
Types and Programming Languages
The Next Generation

Benjamin C. Pierce
University of Pennsylvania

LICS, 2003

1/89



Overview

Birds-eye view of what’s happening in the world of types
for programming languages (not logic or theorem proving)

Using 1993 and 2003 as reference points

2/89



Caveats

I’ll be...

• painting with a broad brush

• painting with a lot of people’s paints

• making a quick sketch, not a finished landscape

and giving few citations!

3/89



Overview

• Some changes in the PL world

4/89



Overview

• Some changes in the PL world

• Some mature research areas

4/89



Overview

• Some changes in the PL world

• Some mature research areas

• Some “still going strong” areas

4/89



Overview

• Some changes in the PL world

• Some mature research areas

• Some “still going strong” areas

• Some new kids on the block

4/89



Overview

• Some changes in the PL world

• Some mature research areas

• Some “still going strong” areas

• Some new kids on the block

• Some current trends and challenges

4/89



Some Big Changes

5/89



We’ve come a long way, baby

It doesn’t always feel like it when you are working in the
trenches, but the world of PL research has changed in
some major ways in ten years...

6/89



The Java (and C#) Juggernaut

The “end of the argument” about safe languages, types,
garbage collection, etc., etc.

7/89



PCC Hits the Big Time

A side effect of the success of Java and C# is that “proof
carrying code” is already taking over as a standard format
for exchanging and installing code over the net.

• Java and C# are simple instances (proofs ∼ typing
derivations or annotations that can be used to
reconstruct them)

• much more ambitious variants are being proposed
[foundational PCC, etc.]

8/89



Technology Transfers

Industrial interest −→ shortening time-horizon for (at least
some) technology transfer

• Transferring garbage collection into mainstream
languages took ∼30 years

• Transferring F-bounded quantification and local type
inference into Java (to form GJ) took ∼5 years

9/89



The security boom

Brought to you by the recent explosion and imminent
collapse of the internet...

At least some parts of the world (e.g. funding agencies)
are waking up to the urgency of better software security.

Trivial link with PL: Can’t build castles out of cardboard!

Less trivial: Maybe we can bring techniques and insights
from programming languages to bear on understanding,
formalizing, and checking “real security properties”
(secrecy, authenticity, anonymity, etc., etc.).

10/89



Rise of “Lightweight Formal Methods”

“Formal methods will never have any impact until they
can be used by people that don’t understand them.”

— (attributed to) Tom Melham

Don’t prove correctness; just find bugs...

• Model checking

• “Light” specification and verification [ESC, SLAM, etc.]
(not always even sound!)

• Typechecking!

The basic ideas are long-established; but industrial
attitudes have been greatly “softened” by the success of
model checking in hardware design.

11/89



Big Type Systems

People are getting more courageous

cavalier?

about working with
complex type systems

• Surprisingly complex type systems are being used
now in the real world (cf. GJ!)

• Very complex type systems are being explored in
research

Type systems are also getting richer — being used to
track stronger and stronger invariants on data objects and
their assumptions about their environment

12/89



Pervasive Presence of Pi

Another result (?)...

The pi-calculus [Milner-Parrow-Walker] has had a huge
influence on the PL research world.
• compelling in itself

• first concurrent calculus to be both “powerful enough” (to encode
lambda-calculus, e.g.) and also mathematically elegant and tractable

• popularized operational techniques such as
bisimulation

• focused attention on name binding (ν)

One result: Most PL people today know something about
concurrency... a big change from ten years ago

13/89



Triumph of Operational Semantics

Since the early ’90s, the focus in the PL community has
moved from denotational descriptions and proof techniques
to operational ones

• closer to PL practice (abstract machines)

• “lower-level” −→ easier to deal with wide range of
language features (in particular, concurrency!)

• increasingly powerful proof techniques becoming
available [Pitts, etc.]

14/89



One “Mature” Area:

6= “finished”!

