the pattern, since the type inference
will recompute appropriate types for the variables.

When a pattern match has multiple clauses, our type inference scheme takes the
first-match semantics into account. That is, in inferring types for pattern variables
for a given clause, the values that are already captured by the preceding clauses are
excluded. For example, in the following pattern match with the input type Person,

match p with
person[name[val n], Email*, tel[val t]]
-> e
| person[val c]
->

we infer the type (Name,Emailx) for the variable c, since persons with a tel are
already taken by the first clause and only persons without a tel will reach the
second clause. For handling this form of “exclusion,” our type inference computes
a difference between the set of input values and the set of values matched by the
preceding patterns. Again, we exploit a closure property (closure under difference)
of finite tree automata. See [Hosoya and Pierce 2001; Hosoya 2003] for details.

5. FORMAL DEFINITION OF THE CORE XDUCE LANGUAGE

This section presents a complete, formal definition of the core features of XDuce—
types, patterns, terms, typechecking, pattern matching, and evaluation—and es-
tablishes basic soundness theorems. We assuming familiarity with basic notations
and techniques from type systems and operational semantics (background on these
topics may be found, for example, in [Pierce 2002]).

5.1 Labels and label classes

We assume given a (possibly infinite) set L of labels, ranged over by 1. We then
define label classes as follows:

L == 1 specific label
~ wildcard label
LIL union
L\L difference

8The power of the type inference scheme has been improved from the one described in our previous
paper [Hosoya and Pierce 2001]. In the previous scheme, we were able to infer precise types only
for variables in tail positions. For example, in the pattern

match v with (val head as ~[Any]), val tail

we could infer a precise type for tail but not for head (we simply extracted the type ~[Any]
directly from the pattern, which is less precise). This was due to a naiveness of the inference
algorithm that we used at that time. However, since then, we have developed a new algorithm
that overcomes this limitation and have incorporated it in the current XDuce [Hosoya 2003].
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The semantics of label classes is defined by a denotation function [-] mapping label
classes to sets of labels.

[1] = {1}

"1 L

[Li1L2] = [Li]U[Lo]
[Li\L2] = [La]\[L2]

We write 1 € L for 1 € [L].
5.2 Values

For brevity, we omit base values such as strings. (The changes required to add
them are straightforward.) A walue v, then, is just a sequence of labeled values,
where a labeled value is a pair of a label and a value. We write () for the empty
sequence, 1[v] for a labeled value, and vy, vy for the concatenation of two values.

5.3 Types

5.3.1 Syntar. We assume given a countably infinite set of type names, ranged
over by X. Types are now defined as follows:

T = X type name
O empty sequence
T,T concatenation
L[T] labeling
TIT union
T* repetition

The interpretations of type names are given by a single, global set F of type defi-
nitions of the following form.

type X =T

The body of each definition may mention any of the defined type names (in partic-
ular, definitions may be recursive). We regard E as a mapping from type names to
their bodies and write E(X) for the right-hand side of the definition of X in E.

To ensure that types correspond to regular tree automata (rather than context-
free grammars), we impose a syntactic restriction that disallows recursion “at the
top level” of definitions. For a given type T, we define the set S(T) of type names
reachable from T at the top level as the smallest set satisfying the following.

S(EX)U{X}  ifT=xX

(1) = S(Ty) if T="Ty*
) S(T1) US(T2) HfT=T1,ToorT="T1|Ty
1] otherwise.

We then require that the set E of type definitions satisfies
X ¢ S(E(X)) for all X € dom(FE).
The additional regular expression operators ? and + are obtained as syntactic
sugar:
T? = TIO
T+ T,Tx*
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5.3.2 Semantics. The semantics of types is given by the relation v € T, read
“value v has type T”—the smallest relation closed under the following set of rules.

0e0 (ET-EwmP)
EX)=T eT
®) v (ET-VAR)
veX
veT lel
_ (ET-LAB)
1[v] € LIT]
€T eT
nEr e (ET-Car)
vi,v2 €Ty, T
eT
AL (ET-OR1)
vET T
eT
A (ET-OR2)
vETT
v; € T for each ¢
(ET-REP)

Vi,...,Vp € T*

5.3.3  Subtyping. A type S is a subtype of another type T, written S <: T, iff v € 8
implies v € T for all v.

5.3.4 Intersection and difference. A type U is an intersection of types S and T,
written by SNT = U, iff v € S and v € T imply v € U and vice versa, for all v.
(There can be more than one intersection of two given types, but all will describe
the same set of values.) Similarly, a type U is a difference between types S and T,
S\T= U, iff v € S and v ¢ T together imply v € U and vice versa, for all v.

