Featherweight Firefox

Formalizing the Core of a Web Browser

Aaron Bohannon
University of Pennsylvania

Abstract

We offer a formal specification of the core functionality
of a web browser in the form of a small-step operational
semantics. The specification accurately models the asyn-
chronous nature of web browsers and covers the basic as-
pects of windows, DOM trees, cookies, HTTP requests
and responses, user input, and a minimal scripting lan-
guage with first-class functions, dynamic evaluation, and
AJAX requests. No security enforcement mechanisms
are included—instead, the model is intended to serve as
a basis for formalizing and experimenting with different
security policies and mechanisms. We survey the most
interesting design choices and discuss how our model re-
lates to real web browsers.

1 Introduction

Web browsers are complex: they coordinate network
communication via many different protocols; they parse
dozens of languages and file formats with flexible er-
ror recovery mechanisms; they render documents graph-
ically, both on screen and in print, using an intricate sys-
tem of rules and constraints; they interpret JavaScript
programs; they manage users’ browsing history, book-
marks, passwords, and RSS feeds; they execute cryp-
tographic algorithms and protocols—and these are just
the obvious tasks! This complexity makes it very chal-
lenging to design effective security mechanisms for web
browsers: there are too many features to consider at once,
and it is easy for the some of the fundamental security
concerns to be obscured by more superficial problems.
“Web browser security” is actually an ambiguous term
that can refer to a diverse range of issues. First, the
browser codebase needs to be free from bugs such as
buffer overflows that could lead to a complete compro-
mise of a running browser. Next, the browser must cor-
rectly implement the protocols related to cryptography
and the public key infrastructure for securing HTTPS

Benjamin C. Pierce
University of Pennsylvania

communication and verifying digital signatures. To
many users, “browser security” may be about how the
interface helps them avoid phishing attacks and acciden-
tal installation of malware. And finally, a particularly
interesting aspect of browser security is the restrictions
that must be placed on web page scripts for the purpose
of ensuring information security when managing docu-
ments and scripts from different sources. This last secu-
rity problem is the one we are interested in addressing;
we will refer to it as web script security to distinguish it
from these other aspects of web browser security.

In current practice, web script security revolves around
the idea of a same-origin policy. An origin is based
on the domain name of a web page, and restrictions
are placed on the interactions that can take place be-
tween pages with different origins. However, it is actu-
ally somewhat difficult to characterize the “policy” that
these restrictions are intended to enforce; indeed, it is not
even very clear which particular restrictions are meant
by the phrase. Browsers implement origin-based re-
strictions on accessing the state of other windows, on
navigating other windows to new locations, on access-
ing windows by their string name, on making AJAX re-
quests, and on accessing and mutating cookies, but the
idea of an “origin” is defined and used differently in
each of these cases. For instance, whereas the ability
to access other windows’ state depends on the value of
the document.domain property, the ability to make an
AJAX request does not, and whereas some of these re-
strictions check that that the effective origins are identi-
cal, the ability for one window to navigate another de-
pends on a complex set of rules about the windows’ re-
lationship and does not actually require that their origins
be the same. Nonetheless, we will continue to use “same-
origin policy” to refer to all of these restrictions.

Beyond these inconsistencies, the same-origin policy
has other deficiencies. Whereas direct cross-domain in-
teraction via window data structures and AJAX messages
is disallowed, indirect cross-domain interaction by in-

sertion of new document nodes that trigger HTTP re-
quests is unrestricted. Furthermore, a script’s origin is
based solely on the URL of the page where it is placed
rather than the URL from which the script was retrieved,
and the origin of the data handled by scripts is never
taken into account. Another problem is that the mecha-
nisms that allow interaction between related domains (in-
volving setting the document.domain property) are in-
flexible and potentially dangerous [8]. Moreover, many
corner cases (especially those involving function clo-
sures) are missing in written specifications and are imple-
mented differently in different browsers (see the work on
Subspace [4] for an example). Finally, the same-origin
policy offers no help in addressing the pervasive security
problem of script-injection attacks, which are known as
XSS (“cross-site scripting”) attacks.

In comparison, what would an ideal proposal for web
script security look like? There should be a clearly
articulated policy that applies consistently to the web
browser’s operation as a whole. It should be flexible
enough to guarantee rigid security boundaries similar to
the same-origin policy when desired and also to permit
cross-domain communication for mashup-like behavior
if necessary. It should offer some account of XSS and
CSRF! attacks. It should be written at a level of detail
that makes it feasible to implement. Finally, it should be
specified in such a way that claims about it can be veri-
fied through rigorous proof or model checking.

This last goal makes the task especially challenging: a
formal specification of a security mechanism necessitates
a formal specification of web browser behavior at some
level of detail, and browsers are large systems with many
interdependent components. However, the complexity of
web browsers is exactly the reason it is important to write
arigorous specification! There has been confusion about
the implementation of the relatively simple same-origin
policy; if one is interested in security mechanisms that
are even more sophisticated, it will be essential to pin
down their behavior in a precise and formal manner.

How does one develop a formal model of a web
browser? In theory, one could take a particular browser
implementation to be the model. But this is too much de-
tail: browser implementations are far too large to reason
about formally. If we build a model with the right level of
abstraction, we can study something of a more tractable
size, and more importantly, we can focus on the funda-
mental aspects of web script security, putting aside the
more superficial concerns until after the deeper logical
issues have been ironed out.