Object Types

15/89



Overview

Goal: Formalize / explain core features of OO languages
by “compilation” into some typed lambda-calculus

There is some disagreement about what are the core
features, but people pretty much agree at least on:
• “OO-style” abstraction

• subtyping

• subclassing (or method override)

• open recursion through self (a.k.a. this)

16/89



Timeline

P
reh
isto
ry

1983 A Semantics of Multiple Inheritance [Cardelli]
1989 Inheritance is not Subtyping [Cook, Hill, Canning]

R
esu
lts

1993 A Paradigmatic Object-Oriented Programming Language:
Design, Static Typing and Semantics [Bruce]

1993 Object-Oriented Programming Without Recursive Types [Pierce-Turner]
1994 A Theory of Objects [Abadi-Cardelli]

R
efinem

ents

1996 On Binary Methods [Bruce-Cardelli-Castagna-HOG-Leavens-Pierce]
1996 An Interpretation of Objects and Object Types

[Abadi-Cardelli-Viswanathan]
1997 Comparing Object Encodings [Bruce-Cardelli-Pierce]

E
xp
lotatio

n

1996 Objective ML: A simple object-oriented extension of ML [Rémy-Vouillon]
1998 Making the Future Safe for the Past: Adding Genericity to the Java

Programming Language [Bracha-Odersky-Stoutamire-Wadler]
2001 Design and Implementation of Generics for the .NET Common

Language Runtime [Kennedy-Syme]

17/89



OC vs. lambda-calculus encodings

The object calculus and lambda-calculus approaches are
fundamentally very similar — they deal with the same range of
phenomena and rely on essentially the same typing mechanisms.

However, the object calculus has proved more popular. Why?

• Immediacy: OC is obviously object-oriented −→ appealing

• Implementability:
• operational semantics of OC is close to something one could imagine
implementing directly (though few people have!).

• operational behavior of lambda-calculus encodings is easy to “get
right modulo efficiency” but challenging to work out in a way that
would satisfy an OO compiler writer

• Inflexibility: OC (in original form) does not support “depth
subtyping” ({x:A,y:C} ≤ {x:B,y:C} if A ≤ B)
Leads to nice simplification of the theory
Same restriction possible in λ-calculi, but “feels unnatural”

18/89



Technical Challenge

What is the precise relation between structural and
nominal type systems?
• structural: type names are just abbreviations for (completely
interchangeable with) their definitions; type equivalence,
subtyping, etc. follow structure
used in most research on type systems

• nominal: type names matter; subtyping declared by
programmer (checked for consistency by compiler)
used in most mainstream OO languages
(GJ and C# generics are actually a complex hybrid)

Is there a general way to transfer mechanisms / results
from one setting to the other?

19/89



Technical Challenge

What is the precise relation between structural and
nominal type systems?
• structural: type names are just abbreviations for (completely
interchangeable with) their definitions; type equivalence,
subtyping, etc. follow structure
used in most research on type systems

• nominal: type names matter; subtyping declared by
programmer (checked for consistency by compiler)
used in most mainstream OO languages
(GJ and C# generics are actually a complex hybrid)

Is there a general way to transfer mechanisms / results
from one setting to the other?

Cardelli-Gosling isomorphism, anyone?

19/89



Another Challenge

Explaining polymorphic OO programming to the masses
• golden opportunity for a good textbook! [your name here]

20/89



Some Ongoing Areas

and still surprisingly vibrant...

21/89



Bounded Quantification

22/89



Basic Idea

Combine subtyping...
S ≤ T

...and universal quantification...

All X. U

...with a twist:
All X≤T. U

23/89



Timeline

B
a
sics

1985 On Understanding Types, Data Abstraction, and Polymorphism
[Cardelli-Wegner] (“Kernel F≤”)

1990–92 Coherence of Subsumption: Minimum typing and type-checking
in F≤ [Curien-Ghelli] (“Full F≤”)

1991 An Extension of System F with Subtyping
[Cardelli-Martini-Mitchell-Scedrov]

1992 Bounded Quantification is Undecidable [Pierce]

E
xtensio

ns

1993 Intersection Types and Bounded Polymorphism [Pierce]
1994 Subtyping in F

ω
∧ is Decidable [Compagnoni]

1994 Higher-Order Subtyping [Pierce-Steffen]
1995 On Subtyping and Matching [Abadi-Cardelli]
1997 Termination of system F-bounded: A complete proof [Ghelli]
1999 Subtyping Recursive Types in Kernel Fun [Colazzo-Ghelli] LICS!