5.4 Pattern language

5.4.1 Syntar. We assume a countably infinite set of pattern names, ranged over
by Y, and a countably infinite set of variables, ranged over by x. Pattern expressions
are now defined as follows.

P =Y pattern name
val x as P variable binder
L[P] label
O empty sequence
P,P concatenation
P|P choice
Px* repetition

The bindings of pattern names to patterns are given by a fixed, global, mutually
recursive set F' of pattern definitions of the following form.
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pat Y =P

For technical convenience, we assume that F' includes all the type definitions in F,
regarding the type expressions appearing in F as pattern expressions in the obvious
way. Conversely, we assume that F includes all the pattern definitions in I’ with all
the variable binders erased. We write tyof (P) for the type obtained by erasing all
variable binders from P. Pattern definitions must obey the same well-formedness
restriction as type definitions.

We allow the same abbreviations for regular expression operators (+ and 7). Also,
val x can be used to mean val x as Any, where we assume the following fixed
type definition in E.°

type Any = ~[Any]*

5.4.2  Linearity. Let reach(P) be the set of all variable bindings reachable from
P—that is, the smallest set satisfying the following:

reach(P) = BV(P) U U reach(F(Y)),
YEFN (P)

where BV (P) is the set of variables bound in P and FN(P) is the set of pattern
names appearing in P. We say that a pattern P is linear iff, for any (reachable)
subphrase P’ of P, the following conditions hold.
—x ¢ reach(Py) if P’ = val x as P;.
—reach(P1) N reach(P2) = 0 if P’ = Py ,Ps.
—reach(P1) = reach(Ps) if P = Py |Po.
—reach(P1) = () if P/ = Py*.

In the following, we assume that all patterns are linear.

5.4.3 Semantics. We describe the semantics of patterns by first defining the
relation v € P = V, read “v is matched by P, yielding V,” where an environment
V is a finite mapping from variables to values (written xq1:v1,...,%,:v,). The
concatenation of environments binding distinct variables is written with a comma.

veP=1V

(EP-As)
veE (val x as P) = x:v,V
OeO=0 (EP-EmP)
F(Y)=pP vVEP=V

(EP-VAR)

veY=V

veP=V lel

(EP-LAB)

1[vl eL[P] =V

9If we include base types in the formalization, we need to use the definition of Any given in
Section 3.2.
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vieEP =V Vo € P = Vs

(EP-CarT)
v1,Ve € P1,Po = Vy,Vs
veEP =V
— (EP-OR1)
vEPIIP; =V
vEP =V
Ak (EP-ORr2)
vEP Py =V
v; € P =V, for each i
(EP-REP)

Vi,...,Vp €EPx=Vy,...,V,

Note that linearity ensures that environments that are concatenated in the con-
clusions of rules EP-As, EP-CAT, and EP-REP have different domains (e.g.,
x & dom(V) always holds in rule EP-As).

5.4.4 Exhaustiveness. The following definitions of exhaustiveness, irredundancy,
non-ambiguity, and type inference for pattern-match expressions are all made with
respect to an “input type” T describing the set of values that may be presented to
the expression at run time.

A list Py, ..., P, of patterns is exhaustive with respect to T, written “T>Pq,...,P, :
erhaustive,” iff, for all v, v € T implies v € P; = V for some P; and V.

5.4.5 Irredundancy. A list Pq,...,P, of patterns is irredundant with respect to
T, written “T>Pq,...,P, : irredundant,” iff, for all P;, there is a value v € T such
that v  P; for 1 < j <i—1 and v € P; = V for some V.