Using the right level of abstraction cuts down on the
size of a model, but there are still too many potentially

' A CSRF (“cross-site request forgery”) attack occurs when a script
on a page from one site generates an HTTP request resulting in an
unwanted server-side transaction on another site.

security-relevant browser features for us to consider them
all at once. We must begin with a core set of features.
Once polices and mechanisms for these features are well
understood, we can hope to extend the security mecha-
nisms to cover additional features. What we have put in
our initial browser model has been guided by our interest
in the following aspects of the browser setting:

e The system works with data and code from many
different principals, and security boundaries may
need to take into account the author of the data, the
author of the code, and the principal that caused the
code to be run.

e Scripts can be downloaded at any time and are al-
ways run in an environment that is shared with other
scripts. Therefore, dynamic evaluation of code is
fundamental to the web browser scripting model.

e There are multiple top-level environments in which
scripts can be run, and these environments change
each time the user visits a new page.

e Scripts contain first-class functions, which are,
among other things, used for event handling.

e The system is event-driven and events can be inter-
leaved in complex and possibly unexpected ways.

e Network messages can be generated in a variety of
ways by scripts and by the user; any message sent
could be relevant to information security.

The primary contribution of the work presented in this
paper is a formal specification of the core data structures
and operations of a web browser. We use a small-step, re-
active semantics that faithfully models the event-driven
nature of web browsers. In cases where the appropri-
ate browser behavior was not obvious, we referred to the
HTMLS specification [3] and ran tests on browser imple-
mentations. At the end of Section 5, we discuss some
of the differences between the HTMLS specification,
browser implementations, and our model. Concretely
our model is presented in the form of an OCaml pro-
gram?® (about 2,500 LOC, including many comments).
The program is written in a form that corresponds very
closely to logical rules of inference, which are commonly
used in giving formal semantics to programming lan-
guages, and we can view it as a document to be read
by researchers interested in formal browser semantics.
Using OCaml as a concrete notation yields many bene-
fits. First, the type system of the language gives a sanity
check on the definitions. Second, the specification is ex-
ecutable, which facilitates testing and experimentation.
(To this end, we have also written parsers for the relevant
subsets of HTML, JavaScript, and HTTP.) The presenta-
tion here is structured around the main type declarations.

%It can be accessed here: http://www.cis.upenn.edu/
~bohannon/browser-model/

2 Key Concepts

We follow a top-down approach in describing our model.
In this section, we survey the browser features that we
included and mention those we omitted. The remainder
of the paper describes the specification itself, beginning
from the outermost layer—the parts of a browser that
are directly observable via its user interface and network
connections—then moving on to internals.

Browsers display information in windows, many of
which may be open at one time. A window can be
navigated to a URL, which is the address of a docu-
ment. The default URL for a newly opened window is
“about : blank”, which refers to a blank page. URLs
that begin with “http :” refer to remote resources. When
a window is navigated to such a URL, the browser sends
an HTTP network request. The browser runs asyn-
chronously and can handle other events while it is wait-
ing for a network response.

For each URL that the user visits, browsers keep a
mapping of key-value pairs known as cookies. These can
be set each time an HTTP response is received, and the
ones corresponding to a particular URL will be sent with
each HTTP request for that URL. Including cookies al-
lows us to model CSRF attacks; moreover, the unautho-
rized acquisition of session cookies is one of the most
critical information security threats posed by XSS.

Browsers are designed to display HTML documents.
For our purposes, it suffices to consider a subset of
HTML with just a few basic features. It should allow tags
to be nested in one another in some fashion. It should
have some kind of text elements and link elements. It
should also have text input elements and button elements
that can be equipped with handlers, which are triggered
by user interaction. Finally, it should have tags for in-
cluding scripts in documents, both as source code that is
written in-line in the document and as references to re-
mote script files.

A document is transformed into a mutable document
node tree and placed in a window. We use the term page
to refer to a document node tree plus its related metadata,
such the URL from which it was retrieved.> A window
will display a sequence of pages over time as it is navi-
gated to new locations.

Obviously, to study web script security, one must also
have a model of the scripting language. The JavaScript
language, which is used in current browsers, has many
peculiarities and many of its peculiarities do have secu-
rity implications, given the particular manner in which
browser structures are represented in the JavaScript inter-
preter. However, instead of addressing problems that are
specific to JavaScript at this time, we are more interested

3We reserve the term document to refer to a static tree-like data
structure, such as an HTML document.

in understanding the security problems that are funda-
mental to any browser scripting language that can manip-
ulate the browser in the ways that JavaScript can. This is
a prerequisite step for understanding how to improve the
security of a specific language such as JavaScript. Two
of JavaScript’s features are of interest to us because they
seem especially useful in a web scripting environment
and pose special challenges in the context of security:
first-class functions and dynamic evaluation of code.

Although we want to restrict ourselves to a very simple
core scripting language, we do want to capture a com-
plete interface for scripting the browser components in
our model. Scripts should be able to refer to their own
window and refer to other windows by their name (which
is just a string). They should be able to open, close, and
navigate windows, as well as read and update their name.
The name of a window is important to have in our model;
it is relevant to security, both as a means of acquiring ac-
cess to windows and as a means to transfer information.
Scripts should be able to access a page’s node tree and
a page’s global scripting environment through a refer-
ence to the page’s window. We do not model the stan-
dard DOM in all of its details, but the scripting language
should have enough power to construct and manipulate
document node trees in arbitrary ways. Scripts should
also be able to read and write the browser’s cookies. Fi-
nally, scripts should be able to initiate AJAX-style HTTP
requests and handle the responses.