24/89



Type Inference

25/89



Motivation

The more interesting your types get, the less fun it is to
write them down!

26/89



Trends

• For more powerful forms of polymorphism...
• undecidability for System F [Wells] LICS!

• for rank-2 polymorphism [Kfoury-Tiuryn] and intersections
[Kfoury-Wells]

• Type operators [Peyton-Jones, etc.]

• With constraints...
• row variables [Wand, Remy]

• subtyping [Aiken, Smith, etc.]

• refinement types [Pfenning, Freeman, Davies, etc.]

• type classes [Wadler-Blott, Jones]

• HM(X) — a generic framework for type inference with
let-polymorphism [Odersky-Sulzmann-Wehr]

27/89



Trends

• Partial...
• based on higher-order unification [Boehm, Pfenning]

• using datatype constructors as type annotations [Laufer-Odersky,
Garrigue-Remy]

• MLF [Garrigue-Remy]

• Local...
• Local Type Inference [Pierce-Turner]

• Colored Local Type Inference [Odersky-Zenger-Zenger]

28/89



Effects

29/89



Idea

A type can describe not only the “shape” of the final
result of a computation, but also (some approximation of)
the effects it causes while evaluating

30/89



Timeline

P
reh
isto
ry

1987 FX-87 Reference Manual
[Gifford-Jouvelot-Lucasses-Sheldon]

Fo
rm
aliz
atio
n

1992 Algebraic Reconstruction of Types and Effects
[Jouvelot-Gifford]

1992 The type and effects discipline [Talpin-Jouvelot] LICS!
1994 Implementing the Call-By-Value Lambda-Calculus using a

Stack of Regions [Tofte-Talpin]

E
xp
lo
itatio

n

mid ’90s – now ML Kit compiler
Cyclone
Cryptyc
exception analyses
process type systems with effects
etc., etc.

31/89



Dependent Types

32/89



Trends

Recent work on dependent types in programming
languages can be roughly divided into two streams:

• designing languages with full dependent types (a.k.a.
“doing it the hard way”) — e.g., Cayenne

• controlling dependent types to ensure tractable
typechecking (and good interaction with
nontermination, effects, etc.) — e.g., Pfenning and Xi

33/89



Timeline

Also...

P
reh
isto
ry

1986 Typechecking Dependent Types and Subtypes [Cardelli]
1988 Phase distinctions in type theory [Cardelli]

N
ew
E
xp
lo
ratio

n

1992 Pattern Matching with Dependent Types [Coquand]
1996 Subtyping Dependent Types [Aspinall-Compagnoni] LICS!
1998 Cayenne — a language with dependent types [Augustsson]
1999 Dependent types in practical programming [Xi-Pfenning]
1999 Recursion and Dynamic Data-structures in Bounded Space:

Towards Embedded ML Programming [Hughes-Pareto]
and many follow-on papers on types for space-bounded computations

2003 A Nominal Theory of Objects with Dependent Types
[Odersky-Cremet-Rockl-Zenger]

34/89



Module Systems

35/89



Overview

1993: Definition of Standard ML
• Powerful module system

• Unsatisfactory (clunky, implementation-oriented) formalization

2003: Type-theoretic account of SML-like module systems

Work in this decade has focused on developing
type-theoretic foundations for...
• modules with types (definitions / singletons)

• controlled information hiding (translucency)

• parameterization (functors)

• “sharing”

• hierarchy (sub-structures)

36/89



Overview

At the same time, some progress has been made on
formalizing alternative modularity ideas from elsewhere —
in particular, from the OO community

• virtual types (objects with “type members”)