5.4.6 Non-ambiguity. We define non-ambiguity in terms of the parsing relation
v €* P, which intuitively means that “P parses v uniquely” (or “there is a unique
derivation for the relation v € P = V7). The parsing relation is defined by the
following rules.

veLp

EUP-As
v e” (val x as P) ( )
0Oe* 0 (EUP-EmP)
F(Y)=P c“ P
®) v (EUP-VAR)
very
verP lel (EUP-Lag)
1[v] €* L[P] '
v =vi,vy for unique vy, vy
€"Pp e"p
nen e m (EUP-CAT)
v €¥Pq,Py
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ve" Py v ¢ tyof (P2)

(EUP-OR1)
v E¥ Py|Py
v & tyof (P veLp
¢ tyof (P1) 2 (EUP-OR2)
v et P1|P2
vV=vi,..,v, foruniquevy,...,v,
v; €* P for each i
(EUP-REP)
v €Y Px

That is, these rules are similar to those for the matching relation (without envi-
ronments) except that EUP-CAT and EUP-REP ensure that the input sequence
can be split uniquely at concatenation and repetition patterns, and that EUP-OR1
and EUP-OR2 ensure that the input can be matched exactly one of the choices.

Now, a pattern P is non-ambiguous with respect to a type T, written “T> P :
nonambiguous,” iff, for all v € T and v € tyof (P), we have v €* P.

This definition of non-ambiguity is similar to strong non-ambiguity for string regu-
lar expressions [Sippu and Soisalon-Soininen 1988] except that we treat sequences of
trees rather than strings, and that we consider non-ambiguity for a given restricted
set of input values rather than for all input values.!® Sippu and Soisalon-Soininen
reduce the non-ambiguity problem for regular expressions to the LR(0) property
for context-free grammars. We use a more direct algorithm based on product con-
struction [Hosoya 2003]. Discussions on various kinds of ambiguity for regular
expressions and the relationship among them can be found in [Briiggemann-Klein
1993].

5.4.7 Pattern type inference. The goal of pattern type inference is to compute
the “range” of a pattern, defined as follows. A type environment I' describes the
range of a pattern P with respect to type T, written “Tt>P = I')” iff, for all x and
v, we have

v € I'(x) iff there exists a value u € T such that u € P = V for some V
with V(x) = v.

5.5 Term language

A program comprises a set of type definitions, a set of pattern definitions, a set of
function definitions, and a term with which evaluation starts. Type and pattern
definitions were described in the previous section. This section introduces functions
and terms.

5.5.1 Syntazr. We assume given a countably infinite set of function names, ranged
over by f. The definitions of functions are given by a fixed, global, mutually recur-
sive set G of function definitions of the following form.

fun £(P):T = e

10The design space for definitions of non-ambiguity is rather large, and we have not yet explored
it fully; we have given here a tentative simple specification.
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For brevity, we treat only one-argument functions here; the extension to multi-
argument functions is routine. Note that both the argument pattern (which pro-
vides the names and types of the bound variables) and the result type are given
explicitly.

The syntax of terms, e, is defined by the following grammar.

e = X variable
1[el label
O empty sequence
e,e concatenation
f(e) application

match e with P->@ pattern match

We write P->8 as an abbreviation for the n-ary form Pi->e; | ... | P,—>e,.
We also allow the following shorthands:

let P=e; in e = match e; with P->ey
if e; then e else e3 = match e; with Truel[]l->e; | False[]-> e3
ej;ea = let Any=e; in ey

For simplicity, we assume that the variables bound by patterns are all distinct.
(Of course, we can always a-convert an arbitrary program so as to satisfy this
condition.)

5.5.2  Typing rules. The typing relation I' e € T, pronounced “e has type T
under environment I',” is defined by the following rules.

I'x)=T

S E— TE-VAR
I'kxeT ( )
r-0e0 (TE-EwmpP)
T'FeeT
(TE-LaB)
I'-1[e] € 1[T]
I'FeeT N'-eyeT
S 2= (TE-CAT)
I'Fej,eq €Ty,Ts
f f(P):T = eqG 'k eu U<t P
s b e yof (P) (TE-APP)
I'Ff(e) €T
I'FeeR
R>Py,...,P, : ezhaustive
R>Pq,...,P, :irredundant
R\ (tyof (P1)1 ... Ityof (Pi—1)) = S
Vi S > P; : nonambiguous
) S>P;, =1,
'l ke €Ty
Lot (TE-MATCH)

I' -match e with P->e € T¢|..IT,
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As we discussed in Section 4.3, when performing type inference for a clause P;, we
use the difference operation to exclude the values matched by the preceding patterns
from the input type R. We also check the ambiguity of each clause with respect to
the same difference type—i.e., our definition of ambiguity does not consider values
that the pattern will never be used to match.