Although our model encompasses many of the core
features of a web browser, and certainly enough to make
the issue of web script security challenging and inter-
esting, there are many more features that we must leave
out of our model for now, with the hope of considering
them in the future. We do not consider relative URLs
and fragment identifiers, although these would be fairly
trivial. We do not consider virtual URLs schemes such
as “javascript :” and “data :”. We do not consider
object-oriented features in the scripting language, nor do
we consider object-style access to windows via the key-
word this (instead we include the expression self, a
synonym for window). We do not consider timer events,
page load events, or low-level input events related to
keystrokes and mouse movements. We do not consider
any sort of frames, which offer a slightly different rela-
tionship between pages than having only separate top-
level windows. We do not consider HTML forms nor
browser history. We do not consider accessing files on
the local machine. We do not consider any HTTP return
codes other than “200 OK”; in particular, we do not con-
sider HTTP redirects. We make no distinction between
http and https URLs. We do not consider the interac-
tion of web pages and scripts with plug-ins such as Flash
or Java. Finally, we do not consider the password man-
ager mechanism, nor any other browser extensions that

might interact with web pages. We view all of these fea-
tures as interesting and relevant to security, but we leave
them out for now in order to minimize the complexity of
our model.

Since our goal is to provide a foundation for research-
ing new security policies and mechanisms, we designed
our execution model as a “blank slate,” without any se-
curity restrictions built in to it by default.

3 Reactive Systems

To begin with, we need to consider what the high-
level “shape” of a browser’s specification should be. A
browser does not simply take an input, run for a while,
produce an output, and then halt. Rather, it is an event-
driven system: it consumes an input when one is avail-
able, which triggers some computation that may produce
one or more outputs; when (and if) it is finishes run-
ning in response to one input, it will wait for the next
input event. From the perspective of the scripts it runs,
a browser should appear as if it has just a single event
loop [3]. This sort of event-driven behavior can be cap-
tured by a fairly simple sort of state machine:

3.1 Definition: A reactive system is a tuple
(ConsumerState, ProducerState, Input, Output, —)

where — 1is a labeled transition system whose states are
State = ConsumerState U ProducerState and whose
labels are Act = Input U Output, subject to the follow-
ing constraints:

e for all C € ConsumerState, if C = Q, then a €
Input and Q € ProducerState,

e for all P € ProducerState, if P % Q, then a €
Output,

e for all C € ConsumerState and i € Input, there
exists a P € ProducerState such that C N P, and

e for all P € ProducerState, there exists an o €
Output and Q € State such that P 2 Q.

Reactive systems never get “stuck,” although they may
get into a loop within the set of producer states and never
accept another input. When a reactive system is in a con-
sumer state, it must have some manner to handle what-
ever input comes along next, although it could choose to
drop it and not do anything interesting in response. Re-
active systems have a natural interpretation as a function
from (possibly infinite) streams of inputs to (possibly in-
finite) streams of outputs. Bohannon, et al. [1] discuss
these systems in more detail.

Given this template for a reactive system, what
remains is to instantiate the system parameters—
ConsumerState, ProducerState, Input, and Qutput—
with the particular data structures that are relevant for

web browsers. This will be done over the next two sec-
tions. What the system does is described by the transition
relation of the reactive system, which we only have space
to informally summarize in this paper as we describe the
data structures; its full definition is given in the accom-
panying OCaml code.

4 Browser Inputs and Outputs

In this section, we present the structure of all of the data
that goes into and comes out of a browser in our model.
We describe these data structures using abstract syntax;
for the purposes of an information security analysis, even
user input and GUI updates can be modeled syntactically,
as we will discuss in this section. We begin by looking at
the abstract syntax for URLs, which is shown in Figure 1.
We consider two kinds of URLs: a URL for a blank page
and a basic http URL (without any port number or frag-
ment identifier). The request_uri contains the path and
query string of the URL.

The abstract syntax that we use for documents (see
Figure 2) corresponds to an extremely simplified version
of HTML. For comparison, the literal, concrete HTML
syntax that would correspond to the abstract syntax is
given on the right. (In order to literally translate our
document constructs into well-formed HTML fragments,
some must be mapped to HTML expressions with more
than one tag, as shown.) Each construct in the abstract
syntax has an optional string elt_id, which should be
thought of as the value of the id attribute of an HTML
tag, if present. Unlike HTML, no further tags are allowed
in the text of paragraph, link, or button elements. We ap-
pend the suffix _list to syntactic categories as a way to
indicate a sequence of zero of more items, such as the
use of doc_list in the div construct.

The syntax of scripts is given in Figure 3. As with the
browser as a whole, the goal of designing the scripting
language is to capture the fundamental issues that make
web script security interesting. We settled upon a very
simple JavaScript-like core language—a dynamically
typed language with mutable variables, a few basic data
types, first-class functions, and dynamic evaluation—
along with a set of constructs for manipulating the data
structures of our browser model that is fairly complete
in comparison with the standard “browser object model”
(BOM) used in JavaScript. We didn’t attempt to cap-
ture all of the idiosyncrasies of the BOM interface (the
method for accessing cookies in JavaScript, for instance,
is pointlessly absurd); however, we did aim to make the
correspondence with the standard BOM very straightfor-
ward. We also did not try to aggressively eliminate re-
dundant constructs since some constructs will likely need
to be added, removed, and altered during the investiga-
tion of any particular security enforcement mechanism.

url = Dblankurl
| http_url(domain, request_uri)

Figure 1: URL syntax.

elt_id == - | string
doc = para(elt_id, string) e.g., <p>string</p>
| link(elt_id, url, string) e.g., <p>string</p>
| text(elt_id, string) e.g., <p><input type="text"
value="string"></input></p>
button(elt_id, string) e.g., <p><button>string</button></p>

inline script(elt_id, expr) e.g.,<script>expr</script>
remote_script(elt_id, url) e.g., <script src="url"></script>
div(elt_id, doc_list) e.g., <div>doc_list</div>

Figure 2: Document syntax.