• “mixin modules”

37/89



Timeline

P
reh
isto
ry

1986 Using dependent types to express modular structure
[MacQueen]

Fo
u
ndatio

ns

1990 Higher-Order Modules and the Phase Distinction
[Harper-Mitchell-Moggi]

1994 A Type-Theoretic Approach to Higher-Order Modules with Sharing
[Harper-Lillibridge] (“translucent sums”)

1994 Manifest Types, Modules, and Separate Compilation [Leroy]
1996 Mixin Modules [Duggan-Sourelis]
1997 Program Fragments, Linking, and Modularization [Cardelli]
1999 Non-dependent Types for Standard ML Modules [Russo]

C
o
nso
lidatio

n

2002 A Theory of Mixin Modules: Algebraic Laws and Reduction
Semantics [Ancona-Zucca]

2003 A type system for higher-order modules [Dreyer-Harper-Crary]

38/89



Challenge

How can these threads of work be brought together?

In particular, can we combine the benefits of...?

• ML-style modules (functors, sharing, etc.)

• objects, classes, and inheritance

• Haskell-style classes (overloading)

• mixins

39/89



Challenge: Pragmatics (ML-style)

Are the benefits of ML-style module systems really worth
the costs (in particular, the hit to the language complexity
budget)?

My own take:
• the costs are real and important

• the benefits are also real, but it is surprisingly difficult to come up with
examples where there is no other way of doing things (using objects
instead of modules, playing games with makefiles and linkers, accepting an
occasional run-time type test, etc., etc.)

Can these benefits be explained to real programmers?

Are there other ways?

40/89



Challenge: Recursive Modules

Often-requested feature: mutually recursive modules (i.e.,
type and value recursion across module boundaries)
Surprisingly tricky in the context of the other features of
ML-like languages:

• semantics of module recursion tricky to define in a
call-by-value setting

• combining recursion with abstract types

• ensuring conservativity over the core language

41/89



Challenge

Strong module systems in dynamic settings

• marshalling (tricky when abstract types are involved)
[Sewell et al.]

• dynamic loading

• dynamic re-loading [Hicks]

42/89



Some New Areas

43/89



Linear Types

44/89



Linear Types

Original idea: Linear types can be used to eliminate
garbage collection
• true in some sense, but not useful — only works for
exponential-free programs! [Chiramar, Gunter, Riecke]

45/89



Linear Types

Original idea: Linear types can be used to eliminate
garbage collection
• true in some sense, but not useful — only works for
exponential-free programs! [Chiramar, Gunter, Riecke]

Better idea: Linear types can be used to track many sorts
of “capabilities” (and “obligations”) in programs

• storage initialization in low-level programs

• deadlock prevention in concurrent languages

• alias types; islands; ownership types; etc.

45/89



Example: Vault

C dialect with a linear type system for managing
resources such as memory blocks, files, network
connections, graphics contexts, etc.
Basic ideas:

• Annotate types with keys representing capabilities of
various sorts

• Track set of “held keys” in each computation state
• e.g., opening a file creates a key

• closing requires a key and destroys it

• Allow access to a resource only when all the keys
associated with its type are currently held

Many refinements needed to make all this work in practice!

46/89



Process Types

47/89



Overview

The past decade has seen the establishment of a small
industry in type systems for concurrent calculi such as the
pi-calculus.

First steps: “Transplanted” type systems based on familiar
typed lambda-calculi

Later developments: “Native” concurrent type systems
incorporating notions of temporal or causal dependency.

