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dINRIA Rhône-Alpes, 38330 Montbonnot, France

Preprint submitted to Elsevier Science 12 October 2006



Abstract

Increased reliance on optimistic data replication has led to burgeoning interest in
tools and frameworks for synchronizing disconnected updates to replicated data.
But good data synchronizers are challenging both to specify and to build.

We have implemented a generic synchronization framework, called Harmony, that
can be used to build state-based synchronizers for a wide variety of tree-structured
data formats. A novel feature of this framework is that the synchronization process—
in particular, the recognition of conflicts—is driven by the schema of the structures
being synchronized.

We formalize Harmony’s synchronization algorithm, prove that it obeys a simple
and intuitive specification, and illustrate, using simple address books as a case study,
how it can be used to synchronize trees representing a variety of specific forms of
application data, including sets, records, tuples, and relations.

Key words: synchronization, optimistic reconciliation, XML, Harmony

1 Extended version of a paper originally presented at the Symposium on Database
Programming Languages (DBPL) in Trondheim, Norway, August 2005.
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1 Introduction

Optimistic replication strategies are attractive in a growing range of settings
where weak consistency guarantees can be accepted in return for higher avail-
ability and the ability to update data while disconnected. These uncoordinated
updates must later be synchronized (or reconciled) by automatically combining
non-conflicting updates while detecting and reporting conflicting updates.

Our long-term goal is to develop a generic framework that can be used to build
high-quality synchronizers, with minimal effort, for a wide variety of applica-
tion data formats. As a step toward this goal, we have designed and built a pro-
totype synchronization framework called Harmony, focusing on the important
special cases of unordered and rigidly ordered data, including sets, relations,
tuples, records, feature trees, etc.; the prototype also includes preliminary
support for list-structured data such as structured documents, but both the
theory and the implementation are less advanced. We have used Harmony to
build synchronizers for multiple calendar formats (Palm Datebook, Unix ical,
and iCalendar), bookmarks (handling the formats used by several common
browsers, including Mozilla, Safari, and Internet Explorer), address books,
application preference files, drawings, and bibliographic databases; other ap-
plications are construction.

The Harmony system has two main components: (1) a domain-specific pro-
gramming language for writing lenses—bi-directional transformations on
trees—which we use to convert low-level and possibly heterogeneous concrete
data formats into a common high-level synchronization schema, and (2) a
generic synchronization algorithm, whose behavior is controlled by the syn-
chronization schema.

The synchronization schema actually guides Harmony’s behavior in two ways.
First, by choosing an appropriate schema and the lenses that transform con-
crete structures into this form and back, users of Harmony can control the
alignment of the information being synchronized: the same concrete format
might be transformed to different synchronization schemas (for example, mak-
ing different choices of keys) to yield quite different synchronization semantics;
this process is illustrated in Section 6. Second, during synchronization, the syn-
chronization schema is used to identify conflicts—situations where changes in
one replica must not be propagated to the other because the resulting com-
bined structure would be ill-formed. To our knowledge, Harmony is the first
state-based synchronizer to preserve structural invariants in this way. (By
contrast, operation-based synchronization frameworks preserve application in-
variants by working in terms of a high-level, application-specific algebra of
operations rather than directly manipulating replicated data; see Section 8.)
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Harmony’s language for lenses has been described in detail elsewhere [1]; in
the present paper, our focus is on the synchronization algorithm and the way
it uses schema information. The basic behavior of this algorithm is simple: we
try to propagate changes from each replica to the other, validate the result-
ing trees according to the expected schema, and signal a conflict if validation
fails. However, the details are somewhat subtle: there may be many changes
to propagate from each replica to the others, leading to many possible choices
of where to signal conflicts (i.e., which subset of the changes to propagate).
To ensure progress, we want synchronization to propagate as many changes
as possible while respecting the schema; at the same time, to avoid surprising
users, we need the results of synchronization to be predictable; for example,
small variations in the inputs should not produce large variations in the set
of changes that are propagated. A natural way of combining these design con-
straints is to demand that the results of synchronization be maximal: if there
is any way to validly propagate a given modification from one replica to the
other, then that change must be propagated. Our main technical contribution
is a simple one-pass, recursive tree-walking algorithm that does indeed yield
results that are maximal in this sense (and hence also unique) for schemas
satisfying a locality constraint called path consistency (a semantic variant of
the consistent element declaration condition in W3C Schema).