As in JavaScript, there are a variety of basic types
(we do not consider classes, objects, or other user-
defined types). The types Null, Bool, Int, String, and
their corresponding literal expressions are straightfor-
ward. There is a type for URLSs in the language, with cor-
responding literal URL expressions. In JavaScript, URLs
are handled purely as strings, being parsed as needed;
however, by having a special type for URLSs in this lan-
guage, we can avoid putting a string parsing algorithm
in the main part of our semantics (such parsing could
be done by a library function with a semantics specified
completely separately). A value of type Type is a con-
crete representation of another value’s type.

For compactness and uniformity, our language has no
distinction between expressions and statements. Expres-
sions can be sequenced with a semicolon (;), and the
combined expression yields the result of the second ex-
pression when it is finished executing. If the first expres-
sion in a sequence results in an error, the second expres-
sion is not run. If the second expression results in an
error, the effects of the first expression are still registered
in the browser state. There is no need for a return con-
struct when there is no distinction between statements
and expressions. Conditionals and loops are standard.
A while loop always evaluates to null when it termi-
nates, as do other constructs with no sensible result. The
primitive_functions include any pure functions whose
semantics is independent of the web browser environ-
ment, such as functions to check the type of a value, to
perform arithmetic operations, or to convert data types to
and from strings. The specification of these operations is
completely orthogonal to the problem of a browser spec-
ification and is therefore not included in our work.

Like JavaScript, this language has first-class, anony-
mous functions with local variables. However, in this
language, functions always have exactly one parameter,
and their local variables must be declared at the begin-
ning of the function. Unary function application is de-
noted by expr(expr). Values of type Code represent a
syntax tree for an expression. Any expression can be
treated as a syntax tree by enclosing it with the code
construct. Code values can be evaluated with the eval
construct. (The expression will be evaluated in the en-
vironment that lexically encloses the eval expression.)
As with URLs, having a special type for syntax trees
differs from JavaScript (which passes strings to eval)
but allows us to define a rigorous semantics for dynamic
evaluation while putting aside the complex but uninter-
esting process of turning strings into expressions. Vari-
ables are dereferenced in the nearest (lexically) enclos-
ing scope in which they are defined. If not defined else-
where, a variable is dereferenced in the global scope of
the script, which is the environment associated with the
page in which the script was loaded. It is a runtime error
to dereference a variable that is not defined in some en-
closing scope. Variable assignment updates the variable
(or function parameter) in the nearest enclosing lexical
scope in which it is defined; if it is not defined in any en-
closing scope, then the assignment will create a binding
in the script’s global scope.

The scripting operations that are specifically relevant
to the web browsing environment are shown in Figure 4.
The construct get_cookie(u, k) evaluates to the cookie
value associated with the string key k£ for the URL u
or evaluates to null if no such cookie is defined. The
construct set_cookie(u, k, v) sets the cookie with key

type

null | bool |
expr; expr

expr

expr(expr)
code(expr)
eval(expr)
T

T = expr

Null | Bool | Int | String | Url | Type
Function | Code | Window | Node

if(expr) {expr} else {expr}
while(expr) {expr}
primitive_functions

function(z) {var z1; ...; var x,; expr}

browser _operations

int | string | wrl | type

Figure 3: Script syntax.

browser_operations

get_cookie(expr, expr)
set_cookie(expr, expr, expr)
xhr(expr, expr, expr)

window _operations
node_operations

Figure 4: Browser operation syntax.

k for the URL u to the string value v. The construct
xhr(u, m, h) initiates an AJAX request to the URL u,
sending the string m as the message body. The network
response will be expected to contain a script, which will
be passed in the form of a Code value as an argument to
the handler function A (which may then run it with eval
or dissect it in some other way using some of the primi-
tive operations that we leave unspecified).

The scripting operations relating to windows and
pages are shown in Figure 5. In JavaScript, there is a dis-
tinction between the Window object and Document ob-
ject. As implemented in JavaScript, this distinction does
not add any real expressive power, so we do not attempt
to emulate it in our language. A window can hold only
one page at a time; so a reference to a window is im-
plicitly a reference to a page, although which page that
is may change over time (if, say, the user navigates the
window elsewhere). The important thing for one to un-
derstand is which window-accessible data can vary when
the window’s page changes. These include the window’s
location URL, the root node of the document tree in the
window, and the global environment of the window.

The keyword self refers to the window that holds (or
held) the page in which the script was loaded; the con-
struct opener(w) refers to the window from which w
was opened. The construct named win(s) evaluates to

the window whose name is the string s or evaluates to
null if there is no such window. A new window can be
opened to a particular URL w using open(u). A win-
dow with a name n can be opened to a URL u using
open_named(u, n); however, if a window with that name
is already open, then that window will be navigated to the
URL wu, and no new window will be opened. Both con-
structs for opening windows evaluate to the new (or navi-
gated) window. A window can be closed with close(w),
and closed(w) yields a Bool indicating whether or not
w 1is a valid reference to an open window.