Core ideas:
• modes (e.g., read-only, write-only, read-write channels)

• multiplicities (e.g., linearity)

• temporal ordering of interactions (natural outgrowth of
linearity)

48/89



Timeline

P
reh
isto
ry

1974 The specification of process synchronization by path expressions
[Campbell-Habermann]

70s–90s Many type analyses for concurrent languages
[Nierstrasz, Puntigam, etc., etc.]Tra
nsp
la
nts

1993 Typing and subtyping for mobile processes [Pierce-Sangiorgi] LICS!
1996 Linearity and the pi-calculus [Kobayashi-Pierce-Turner]
1997 Behavioral equivalence in the polymorphic pi-calculus

[Pierce-Sangiorgi]

G
o
ing

native

1996 Graph types for monadic mobile processes [Yoshida]
1997 A Partially Deadlock-Free Typed Process Calculus [Kobayashi]
1998 Language primitives and type disciplines for structured

communication-based programming [Honda-Vasconcelos-Kubo]

E
xp
lo
itatio

n

1998–now Many behavioral type systems for pi, ambient, join, etc.
[Kobayashi, Yoshida, Honda, Igarashi, Hennessy, Reily,
Sumii, Cardelli, Gordon, etc., etc.]

2001 A generic type system for the pi-calculus [Igarashi-Kobayashi]

2001–3 MSR Behave! project [Larus-Rajamani-Rehof]
2002 Resource Usage Types [Igarashi-Kobayashi]

49/89



Challenges

• Taming complexity! (Type inference helps, but not
enough...)

• Developing analyses that are accurate enough in the
presence of destructive update (needed for practical
applications to mainstream imperative languages)

• Stress-testing in practice [Behave!]

• Folding new ideas back into sequential languages

50/89



Behave!

“Types as models”

Type checkers are more concrete and model checkers are
getting more symbolic.

Can they meet in the middle?

51/89



Security Types

52/89



Security Types

Many intriguing and fruitful connections can be found
between programming languages and mainstream security.

• non-interference ←→ contextual equivalence
(bisimulation, etc.) [spi-calculus, ...]

• keys / nonces ←→ variable binding (references,
channels, pi-calculus ν operator)

• etc.

53/89



Timeline

P
reh
isto
ry

1982 Security Policies and Security Models [Goguen-Meseguer]
secrecy ∼ non-interference

1978 Syntactic Control of Interference [Reynolds]

B
a
sics

1996 A Sound Type System for Secure Flow Analysis [Volpano-Smith]
security types for simple imperative language

1997 Secrecy by Typing in Security Protocols [Abadi]
“Un” types for security against untyped attackers (in spi-calculus)

1998 The SLam Calculus: Programming with Secrecy and Integrity
[Heintze-Riecke]

R
efinem

ents

2001 Secrecy Types for Asymmetric Communication [Abadi-Blanchet]
2001 Authenticity by Typing for Security Protocols [Gordon-Jeffrey]

(Cryptyc project)

54/89



Challenges

Can we loosen the overly paranoid (“absolute secrecy is
the minimum acceptable”) demands of non-interference?

e.g.:

• relative secrecy [Volpano-Smith]

• declassification [Zdancewic]

55/89



Challenges

“Cryptographic parametricity”?

• Cryptography is a mechanism for information hiding

56/89



Challenges

“Cryptographic parametricity”?

• Cryptography is a mechanism for information hiding

• Polymorphism and abstract types are mechanisms for
information hiding

56/89



Challenges

“Cryptographic parametricity”?

• Cryptography is a mechanism for information hiding

• Polymorphism and abstract types are mechanisms for
information hiding

• Can a precise connection be drawn between them?

56/89



Challenges

“Cryptographic parametricity”?

• Cryptography is a mechanism for information hiding

• Polymorphism and abstract types are mechanisms for
information hiding

• Can a precise connection be drawn between them?

E.g.:

• Is there a fully abstract translation from System F to
an untyped lambda-calculus enriched with
cryptographic primitives?
[cf. current work by Sumii]

56/89



Challenges

Applying PL techniques to formalizing other concepts
from the security literature (authenticity, anonymity, ...)

57/89



Example: Cryptyc

• domain-specific language (based on spi-calculus) for
describing cryptographic protocols
• “correspondence assertions” formalize authenticity properties

• domain-specific type system incorporating
• channel types

• effects

• nonce types

• ’untrusted type” for information from attackers [Abadi]

cf. Authenticity by Typing for Security Protocols
[Gordon-Jeffrey]

58/89



High-level types
for low-level languages

59/89



Overview

“When bad languages do good types...”