After establishing some notation in Section 2, we explore the design space
further, beginning in Section 3 with some simple synchronization examples.
Section 4 focuses on difficulties that arise in a schema-aware algorithm. Sec-
tion 5 presents the algorithm itself. (We defer the formal specification to Ap-
pendix A.) Section 6 illustrates the behavior of the algorithm using a simple
address book schema. Section 7 explores the additional challenge of synchro-
nizing list-structured data and proposes a modest extension to the algorithm
for this case. Related and future work are discussed in Sections 8 and 9.

2 Data Model

Internally, Harmony manipulates data in an extremely simple form: unordered,
edge-labeled trees; richer external formats such as XML are encoded as un-
ordered trees. We chose this simple data model on pragmatic grounds: ex-
perience shows that the reduction in the overall complexity of the Harmony
system far outweighs the cost of manipulating ordered data in encoded form
(see [1]). We write N for the set of character strings and T for the set of un-
ordered, edge-labeled trees whose labels are drawn from N and where labels of
the immediate children of nodes are pairwise distinct. We draw trees sideways
to save space: in text, each pair of curly braces denotes a tree node, and each
“X 7→...” denotes a child labeled X—e.g., {Pat 7→111-1111, Chris 7→222-2222}.
To avoid clutter, when an edge leads to an empty tree, we omit the braces,
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the 7→ symbol, and the final childless node—e.g., “111-1111” above actually
stands for “{111-1111 7→{}}.”

A tree can be viewed as a partial function from names to trees; we write t(n)
for the immediate subtree of t labeled with the name n and dom(t) for its
domain—i.e. the set of names of its children. The concatenation operator, · ,
is only defined for trees with disjoint domains; t · t′ is the tree mapping n to
t(n) for n ∈ dom(t) and to t′(n) for n ∈ dom(t′). When n /∈ dom(t), we define
t(n) to be ⊥, the “missing tree.” By convention, we take dom(⊥) = ∅. To
represent conflicts during synchronization, we further enrich the set of trees
with a special pseudo-tree X , pronounced “conflict.” If S is a set of ordinary
trees (i.e., ⊥ 6∈ S and X is not a subtree of any tree in S), we write S⊥ for
S ∪{⊥}, and SX⊥ for the set obtained from S⊥ by allowing arbitrary subtrees
to be replaced by X . We prove many properties by induction on the height of
trees. We define height(⊥) = height(X ) = 0 and the height of an ordinary tree
as height(t) = 1 + max({height(t(k)) | k ∈ dom(t)}).

A path is a sequence of names. We write • for the empty path and p/q for
the concatenation of paths p and q; the set of all paths is written P. The
projection of t along a path p, written t(p), is defined as follows: (1) t(•) = t;
(2) t(n/p) = (t(n))(p) if t 6= X and n ∈ dom(t); (3) t(n/p) = ⊥ if t 6= X and
n 6∈ dom(t); and (4) t(p) = X if t = X . A tree is strictly included in another
tree, written t ⊏ t′, iff t and t′ are different trees and any missing or conflicting
path in t′ is missing in t. Formally, ⊏ is the binary relation on TX⊥×TX⊥ such
that t ⊏ t′ iff t 6= t′ and for every p ∈ P if t′(p) = ⊥ or t′(p) = X then
t(p) = ⊥.

Our algorithm is formulated using a semantic notion of schemas—a schema
S is a set of ordinary trees S ⊆ T . In Section 6 we define a particular syntax
for writing down schemas, which is used in the examples and in our prototype
implementation; however, our core algorithm does not rely on this particular
notion of schema.

3 Basics

Harmony’s synchronization algorithm takes two replicas a, b ∈ T⊥ and a com-
mon ancestor o ∈ TX⊥ and yields new replicas in which all non-conflicting
updates are merged. 2 The missing tree, ⊥, represents replicas that have been

2 We focus on the two-replica case. Our algorithm generalizes straightforwardly to
n simultaneously connected replicas, but the more realistic case where only a subset
of the replicas may be connected at any given moment poses additional challenges.
Some progress in this area is reported in [2].
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Fig. 1. Synchronizer architecture

completely deleted (note that ⊥ is different from the empty tree, {}); X marks
paths in o that a previous synchronization run left in conflict.

Suppose, for example, that we have a tree o representing a phone book and
that we make two replicas of this structure, a and b, and separately modify
one phone number in each:

o = {Pat 7→111-1111, Chris 7→222-2222}

a = {Pat 7→111-1111, Chris 7→888-8888}

b = {Pat 7→999-9999, Chris 7→222-2222}

Synchronization takes these structures and produces a structure

o′ = a′ = b′ = {Pat 7→999-9999, Chris 7→888-8888}

that reflects all the changes in a and b with respect to o. We cache this final
merged state, o′, at the end of each synchronization, to use as the o input for
the next synchronization. 3 Schematically, the synchronizer may be visualized
like the diagram on the left of Figure 1.