We then have a single rule for judging when the definition of a function f is well
typed, written - fun £(P):T = e.

tyof P)>P =T
I'e€es ST
Ffun £(P):T = e

(TF)

5.5.3  Fwaluation rules. The semantics of terms is defined by a “big step” eval-
uation relation V F e || v. The rules for the evaluation relation are all standard;
the only interesting case is the rule for pattern matching which uses the semantics
of patterns defined above.

Vx| V(x) (EE-VAR)
VEOUO (EE-EmP)
Vhedv (EE-LAB)

Vi 1lel J1[v]

VFellLvl VFGQ“VQ
Vl—el,egllvl,VQ

(EE-CaT)

Vl—elllv
fun £f(P):T = ey € G
VEP=W Wheylw

VI £(e) | w

(EE-APP)

Vel v
V¢P1 V¢Pi—1 veP, =W
VWhe; | w
VH match e with P->e | w

(EE-MATCH)

Note that because of the assumption that all bound variables are distinct, all con-
catenated environments are ensured to have different domains.

5.6 Type soundness

We conclude this treatment of core XDuce by sketching a proof of type soundness.
As usual, there are two parts to the proof: subject reduction (a well-typed term
evaluates to a value inhabiting the expected type) and progress (a well-typed term
does not get stuck).
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5.1 Theorem [Subject Reduction]: Suppose F fun £(P):T = e for all func-
tion definitions in G. If e Jwand - e € T, then w € T.

(Note that the statement of subject reduction involves both of the typing rela-
tions defined earlier: the “syntactic” expression-typing relation @ - e € T and the
“semantic” value-typing relation w € T.)

PrOOF. We prove the following stronger statement:
IfvikFelwand T'Fe €T with ' -V, then w € T.

Here, I' F V means that dom(T") = dom(V) and V(x) € I'(x) for each x € dom(T).
The proof proceeds by induction on the derivation on V F e |} w. (We show just
the most interesting cases—the ones for function application and pattern matching.
All the other cases follow by straightforward use of the induction hypothesis.)

Case: e =1~f(ey) Vhke | v fun £(P):T = ex € G
WEP=W Whesw

Since I' + e; € U by TE-APP, we obtain v € U by the induction hypothesis.
Further, since U <: tyof (P) by TE-APP, we have v € tyof (P) by the definition of
subtyping. From tyof (P)>P = I by TF and the definition of type inference, I - W.
Finally, since IV - e; € S and S <: T by TF, the induction hypothesis together with
subtyping yields w € T.
Case: e =match e with P-> Ve v

V€P1 Vgpifl veP, =W V,W"Gillw
Since ' - e’ € R by TE-MATCH, v € R by the induction hypothesis. Also, since R\
(tyof (P1) | ... Ityof (P;—1)) = S by TE-MATCH, the definition of difference implies
v € S. Further, S>P; = I'; by TE-MATCH, the definition of type inference yields
I'; = W and therefore I',T'; = V,W. Finally, since TE-MATCH gives I',T'; - e; €
T;, we obtain w € T; by the induction hypothesis. The result follows since T; <:
Til...IT,. O

Since we have chosen a big-step semantics, we need to be a little careful about
what it means for a term to get stuck. Naively, we might simply say “e is stuck
if it is not the case that V - e |} v for any v.” But this amounts to saying that
e is stuck if there is no finite derivation of V F e || v, which is not quite what we
want: a finite derivation may fail to exist either because e gets stuck or because it
diverges. To precisely capture the notion that “e gets stuck in a finite number of
steps,” we define the stuck evaluation relation VI e J{, inductively, as follows.