The URL of the document currently in a win-
dow w can be read using get_location(w), and a
window can be navigated to a new URL wu using
navigate(w,w). (In JavaScript, this is done by as-
signing a value to the location property of a Window
object.) A window name can be read or updated us-
ing get_name or set_name. The root node of the doc-
ument node tree in a window w can be read using
get_root_node(w) and can be set to a new node node
using set_root_node(w, node). Every page has an as-
sociated environment that serves as the global environ-
ment for any scripts loaded into the page. For a page
in a window w, the variables in the global environment
can be read or updated using the constructs w.x and
W.T = expr.

window _operations ::= self | opener(expr) | named win(ezpr)
open(expr) | open_named(expr, expr)
close(expr) | closed(expr)

get_location(expr) | navigate(expr, expr)
get_name(expr) | set_name(expr, expr)
get_root_node(expr) | set_root_node(expr, expr)
expr.x | expr.c = expr

Figure 5: Window operation syntax.

node_operations

remove(expr)

insert(expr, expr, expr)
remove handlers(expr)
add_handler(expr, expr)

Figure 6: Window operation syntax.

The most interesting among the constructs related to
document nodes are shown in Figure 6. Nodes have a
graph structure derived from the fact that some nodes
(div nodes in particular) can have children; all manip-
ulation of nodes must maintain the invariant that the
node graph is a forest. The construct remove(node)
updates the node store so that node is removed from
being the child of any div node or is removed from
being the root node of any page, if either is applica-
ble; the relationship of node and its children are unaf-
fected by this, which means that neither node nor any
of its descendants will be visible in any page after the
operation. The construct insert(parent, child,n) first
removes the node child (just as if remove(child) had
been evaluated) and then inserts child as the nth child
of parent. It is an error (and nothing is mutated) if
parent is not a div node, if parent has fewer than n
children, or if parent is a descendant of child in a node
tree. The construct remove_handlers(node) removes
all handlers from a text input or button node, and the
construct add_handler(node, h) adds the function h as
a handler for a text input or button node. When the value
of a text input box is changed or when a button is pushed,
each of the node’s handler functions will be applied to the
argument node and run.

We represent user interactions using the syntactic mes-
sages shown in Figure 7. We assume that a user refers
to a window using a natural number representing it’s
relative age among the open windows, the oldest win-
dow being 0. In this way, we need not model an ac-
tual two-dimensional graphical display. There are sev-
eral basic actions a user can take. The operations
load_in new window and load_in window represent

cases where the user directs the browser to some URL—
perhaps by typing in a URL, by selecting a bookmark,
or by clicking on a link in a page.* The constructs
link tonew window and link to named window are
used to represent cases where the user follows links that
open in different windows due to the target attribute
of the link. They both must include the window where
the link was found as their first piece of data, since that
window will be the deemed the “opener” of the new win-
dow. The user can also close windows, of course. The
constructs input_text and click_button both take a
window and a natural number, representing the position
of the input box or button in the page. When these input
events are received, they will trigger the handlers of the
appropriate element.

There are four basic outputs that are visible to the user
in this model. First, a new window can be opened. There
is no data associated with the window_opened event be-
cause new windows are always created with an empty
page having the URL about : blank. When pages are
loaded or updated, there may be visible changes to the
document rendered on the screen. There is a data type
rendered_doc (not defined here) that captures the struc-
ture of the document node tree that is visible from the
user interface. In the page_loaded and page_updated
events, the entire document in the window is sent to the
user, regardless of how much of it was actually changed.
User output events play a rather non-obvious role in the
model. For the purposes of an information security anal-
ysis, we assume that all browser inputs, including those
from the network, are visible to the user; moreover, the

4If we included the HTTP Referer header in our model, we would
need to distinguish between clicking a link and typing in a URL.

user_window 1=
user_input

user_output

window(nat)

load_in new window(url)
load_in-window(user_window, url)

link to_new_window(user_window, url)
link_to_named_window(user_window, string, url)
close_window(user_window)
input_text(user_window, nat, string)

click button(user_window, nat)
window_opened
window_closed(user_window)
page_loaded(user_window, url, rendered_doc)
page_updated(user_window, rendered_doc)

Figure 7: User I/O syntax.

browser operates deterministically, modulo the ordering
of the inputs. So in a theoretical sense, the user always
knows the complete browser state regardless of what user
interface outputs are generated in the model. We also as-
sume that no other principal can see these outputs, so
they do not have much significance in developing confi-
dentiality policies. However, they do become significant
if we wish to develop and reason about integrity policies.

The network-related input and output events are shown
in Figure 8. The request construct is a simplified ver-
sion of an HTTP request. Our model does not distin-
guish between GET and POST requests since the differ-
ence has little impact on web script security. The cookies
are key-value mappings, and an extra string can be sent
as the body of the request, as would be done in a POST
request. An output on the network consists of a domain
and a request. We abstract away from the DNS name
resolution process. We model a network connection with
the domain name to which the connection was made and
a natural number to distinguish between multiple con-
nections to the same domain. We take O to be the old-
est connection for which a response has not yet been
received, 1 to be the next-oldest, and so on. As stated
earlier, we do not model any HTTP responses other than
“200 OK”. We assume that the body of a response con-
sists of either a well-formed document or a well-formed
script.

5 Internal Browser Structures

We have seen the parts of the specification that describe
how a browser interacts with its environment. Now we
need to consider what internal bookkeeping is needed for
a browser to operate. There are choices to make here.
For example, one could choose to have document nodes
maintain references just to their parents, just to their chil-
dren, or to both. Our goal was to find a clear and succinct

way to describe how a browser operates; usually (but not
always) this seemed easiet to achieve by avoiding main-
taining redundant information in the state. So, in the ex-
ample of document nodes, we chose to have document
nodes maintain references only to their children.