1996–98 were watershed years, with two highly visible
developments (proof-carrying code and typed assembly
language) drawing together earlier ideas into attractive
bundles and energizing a great deal of new work.

60/89



Timeline

E
xp
lo
ratio

n

1960s–90s various work on machine-level verification [e.g. Hoare]
1994 A type-based compiler for Standard ML [Shao-Appel]
1995 TIL: A type-directed optimizing compiler for ML

[Tarditi-Morrisett-Cheng-Stone-Harper-Lee]
1996 Comparing Object Encodings [Bruce-Cardelli-Pierce]C

o
nso
lidatio

n

1996–7 Proof-Carrying Code [Necula-Lee]
1998 From System F to Typed Assembly Language

[Morrisett-Walker-Crary-Glew]

R
efinem

ent

2001 Foundational Proof-Carrying Code
[Appel (also Felty, Shao, etc.)]
(and many other refinements and extensions of basic PCC and TAL)

E
xp
lo
itatio

n

2002 Cyclone: A Safe Dialect of C [Jim, Morrisett, et al.]
2002 CCured: type-safe retrofitting of legacy code [Necula et al]
2001 Enforcing High-Level Protocols in Low-Level Software

(Vault project) [Deline-Fähndrich]

61/89



Types for XML

62/89



Goal

“Taking schemas seriously as types...”

Motivation:

• XML documents often come with schemas describing
their structure

• However, XML-processing languages either...
1. ignore this structure, treating all XML documents
uniformly as generic trees... (unsafe!)

2. or translate schemas (and documents) into rough
equivalents expressible using the language’s native types
and values [“data binding”]... (safe, but awkward!)

Goal: Develop a statically typed language with native
support for XML

63/89



Key Ingredients

There are several common schema languages for XML
(DTD, XML-Schema, Relax-NG, ...). All are based on some
form of regular tree automata.

In terms of types, we need:

• recursive types (regular trees)

• non-disjoint unions (non-determinism)

• subtyping (language inclusion)

64/89



Timeline

T
h
eo
ry

1980s intersection types [Coppo-Dezani]
1988 Forsythe [Reynolds]
1991 recursive subtyping [Amadio-Cardelli]
1990s union types [Dezani et al., Aiken et al., Church project ]

L
a
ng
u
ag
es

2000 XDuce [Hosoya-Pierce-Vouillon]
early 2000s XQuery [Fernandez, Simeon, Wadler, et al.]
2002 CDuce [Benzaken, Castagna, & Frisch]
2003 Xtatic [Gapeyev, Levin, Pierce Schmitt, etc.]

65/89



Example: XDuce

Goals:

• Demonstrate viability of native XML processing in a
statically typed setting

• Develop fundamental theory and algorithms for
“regular” types and pattern matching

66/89



Regular Types

T ::= String leaf
X type name
() empty sequence
T,T concatenation
l[T] tree labeled l

~[T] tree labeled anything
T|T union

Fix global set of (mutually recursive) definitions X = T.

Recursive uses of variables only allowed in rightmost
positions and under labels (to keep things regular).

Standard regex operators (T?, T*, etc.) definable

67/89



Example: Types

type Addrbook = addrbook[Person*]

type Person = person[Name,Email*,Tel?]

type Name = name[String]

type Email = email[String]

type Tel = tel[String]

val mybook = addrbook[person[name["Haruo Hosoya"],

email["hahosoya@upenn"],

email["haruo@u-tokyo"]],

person[name["Jerome Vouillon"],

email["vouillon@upenn"],

tel["215-123-4567"]]]

68/89



Regular Patterns

Regular types suggest an elegant pattern-matching
mechanism...