In the remainder of this section, we describe the fundamental choices in Har-
mony’s architecture and discuss the relative advantages and disadvantages
of these choices, compared with alternatives found in other synchronization
technologies.

Loose Coupling Harmony is a state-based synchronizer: only the current
states of the replicas (plus the remembered common ancestor state o) are
supplied as inputs; the precise sequences of operations that produced a and
b from o are not available to the synchronizer. The reason for this choice is
that Harmony is designed to require only loose coupling with applications:
it manipulates application data in external, on-disk representations such as
XML trees. The advantage of the loosely coupled approach is that we can

3 In a multi-replica system, an appropriate “last shared state” would instead be
calculated from the causal history of the system.
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use Harmony to synchronize off-the-shelf applications that were implemented
without replication in mind. By contrast, synchronizers that work with the
traces of operations that the application has performed on each replica and
that propagate changes by undoing and/or replaying operations require tight
coupling between the synchronizer and application programs.

Conflicts and Persistence During synchronization, it is possible that some
of the changes made to the two replicas are in conflict and cannot be merged.
For example, suppose that, beginning from the same original o as in the ex-
ample above, we change both Pat’s and Chris’s phone numbers in a while,
in b, we delete the record for Chris entirely, yielding replicas a = {Pat 7→
123-4567, Chris 7→888-8888} and b = {Pat 7→111-1111}. Clearly, there is no
single phone book that incorporates both changes to Chris’s phone number.
Formally, we have a delete/create conflict—the subtree along the path Chris

was deleted in b and a tree was created in a along the path Chris/888-8888.
At this point, we must choose between two evils. On one hand, we can weaken
users’ expectations of the persistence of their changes to the replicas—i.e., we
can decline to promise that synchronization will never back out changes that
the user has made to either replica. For example, here, we might back out the
deletion of Chris, yielding a′ = b′ = {Pat 7→123-4567, Chris 7→888-8888}. The
user would then be notified of the lost changes and given the opportunity to
re-apply them if desired. Alternatively, we can keep persistence and instead
give up convergence—i.e., we can allow the replicas to remain different after
synchronization, propagating just the non-conflicting change to Pat’s phone
number and leaving the conflicting information about Chris untouched in each
replica— a′ = {Pat 7→123-4567, Chris 7→888-8888} and b′ = {Pat 7→123-4567}
—and notify the user of the conflict. 4

In Harmony, we have chosen to favor persistence because it is easier to ensure
that unsupervised reconciliations are safe. (Unsupervised reconciliations are
extremely desirable from the point of view of system administration, facilitat-
ing automatic reconciliation before disconnection or upon re-connection to a
network, via nightly scripts, etc.) Divergent systems are more likely to allow
users to proceed with their work—the set of replicas may be globally inconsis-
tent, but it is more likely that each replica is locally consistent. By contrast,
convergent systems are more likely to force a user to resolve a conflict after a
remote user initiated a synchronization attempt. For example, consider con-
flicting updates to a file with strict syntax requirements (e.g. LaTeX or C); the
convergent system’s attempt to record both updates may result in a file that

4 An industrial-strength synchronization tool will not only report the conflict, but
also assist in bringing the replicas back into agreement by providing graphical views
of the differences, applying special heuristics, etc. We omit discussion of these as-
pects of synchronization, focusing on the synchronizer’s basic, “unattended” behav-
ior.
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causes subsequent processing to fail. For a more detailed survey of convergent
systems, see Section 8.

With this refinement, the schematic view of the synchronizer looks like the
diagram on the right side of Figure 1.

Local Alignment Another fundamental consideration in the design of any
synchronizer is alignment—i.e., the mechanism that identifies which parts of
each replica represent “the same information” and should be synchronized
with each other. Synchronization algorithms can be broadly grouped into two
categories, according to whether they make alignment decisions locally or glob-
ally. Synchronizers that use global heuristics for alignment—e.g., the popular
Unix tool diff3, Lindholm’s 3DM [3], the work of Chawathe et al [4], and
FCDP [5]—make a “best guess” about what operations the user performed
on the replicas by comparing the entire current states with the last common
state. This works well in many cases (where the best guess is clear), but in
boundary cases these algorithms can make surprising alignment decisions. To
avoid these issues, our algorithm employs a simple, local alignment strategy
that associates the subtrees under children with the same name with each
other. The behavior of this scheme should be easy for users to understand and
predict. The cost of operating completely locally is that Harmony’s ability to
deal with ordered data is limited, as we discuss in Section 7.