A browser’s basic state is a tuple of six components
as shown in Figure 9: it has stores for windows, pages,
document nodes, activation records, and cookies, and a
list of the open network connections. The syntactic ele-
ments with the suffix _ref are unique atomic identifiers
that are generated freshly when new items are put into a
store during the browser’s execution; then they are used
to refer to the associated data in the various stores. A
cookie_id consists of a domain name, a path, and a string
value representing the key.

The basic browser data structures are defined in Fig-
ure 10. The data for a window includes its name (an
optional string) and a reference to its page. There is a
simple_window structure for windows that were opened
directly by the user, and an opened_window structure
for windows that have a reference to the window from
which they were opened. A window is considered to be
open (and therefore visible to the user) iff a reference to
the window appears in the window store of the browser.
Pages contain their location, a reference to their root doc-
ument node, a reference to the activation record contain-
ing their global environment, and a queue of scripts and
of markers for not-yet-received scripts that will need to
be executed in the future. If the browser is waiting idly
for its next input, the script queue of every page in the
browser will either be empty or will contain a marker
for a not-yet-received script at its head; any scripts at the
front of a queue that are in hand will be executed before
the browser halts.

The structure of document nodes mirrors the structure

of documents, except for a couple of details. First, there
is an extra piece of data for text and button nodes, a

request
network_output =
response

network_connection
network _input

request(request_uri, cookies, string)
send(domain, request)
doc_response(cookie_updates, doc)
script_response(cookie_updates, expr)
connection(domain, nat)
receive(network_connection, response)

Figure 8: Network I/O syntax.

window_store ::=
page_store

node_store

act_rcd_store
cookie_store =
browser =

open_connection _list)

[(window_ref |, window), . . ., (window_ref ,,, window,,)]
[(page_ref, page,), ..., (page-ref ., page,,)]

[(node_ref 1, nodey), ..., (node_ref

[(act_red_ref, act_redy), . .., (act_red_ref ,, act_redy,)]
[(cookie_idy, string,), ..., (cookie_id,, string,,)]

browser(window_store, page_store, node_store, act_red_store, cookie_store,

nodey,)]

n’

Figure 9: Browser state.

value_list, which is their set of handlers. Second, both
kinds of script nodes need a flag to know whether they
have already been queued for execution on some page. A
script node must only be queued for execution once, even
if it is later moved. Finally, the div node keeps a list of
references to child nodes instead of a list of the literal
child data elements as is done in the doc data structure.

The type act_red is used for activation records, an
important part of the script evaluation. They contain a
bindings data structure, which is a mapping of variable
names to fully evaluated expressions. Moreover, activa-
tion records for local scopes must keep a reference to
their parent record for proper variable access and update.

The last component of a browser’s data is its list of
open network connections. A record must be kept of the
domain to which each request was made, the resource
that was requested, and enough data to properly handle
the resource when it arrives. A doc_connection is ex-
pecting a response with a document, which will be used
to build a new page in a window; so, a reference to that
window must be recorded. A script_connection is
expecting a response that pertains to a script node in
some document node tree; in order to find the appropriate
queue item for the script on the appropriate page, a ref-
erence to that script node must be kept. Given our other
implementation choices, the page_ref data here is actu-
ally redundant information, but tracking it here simplifies
our operational specification a bit. An xhr_connection
is expecting a response that should be given to a spe-
cific handler function. The handler function, a value, is
kept as part of the connection data structure, but the han-
dler must run with some definition for the window self.

Here we have an choice of recording this information us-
ing a window_ref or a page_ref . Either one would work,
as long as we can ensure that an AJAX response is never
run on a page other than the one for which it was in-
tended. This is slightly easier to do by keeping track of
the page_ref .

A few more data structures are needed to manage the
small-step evaluation of script expressions in browsers
(see Figure 11). The internal language of expressions
(iexpr) is a slight extension of the external scripting lan-
guage. It has a set of values that includes closures, a term
that represents an error, and a term that represents an ex-
pression in a particular scope, which will arise when clo-
sures are applied during evaluation. Closures and scoped
expressions refer to a static context that includes both an
activation record and a window reference that will deter-
mine the evaluation of the keyword self.

A browser in a running state requires a queue of tasks
in addition to the basic browser state. The task queue
keeps track of the script expressions that the browser
must evaluate before it can accept another input. A task
comprises an internal expression paired with the window
with respect to which it should be evaluated. A task
could equivalently be associated with a page instead of
a window. The association between windows and pages
cannot change between the time a task is enqueued and
when it is executed (this association can only change im-
mediately after receiving a network response). Since this
information is needed primarily for evaluating the self
keyword in the expression, we choose the window in-
stead of the page.

window

queued _expr

open _connection

simple_window(window_name, page_ref)
opened_window(window_name, window_ref , page _ref)
known_expr(ezpr)

unknown_expr(node_ref)

page(url, node_ref , act_rcd_ref | queued _expr _list)

local(bindings, act_red_ref)

doc_connection(domain, req_uri, window_ref)
script_connection(domain, req_uri, page_ref , node_ref)
xhr_connection(domain, req_uri, page_ref , value)

page
node = para(elt_id, string)
| link(elt_id, url, string)
| text(elt_id, string, value_list)
| button(elt_id, string, value_list)
| inline_script(elt_id, expr, bool)
| remote_script(elt_id, url, bool)
| div(elt-id, node_ref _list)
act_red = global(bindings)
|
|
|

Figure 10: Browser data structures.

rexpr_context

value =
|
|
|

iexpr = walue
| error
|
|

task =

running_browser

context(window_ref, act_rcd_ref)
closure(iexpr_context, x, 1y, . .
win(win_ref)

node(node_ref)

scoped(iexpr_context, iexpr)

task(window_ref , iexpr)
running(task_list, browser)

.y Tn, LTPT)

Figure 11: Internal expressions and running browser states.