• statically typed “tree-grep”

• typechecker can do standard tests for exhaustiveness
and irredundancy

• includes all of ML-style “algebraic pattern matching”
as a special case

• experience in XDuce: very pleasant for programming

69/89



Regular Patterns

Regular patterns are just regular types decorated with
variable bindings:

P ::= String leaf
X pattern name
() empty sequence
P,P concatenation
l[T] tree labeled l

~[T] tree labeled anything
P|P alternation
P as x binding

Linearity: The sub-patterns P1 and P2 in P1|P2 must bind
the same set of variables. In P1,P2 they bind disjoint sets.

70/89



Example: A simple pattern match

match p with

person[name[n], Email*, tel[t]]

-> (* do some stuff involving n and t *)

| person[p]

-> (* do other stuff *)

Note how the type Email* is used in the first pattern to
match a variable-length sequence of email nodes.

71/89



Example: A complete XDuce function

fun tels : Person* -> (Name,Tel)* =

person[name[n], Email*, tel[t]], rest

-> name[n], tel[t], tels(rest)

| person[p], rest -> tels(rest)

| () -> ()

72/89



A More Interesting Example

Using regular expression patterns, we can extract the
subcomponents of an HTML table with a single match...

match t with

table[cap as Caption?,

col as (Col*|Colgroup*),

hd as Thead,

ft as Tfoot?,

bd as (Tbody+|Tr+)]

-> ...

73/89



Challenge: Integration with Objects

“Regular types for the masses”

What was achieved in XDuce:
• basic definitions of regular types and pattern matching

• fundamental algorithms (subtyping, type-based pattern optimization)

• prototype implementation (good-quality front end + simple interpreter)

What was not achieved:
• High-performance pattern compilation

• Integration with other standard typing features — in particular, objects

• Inter-operability with established libraries and legacy systems

−→ Xtatic
• Lightweight extension of C# with regular types and patterns

74/89



Challenge: adding polymorphism

types ∼ patterns

⇓

polymorphic types ∼ parameterized patterns

Writing down the definition of a system with regular types
and polymorphism is not so hard.

Finding reasonable algorithms for deciding the subtype
relation for such a system appears to be quite challenging.

75/89



Modal Types

76/89



Goal

Extract new typing ideas from (intuitionistic variants of)
standard modal logics

Potential applications include type systems for...

• run-time code generation

• meta-programming and higher-order syntax with free-variables

• memoization and incremental computation

• information flow and security

• distributed computation

• resource-bounded computation

• etc., etc.

77/89



Timeline

E
na
b
ling

1993 The Proof Theory and Semantics of Intuitionistic Modal Logic [Simpson]
2001 Categorical and Kripke Semantics for Constructive Modal Logics

[Alechina-dePaiva-Mendler-Ritter]
and other papers by same authors

E
xp
lo
ratio

n

1996 A Temporal Logic Approach to Binding-Time Analysis [Davies] LICS!
2001 A Judgmental Reconstruction of Modal Logic [Davies-Pfenning]
2001 A modal analysis of staged computation [Davies-Pfenning]

L
a
ng
u
ag
e
desig

n

1997 [Taha-Sheard] (MetaML)
and many follow-on papers

78/89



Polytypic Programming

(or Generic Programming)

79/89



Goals

Use type analysis for...

• eliminating boilerplate code in programs that “walk
over” complex data structures

• efficient (tag-free) compilation of polymorphic code

• dynamic type-testing

80/89



Trends

• What information is used at runtime?
• none (completely static specialization) (liked by the polytypic people
b/c no run-time cost. Has limits in expressiveness though.)

• dictionary-passing (Haskell type classes )

• type passing

• What types can be analyzed?
• atomic types of kind *, e.g. int, char (prehistory, overloading)

• atomic types of any kind (constructor classes [Jones])

• inductively defined types (intensional polymorphism, extensional
polymorphism)

• type constructors of kind * -> * [PolyP]

• type constructors of kind * -> ... * -> * [Functorial ML]

• type constructors of any kind [Hinze]

• Type-level type analysis?
• intensional polymorphism

• starting to show up in Generic Haskell

81/89



Challenge

Getting a good handle on reflection (as found in Java, etc.)

82/89



Finishing Up...