—VE1l[el fifvie 4.
—Vkej,es jfifeither Ve for VE es J.
—VFf(ey) Jif
(1) VFk e §, or
(2) VFE ey | vand v &P, where fun £(P):T = e3 € G, or
(3) VEeryvand veP=Wand Wk ey JJ, where fun £(P):T = es € G.
—Vtmatch e with P->8 JJ if
(1) VEe 4, or
(2) Ve | vandveP; # Wforall i, or
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(3) VI e | v and for some ¢,
Vgpl V¢Pi—1 veEP; =W V,Wl—ei,ki.

Notice that the base cases are the second case for function applications and the
second case for the match expression, where the input value does not match the
pattern.

5.2 Theorem [Progress]: Suppose - fun £(P):T = e for all function definitions
in G. Then ) - e € T implies not 0 - e J.

PrOOF. We obtain the result by proving the following stronger statement:
If VF e §, then there are no I' and T such that 'Fe € Tand I' - V.

The proof of this statement goes by induction on the given derivation of VF e }.
We show just the interesting cases; the rest proceed by straightforward use of the
induction hypothesis.

Case: e=f(ey) fun f(P):T = e €G
Ve v VEP=W Wheo

Suppose, for a contradiction, that I' - e € T and I"  V for some I', T. Then for
some S we have I' - e; € S and S <: tyof (P), by TE-APpP. By subject reduction,
we have v € S and therefore v € tyof (P). In addition, we have, by assumption,
F fun £(P):T' = ey, which implies tyof(P)>P = IV and IV F ex € T'. The
former together with v € tyof (P) and v € P = W implies IV - W. But, by the
induction hypothesis, there are no I and T” such that I - e € T and T I W—
a contradiction.
Case: e =match ¢ with P->6 Vhke'|v Vi.v € P;
Suppose that I' - e € Tand '  V for some I', T. Then, from TE-MATCH,T'F e’ € R
and R>Py,... P, : exhaustive. By subject reduction, v € R. Together with the
definition of exhaustiveness, this implies that v € P, = W for some ¢ and W, which
contradicts the assumption.
Case: e =match e with P-> VEe' v

V€P1 Vgpifl veP, =W V,W"Gi%
Suppose that I' - e € T and I" - V for some I', T. Then, from TE-MATCH,
I' - ¢ € R. By subject reduction, v € R. Since v ¢ P; for j = 1,...,i — 1, we
have v € R\ tyof (P1) \ ...\ tyof (P,—1). TE-MATCH also tells us that (R\ tyof (P1) \
...\ tyof (P;—1)) >P; = T';. Together with v € P; = W, we obtain I'" I W; hence,
I',TV + V,W. Furthermore, from TE-MATCH, we have I',TV F e; € T. But, by
the induction hypothesis, there are no I'V and T” such that T  e; € T” and
I I V,W—a contradiction. [

6. RELATED WORK

Static typing of programs for XML processing has been approached from several
different angles. One popular idea is to embed some schema language for XML
into an existing typed language, translating document types into class hierarchies
(in an object-oriented language) or algebraic datatypes (in a functional language);
such embeddings are sometimes called data bindings. Examples of the data-binding
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approach include HaXML [Wallace and Runciman 1999], Relaxer [Asami 2000], and
JAXB [Sun Microsystems 2001]. (There are a large number of software products
implementing similar ideas; a comprehensive list can be found at [Bourret 2001].)
The advantage of this approach is that it can be carried out entirely within an
existing language. The cost is that XML values and their corresponding schemas
must somehow be translated into the value and type spaces of the host language;
this usually involves adding layers of “tagging” that were not present in the original

XML documents; this inhibits subtyping and makes programming somewhat less
flexible.

The XML processing language XM\, designed by Meijer and Shields, has basi-
cally followed this approach but made a major improvement in flexibility by in-
troducing type-indexed rows [Meijer and Shields 1999; Shields and Meijer 2001].
In their type system, a union type T|U in a DTD is represented by a sum type
where each summand is tagged by its type (T or U) itself (whereas most systems
in the mapping approach uses a fixed label determined by the order that T or U
appears or by some name mangling based on the top-level tags of T or U). Thus,
union in XM\ is commutative, just as in XDuce. This mechanism does not validate
some other useful subtyping laws, such as associativity and distributivity of unions
(which XDuce does). On the other hand, MLA’s row polymorphism achieves some
additional flexibility in a different direction. For example, they can write a poly-
morphic function of type VX & {T,U}. (TIX) — (U[X) (e.g., a function that changes
a specific label T to U but leaves the rest of the elements unchanged), which conveys
the typing constraint that the type X unioned with T in the input is exactly the
same as the type unioned with U in the output. Such typing constraints cannot be
represented using just subtyping.