Lenses The local alignment scheme described above works well when the
replicas are represented in a format that naturally exposes the structure of
the data being synchronized. For example, if the replicas represent address
books, then a good representation is as a bush where an appropriate key field,
providing access to each contact, appears at the root level.



















92373 7→
{

name 7→

{

first 7→Megan,
last 7→Smith

}

, home 7→555-6666

}

,

92374 7→
{

name 7→
{

first 7→Pat,
last 7→Jones

}

, home 7→555-2222

}



















Using the local alignment scheme described above, the effect during synchro-
nization will be that entries from the two replicas with the same key are
synchronized with each other. Alternatively, if no key is available, we might
instead synthesize one by lifting information out of each record—e.g., by con-
catenating the name data and using it as the top-level key field:

{

Megan:Smith 7→{home 7→555-6666} ,
Pat:Jones 7→{home 7→555-2222}

}

It is unlikely, however, that the address book will be represented concretely
(e.g., on disk) in either of these formats. To bridge this gap between actual,
application-determined concrete formats and more synchronization-friendly
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representations, the Harmony system includes a domain-specific language for
writing bi-directional transformations, which we call lenses [1]. By passing
each replica through a lens, we can transform the replicas from concrete for-
mats into appropriately “pre-aligned” forms. After synchronization, our lan-
guage guarantees that the updated replicas are transformed back into the
appropriate concrete formats using the other side of the same lens (i.e., lenses
can be thought of as view update translators [6]). Lenses also facilitate synchro-
nization of heterogeneous formats. Since each replica is passed through a lens
both before and after synchronization, the replicas need not be represented in
the same format. We can apply a different lens to each replica to transform the
disparate concrete representations into the same format for synchronization.

4 The Role of Schemas

To formalize our intuitions about what a user may reasonably expect from
a synchronizer, we impose two core requirements, which we call safety and
maximality. We describe them informally in this section; Appendix A gives
precise definitions.

The safety requirement encompasses four basic sanity checks: (1) The syn-
chronizer must not “back out” any changes made at a replica since the last
synchronization (because we favor persistence over convergence); (2) it must
only copy data between replicas, never “making up” content; (3) it must halt
at conflicting paths, leaving the replicas untouched below; (4) it must produce
results that belong to the same schema as the originals.

Of course, safety alone is too weak: an algorithm that returns both replicas
unchanged would be trivially safe! We therefore say that a safe run is maximal
just in case it propagates all the changes of every other safe run. Our formal
specification, given in Appendix A, demands that every run be maximal.

Our algorithm, unlike other state-based synchronizers, is designed to preserve
structural invariants. As an example of how such invariants can be broken,
consider a run of the algorithm as sketched above, where the inputs are as
follows (we revert to the fully explicit notation for trees here, to remind the
reader that “leaf values” are labels that lead to an empty subtree):

o = {Pat 7→{Phone 7→{333-4444 7→{}}}}

a = {Pat 7→{Phone 7→{111-2222 7→{}}}}

b = {Pat 7→{Phone 7→{987-6543 7→{}}}}

The subtree labeled 333-4444 has been deleted in both replicas, and remains
so in both a′ and b′. The subtree labeled 111-2222 has been created in a, so
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we can propagate the creation to b′; similarly, we can propagate the creation
of 987-6543 to a′, yielding

a′ = b′ =
{

Pat 7→
{

Phone 7→

{

111-2222 7→{},
987-6543 7→{}

}
}}

.

But this behavior is wrong. Pat’s phone number was changed in different ways
in the two replicas. If the phonebook schema only allows a single number per
person, then the new replica is not valid; the desired behavior is a conflict. We
avoid these situations by providing the schema itself as an input to the syn-
chronizer. The synchronizer signals a conflict (leaving the replicas unchanged)
if merging the changes along a particular path yields an ill-formed structure.