Each kind of input will initialize the task queue in
a different manner. When the user interacts with a
button or text box, the task queue will be initialized
with one task for each of the input control’s handlers.
When a network response to an AJAX request is re-
ceived, the queue will be initialized with the correspond-
ing xhr_connection handler. When a document is re-
ceived, a page will be created along with its script queue,
and the browser’s task queue will be initialized with the
items from the front of the page script queue that are
ready for execution. Similarly, when a network response
is matched with a script_connection, it will cause the
appropriate page script queue to be updated, and then the
ready items from the front of that queue will be trans-
ferred to the browser’s task queue. If script nodes are
inserted into a page as the browser executes tasks at
the head of the task queue, additional tasks correspond-

10

ing to those scripts will be enqueued at the back of the
browser task queue, provided they are not blocked by an
unknown_expr in their page’s script queue.

Given the definitions thus far, we can now state ex-
plicitly how a browser forms a reactive system. The in-
stantiations of ConsumerState, ProducerState, Input,
and Output are given in Figure 12. There is nothing
very interesting here, except for a couple of technical-
ities. According to the definition of a reactive system,
there must always be exactly one output when stepping
from a ProducerState; however, given our internal data
structures, in some cases a single small-step of execution
in our model may produce multiple outputs. Such a sys-
tem can be trivially reduced to a formal reactive system
by adding an output buffer to the producer state struc-
ture: if more than one output happens to be produced
in a step of the original machine, the derived machine

ConsumerState
ProducerState
Input

Output

browser

running_browser’

user_input | network_input
user_output | network_output | e

Figure 12: Internal expressions and running browser states.

will remain in a producer state and release one output
at a time over multiple steps. Thus running_browser’
would be identical to running_browser but with an out-
put buffer. On the other hand, since ProducerState is
technically required to produce an output on every step,
we use the symbol e to represent a trivial, “silent” output,
when there would otherwise be no output.’

6 Formalization Challenges

One particularly tricky issue is deciding exactly when
scripts will get executed. The HTMLS5 specification rec-
ommends that there be three different queues of scripts
that will get executed at different times, depending on
whether script tags have a defer attribute, an async at-
tribute, or neither. (This is motivated in part by the ex-
istence of JavaScript’s document.write() method; we
intentionally omitted such functionality from our specifi-
cation because it introduces a huge complexity overhead
while being a technique that should be avoided in modern
web programming.) Moreover, HTMLS prescribes that
remotely retrieved scripts should be executed after pars-
ing finishes, whereas inline scripts should be executed
“immediately.” On the other hand, some browsers such
as Firefox appear to nonetheless execute all scripts on a
page in the order they appear, regardless of whether the
scripts are inline or remote. We wanted to avoid the addi-
tional complexity associated with executing scripts mid-
way through parsing; so we chose a behavior that was
close to how Firefox behaves when all script tags have
the async attribute set. This choice could be tweaked in
the future, but the precise order of script execution seems
unlikely to affect the design of security mechanisms.
Another tricky case is what to do when a user nav-
igates away from a page but that page had some code
that is still runnable, say, as a button handler in another
page. When such a closure runs, it may attempt to ac-
cess the global environment or use the self keyword.
In this case, the self construct remains a usable ref-
erence to the original window, which now holds a new
page. Not surprisingly, this can lead to a security ex-
ception in browsers with a same-origin policy if the new
page is from a different domain. More interestingly, in

SReactive systems that force each step to have an output are simpler
to reason about and no less useful for studying information security [1].

11

some browsers, such as recent versions of Firefox, the
global environment accessible through a closure is actu-
ally erased and inaccessible after the browser has navi-
gated away from the closure’s original page—but only if
the newer page is from a different domain. This doesn’t
make much sense because the global environment that
is accessible through the closure is associated with the
previous page and has nothing to do with the global en-
vironment of the newer page, regardless of its domain.
We see no reason to emulate this mysterious behavior. A
similar situation occurs when a closure from a page re-
mains executable after the page’s window has closed. In
this case, browsers deem it an error to reference self,
as does our model. However, in the browsers we tested,
closing a window also destroyed the closure’s global en-
vironment. (In some browsers, even the definitions of the
built-in functions were removed.) Although the different
browsers acted similarly, it did not seem especially valu-
able to emulate this overly eager garbage collection strat-
egy into our model. In our specification, when a page’s
window is closed or the page is replaced by a navigation
operation, it is removed from the page store. Primarily,
this is done to ensure that scripts are not executed on a
stale page. However, the page’s associated nodes and
activation records are left in their respective stores after
the page is removed since these may be referenced refer-
enced elsewhere in the browser.

When a user navigates away from a page, there may
also be outstanding AJAX requests that have not received
aresponse. In this case, many browsers will call the state
change handlers for the requests before leaving the page,
as if the responses had come back with a dummy HTTP
response code such as 0. Similarly, when a user closes
a window, there may be outstanding AJAX requests for
the page in the window. Some browsers call the handlers
before closing the window, but others do not. Since we
are not modeling HTTP error responses, we simply chose
not to trigger the handlers in any of these situations.