The query language YAT [Cluet and Siméon 1998; Kuper and Siméon 2001]
includes a type system similar to regular expression types. Like XDuce, YAT
offers a notion of subtyping for flexibility. However, they adopt a somewhat more
restrictive subtyping relation, e.g., they do not allow a[T|U] to be a subtype of
alT]lalU] (but do allow the other way). This choice was determined by their
design goal of attaining efficient layout for large XML databases.

Since its initial publication, our work on XDuce has influenced a number of pro-
posals by other researchers. Fernandez, Siméon, and Wadler proposed XML Query
Algebra for the basis of XML query processing and optimization, and they use
our regular expression types in their type system and our subtyping algorithm in
their early implementation [Ferndndez et al. 2001]. (They are currently working
on a W3C-standardized language XQuery based on their early proposal. Their re-
cent paper reports another approach to combine named and structural subtyping
[Siméon and Wadler 2003].) Frisch, Castagna, and Benzaken have made a signif-
icant extension to XDuce in their XML processing language CDuce [Frisch et al.
2002]. In particular, their type system treats higher-order functions as well as in-
tersection and complementation type operators. Our work on regular expression
types has also stimulated schema language designs. In particular, Clark’s schema
language TREX [Clark 2001] adopted a large part of our definition of types; these
were carried over into the ISO standard schema language RELAX NG [Clark and
Murata 2001]).
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At the theoretical level, there have been a number of proposals of typecheck-
ing algorithms for various XML processing languages. Milo, Suciu, and Vianu
have studied a typechecking problem for a general framework called k-pebble tree
transducers, which can capture a wide range of query languages for XML [Milo
et al. 2000]. In a related vein, Papakonstantinou and Vianu present a typechecking
algorithm for the query language loto-¢l by using extensions to DTDs [Papakon-
stantinou and Vianu 2000]. Murata has developed a typechecking algorithm for his
document transformation language with powerful pattern matching [Murata 1997].
Tozawa has pursued a typechecking technique for a subset of XSLT [Tozawa 2001].
The types used in the techniques in these papers are based on tree automata and
are conceptually identical to those of XDuce. On the other hand, the type checking
algorithms presented in these papers are “semantically complete” (that is, given a
program, an input type, and an output type, the algorithm returns “yes” exactly
when the documents produced by the program from the input type always have the
output type), while XDuce’s is not (since XDuce is Turing complete, demanding
this level of precision makes the problem undecidable).

Our investigation of regular expression types was originally motivated by an ob-
servation by Buneman and Pierce [Buneman and Pierce 1998] that untagged union
types correspond naturally to forms of variation found in semistructured databases.
The main differences from the present work are that they study unordered record
types instead of ordered sequences and do not treat recursive types.

Pattern matching can be found in a wide variety of languages and in a variety of
styles. One axis for categorization is how many bindings a pattern match yields. In
the all-matches style, a pattern match yields a set of bindings corresponding to all
possible matches. This style is often used in query languages [Deutsch et al. 1998;
Abiteboul et al. 1997; Cluet and Siméon 1998; Cardelli and Ghelli 2000; Neven
and Schwentick 2000; Fankhauser et al. 2001] and document processing languages
[Clark 1999; Neumann and Seidl 1998; Murata 1997]. In the single-match style, a
successful match yields just one binding. This style is the one commonly found in
functional programming languages [Milner et al. 1990; Leroy et al. 1996; Peyton
Jones et al. 1993, etc.], and is the one we have followed in XDuce. We are still
experimenting with this aspect of the language, however, and hope to incorporate
some form of all-match patterns in its successor, Xtatic.