83/89



Summary

...and lots of other stuff!!

• “mature”
• object types

• “ongoing”
• bounded quantification

• type inference

• effects

• dependent types

• module systems

• new (or newly energized)
• linear types

• process types

• security types

• types for low-level languages

• types for XML

• modal types

• polytypic programming

84/89



A couple last challenges

85/89



New Influences from Semantics?

E.g.:

• Separation logic [O’Hearn, Reynolds, etc.] has made
impressive progress in reasoning about
heap-manipulating programs

What would a type system based on separation logic
look like? What could it be used for?

• What about game semantics? (Could a
meta-language for strategies somehow be useful for
programming?)

• etc.

86/89



Mechanization

The next functional language should have a completely
mechanized abstract syntax, elaborator, and semantics
with a completely machine-checked proof of type sound-
ness.

— Greg Morrisett

We are getting really, really,REALLY tired of
writing and reading subject-reduction proofs.

When are we going to have tools that let us formalize all
this stuff conveniently?

87/89



Acknowledgements

Many thanks for all the great conversations that went into
the making of this talk!

Thorsten Altenkirch
Bob Harper
Naoki Kobayashi
Xavier Leroy
Alan Jeffrey
Greg Morrisett
Aleks Nanevski
Andy Pitts
Frank Pfenning

Fran cois Pottier
Didier Rémy
John Reynolds
Andre Scedrov
Alan Schmitt
Eijiro Sumii
Stephanie Weirich
Steve Zdancewic

...and everybody else that’s taught me about
types over the years

88/89


	Overview
	Caveats
	Overview
	Some Big Changes
	We've come a long way, baby
	The Java (and C#)
Juggernaut
	PCC Hits the Big Time
	Technology Transfers
	The security boom
	Rise of ``Lightweight Formal Methods''
	Big Type Systems
	Pervasive Presence of Pi
	Triumph of Operational Semantics
	One 
node {MATURE}{``Mature''} Area:
put (.5,1.5){MARK
{NOTFIN} parbox {1.5in}{setFontTextSmall {darkred $
eq $ ``finished''!}}}
ccurve
[linecolor=red,angleA=60,angleB=180,ncurv=.9]{<-}{MATURE}{NOTFIN} \[1.4ex]
Object Types 
	Overview
	Timeline
	OC vs. lambda-calculus encodings
	Technical Challenge
	Another Challenge
	Some 
node {ONGOING}{Ongoing} Areas 
put (0,-1.5){MARK
{VIB};parbox {1.5in}{setFontTextSmall darkred and still surprisingly
vibrant...}}
ccurve [linecolor=red,angleA=-60,angleB=180,ncurv=.9]{<-}{ONGOING}{VIB}
	Bounded Quantification
	Basic Idea
	Timeline
	Type Inference
	Motivation
	Trends
	Trends
	Effects
	Idea
	Timeline
	Dependent Types
	Trends
	Timeline
	Module Systems
	Overview
	Overview
	Timeline
	Challenge
	Challenge: Pragmatics (ML-style)
	Challenge: Recursive Modules
	Challenge
	Some New Areas
	Linear Types
	Linear Types
	Example: Vault
	Process Types
	Overview
	Timeline
	Challenges
	Behave!
	Security Types
	Security Types
	Timeline
	Challenges
	Challenges
	Challenges
	Example: Cryptyc
	High-level types \ for low-level languages
	Overview
	Timeline
	Types for XML
	Goal
	Key Ingredients
	Timeline
	Example: XDuce
	Regular Types
	Example: Types
	Regular Patterns
	Regular Patterns
	Example: A simple pattern match
	Example: A complete XDuce function
	A More Interesting Example
	Challenge: Integration with Objects
	Challenge: adding polymorphism
	Modal Types
	Goal
	Timeline
	Polytypic Programming \[1ex] (or Generic Programming)
	Goals
	Trends
	Challenge
	Finishing Up...
	Summary
	A couple last challenges
	New Influences from Semantics?
	Mechanization
	Acknowledgements