7 Related Work

Our work was motivated by an investigation of the pa-
per “Information-Flow-Based Access Control for Web
Browsers” by Yoshihama, et al. [7]. Their work offers a
reasonable outline of a browser formalization; our work

is an attempt to fill in the concrete details of a more
realistic browser model. Our model uses heap struc-
tures with references, which are important for under-
standing how information flows through a browser. Fur-
thermore, our model adds first-class functions, activation
records, and multiple global environments that are as-
sociated with page structures. In addition, we have bro-
ken the browser’s behavior down into a small-step, event-
driven semantics with a complete characterization of the
possible inputs and outputs of the system.

There have been other efforts to formalize subsystems
of a browser. Maffeis, et al. [S] have written a formal
specification for the JavaScript language. Their work is
in the same spirit as ours but nearly orthogonal in terms
of its content, in that they consider all of the details of the
JavaScript language itself without formalizing the lan-
guage’s integration with the browser. Gardner, et al. [2]
have developed a formal specification for a literal subset
of DOM Level 1 [6]. Their work is again in the same
spirit as ours but strives for greater accuracy in a nar-
rower domain. We did not attempt to implement a literal
subset of the DOM specification (as they did) but instead
specialized our node operations for the particular types
of nodes in our document model. Moreover, they devel-
oped a full-blown compositional Hoare-logic semantics,
whereas for our purposes a simpler operational specifi-
cation is sufficient.

The Browser Security Handbook [8], published on
Google’s web site, provides thorough documentation of
many different security-related behaviors that can be ob-
served in different browsers. Our methodology has been
first to try to understand how browsers would work with-
out any security restrictions, thus offering a platform on
which many different experiments with security enforce-
ment mechanisms can be performed. Moreover, for our
baseline, restriction-free semantics, we are not especially
interested in documenting every observable browser be-
havior, but rather in having a single semantics that em-
bodies a reasonable compromise between the different
existing behaviors and specifications. The key point for
us is to ensure that our formalization is close enough to
real-world browsers so that experimenting with new se-
curity mechanisms on top of it will offer meaningful in-
sight into how these designs would fare in reality.

The HTMLS [3] specification goes into a great deal
of detail about browser behavior. In fact, it seems to be
the only written account of many aspects of browser be-
havior. It covers many more features than we can put in
our formal model at this time; however, as a specification
written in English, it is necessarily somewhat imprecise,
and it does not cover all of the corner cases involving in-
tegration with a scripting language, such as cases involv-
ing function closures. In contrast, our work is intended
to be a platform for carrying out rigorous proofs.

12

8 Future Work

Our next goal is to use our formal model to experi-
ment with concrete confidentiality and integrity poli-
cies. To start, this means designing a system of secu-
rity levels and associating them with the input and output
events of the model [1]. In concept, this is a straightfor-
ward process; however, there are different ways to do
it, giving rise to different policies when combined with
the requirement of reactive noninterference. In com-
parison with the constraints of the same-origin policy,
noninterference-based polices will be more strict about
cross-domain interactions over the network but more lax
about cross-domain interactions that are confined within
the browser. Policy design, which should include an ac-
count of declassification and server-guided policy cus-
tomization, is an interesting topic, but even a basic policy
has a wide range of enforcement techniques that we may
wish to study—anything from globally removing opera-
tions from the scripting language to implementing a fine-
grained tracking of information flow. Our preliminary
investigations suggest that proving enforcement mecha-
nisms sound with respect to policies will be challeng-
ing, given the size of our browser model, but that it is
nonetheless feasible.

References

[1] BOHANNON, A., PIERCE, B. C., SJOBERG, V., WEIRICH, S.,
AND ZDANCEWIC, S. Reactive noninterference. In Proceedings of
the ACM Conference on Computer and Communications Security
(2009), ACM Press.

GARDNER, P. A., SMITH, G. D., WHEELHOUSE, M. J., AND
ZARFATY, U. D. Local Hoare reasoning about DOM. In Pro-
ceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (2008), ACM Press.

HYATT, D., AND HICKSON, I. HTML 5. Tech. rep., W3C, 2010.
http://www.w3.0org/TR/html5/.

[2]

[3]

JACKSON, C., AND WANG, H. J. Subspace: Secure cross-domain
communication for web mashups. In Proceedings of the Interna-
tional Conference on World Wide Web (2007).

MAFFEIS, S., MITCHELL, J., AND TALY, A. An operational se-
mantics for JavaScript. In Proceedings of the Asian Symposium on
Programming Languages and Systems (2008). See also: Dep. of
Computing, Imperial College London, Technical Report DTROS8-
13, 2008.

NicoL, G., WooD, L., SUTOR, R., APPARAO, V., ISAACS,
S., Hors, A. L., WILSON, C., CHAMPION, M., ROBIE,
J., BYRNE, S., AND JACOBS, I. Document object model
(DOM) level 1 specification (second edition). W3C working
draft, W3C, Sept. 2000. http://www.w3.org/TR/2000/
WD-DOM-Level-1-20000929/.

[6]

YOSHIHAMA, S., TATEISHI, T., TABUCHI, N., AND MAT-
SuMOTO, T. Information-flow based access control for web
browsers. IEICE Transactions on Information and Systems E92.D,
5 (2009), 836-850.

ZALEWSKI, M. Browser security handbook, Dec. 2009. http:
//code.google.com/p/browsersec/wiki/Main.

[8]