Another axis for comparing pattern matching primitives is the expressiveness
of the underlying “logic.” Several papers have proposed extension of ML-like
pattern matching with recursion [Fdhndrich and Boyland 1997; Queinnec 1990]
with essentially the same expressiveness as ours. Some query languages and doc-
ument processing languages use pattern matching mechanisms based on tree au-
tomata [Neumann and Seidl 1998; Murata 1997] or monadic second-order logic
(which has a strong connection to tree automata) [Neven and Schwentick 2000],
and therefore they have a similar expressiveness to our pattern matching. TQL
[Cardelli and Ghelli 2000] has a powerful pattern matching facility based on Ambi-
ent Logic [Cardelli and Gordon 2000]. Since Ambient Logic allows arbitrary logical
operators (union, intersection, and complementation), this suggests that its ex-
pressiveness should be similar to tree automata. However, an exact comparison is
difficult, since their underlying data model is unordered trees. On the other hand,
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pattern matching based on reqular path expressions, popular in query languages for
semistructured data [Deutsch et al. 1998; Abiteboul et al. 1997; Cluet and Siméon
1998], is less expressive than tree automata. For instance, these patterns cannot
express constraints like “match subtrees that contain exactly these labels.” Both
tree automata and regular path expressions can express extraction of data from an
arbitrarily nested tree structure (although, with the single-match style, the useful-
ness of such deep matching is questionable; a related discussion can be found in our
previous paper on pattern matching [Hosoya and Pierce 2001]).

Thiemann has proposed a technique to encode DTDs by Haskell’s type classes
and thereby statically ensure the validity of dynamically generated XML docu-
ments [Thiemann 2001]. His technique is implemented as a pure Haskell library,
requiring no language extension. On the other hand, his proposal is limited to gen-
erating documents and provides no facility to deconstruct or analyze input XML
documents.

Christensen, Brabrand, Mgller, and Schwartzbach have designed a domain-specific
language <bigwig> for programming interactive Web services [Brabrand et al. 2002]
and its successor [Christensen et al. 2002a]. They employ an interprocedural flow
analysis for statically validating XML documents produced by programs [Brabrand
et al. 2001]. Their analysis is, unlike ours, capable of checking programs with no
type annotations. They have a unique programming feature called templates, which
are documents with gaps and allow us to fill other document fragments (or even
other templates) in them. Although JWig currently has no support for process-
ing input documents, they also propose a mechanism called gapify, which turns an
input document (without gaps) into a template [Christensen et al. 2002b].

7. CONCLUSIONS

XDuce is a typed programming language that takes XML documents (sequences
of nodes) as primitive values. It provides constructors and deconstructors (pattern
matching) for such sequences and uses regular expression types for describing their
structure statically. The correspondence between types and finite tree automata
gives the language a powerful mathematical foundation, leading to a simple, clean,
and flexible design.

We regard XDuce as a good first step in the direction of “native programming
language support” for XML. However, a number of significant issues remain to be
considered before its innovations can be offered to mainstream XML programmers.

First, the XDuce type system needs to be extended to handle common features
found in real-world schema languages. One is a support for XML attributes. Among
different styles of treatments, we adopt RELAX NG’s approach [Clark and Murata
2001], which symmetrically handles constraints on elements and attributes. Mu-
rata and the first author of the present paper have just figured out the imposed
algorithmic issues [Hosoya and Murata 2002]. Another issue that has to be ad-
dressed is typing for unordered data, which are useful for representing records, for
example. A clean solution is to introduce so-called shuffle (or interleave) operator
as in RELAX NG. However, it is an open question whether we can test inclusion
or compute intersection or difference with a reasonable efficiency.

Second, in writing programs more substantial than trivial XML transformations,
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we almost always need other kinds of data structures than sequences, such as hash
tables and arrays. For this, we are now pursuing the direction of taking some
existing popular programming language (such as Java or C#) and mixing its type
system with regular expression types. In this way, we can avoid re-inventing existing
language features and libraries, as well as easily invite people who have been working
on XML with such languages.

Third, with such a mixed type system, we will need several more advanced typing
features. One is parametric polymorphism. (Currently, neither Java or C# sup-
ports this, but since they are planning to do so, we will have to figure out how to
deal with it.) Another is typing for imperative operations on XML data. Currently,
XDuce disallows modification of values and this might be too rigid for many pro-
grammers. Technically, both parametric polymorphism and destructive operations
are non-trivial.

We are now working on the design of a successor to XDuce, named Xtatic, which
aims to address these issues in the context of a C# extension with regular expression
types and pattern matching.
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