Locality and Schemas

A simple way to ensure that the results produced by the synchroniza-
tion algorithm are valid would be to check for schema compliance at the
end of each run, halting with a conflict if the results do not belong to
the schema. This approach is not satisfying, however, since it discards ev-
ery modification even if only a small part of the result is not compliant.
For example, consider synchronizing replicas of a large address book where
only one entry does not belong to the schema after synchronization. Us-
ing the approach described above, the algorithm halts with a conflict on
the entire address book because that single entry is ill-formed and de-
clines to propagate safe updates to any other entries. As this clearly con-
flicts with our goal of maximality, we have taken a more local approach
to schema compliance, which entails some restrictions to the schemas that
may be used. To motivate these restrictions, consider the following schema:
{{}, {n 7→x, m 7→x}, {n 7→y, m 7→y, }, {n 7→{x, y}, m 7→y}, {n 7→x, m 7→{x, y}}}. This
schema expresses a non-local invariant: at most one of m and n has {x, y} as a
subtree. Now, consider synchronizing two replicas belonging to this schema
with respect to an empty archive, o = {}, with a = {n 7→ x, m 7→ x}
and b = {n 7→ y, m 7→ y}. An algorithm that aligns each replica by name
will recursively synchronize the associated subtrees below n and m. How-
ever, it is not clear what schema to use for these recursive calls, because
the set of trees that can validly appear under n depends on the subtree
under m and vice versa. We might try the schema that consists of all the
trees that can appear under n (and m): {x, y, {x, y}}.With this schema,
the synchronizer computes the tree {x, y} for both n and m, reflecting the
fact that x and y were both added under n and m. However, these trees
cannot be assembled into a well-formed tree: {n 7→{x, y}, m 7→{x, y}} does
not belong to the schema. The “most synchronized” well-formed results are
a′ = {n 7→x, m 7→{x, y}} and b′ = {n 7→{x, y}, m 7→y}, but there does not seem
to be any way to find them efficiently. The global invariant expressed by this
schema—that at most one of n or m may have {x, y} as a subtree—cannot
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easily be preserved by a local algorithm.

To avoid such situations, we impose a restriction on schemas, path consis-
tency, that is analogous to the restriction on tree grammars embodied by W3C
Schema. Intuitively, a schema is path consistent if any subtree that appears
at some path in one tree can validly be “transplanted” to the same location
in any other tree in the schema. This restriction ensures that the sub-schema
used to synchronize each child is consistent across the schema; i.e., the set of
trees that may validly appear under a child only depends on the path to the
node and not the presence or absence of other information elsewhere in the
tree.

To define path consistency precisely, we need a little new notation. First, the
notion of projection at a path is extended pointwise to schemas—that is, if
S ⊆ T and p ∈ P, we define S(p) = {t(p) | t ∈ S ∧ t(p) 6= ⊥}. Note that a
schema projection at a path is itself a schema. Next, we define what it means
to transplant a subtree from one tree to another at a given path. Let t ∈ T
and p ∈ P with t(p) ∈ T . The update of t at p with t′, written t[p 7→ t′], is
defined inductively on p as:

t[• 7→ t′] = t′

t[n/p 7→ t′] =
{

n 7→t(n)[p 7→ t′]
m 7→t(m) | m ∈ dom(t) \ {n}

}

A schema S is path consistent if, whenever t and t′ are in S, and for every path
p, the result of updating t along p with t′(p) is also in the schema. Formally,
a schema S is path consistent iff, for all t, t′ ∈ S and p ∈ P, it is the case that
t(p) 6= ⊥ and t′(p) 6= ⊥ together imply t[p 7→ t′(p)] ∈ S. For example, the
schema {{a, b}, {a, c}} is trivially path consistent, as are all schemas whose
members are “flat” trees.

Given a tree t and a path-consistent schema S, testing whether t belongs to
S only requires a local check at every path. Formally, let the domain set of
S, written doms(S), be the set of all domains of trees in S—i.e., doms(S) =
{dom(t) | t ∈ S}. Then t belongs to S iff dom(t) belongs to doms(S) and, for
every name n ∈ dom(t), t(n) belongs to S(n).

To complete the discussion of the role of schemas in synchronization, we
must consider one final complication: for some inputs, there are no maxi-
mal runs belonging to the schema. Consider a run of the synchronizer on
inputs o = {v}, a = {w, y, z}, and b = {w, x}, with respect to the schema
{{v}, {w, x}, {w, x, y}, {w, x, z}, {w, y, z}}. For the a replica, the only tree that
both belongs to the schema and preserves the additions and deletions relative
to o is a itself. However, on the b side, there are three safe results that be-
long to the schema: {w, x}, {w, x, y}, and {w, x, z}. Notice that, since {w, x, y, z}
does not belong to the schema, we cannot include both y and z in b′ without
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backing out the addition of x. For each of these choices for b′ there is a path
p such that b′(p) 6= a′(p), but a different choice of b′ makes b′(p) = a′(p). To
rule out situations like this, we restrict the definition of the set of safe results
so that whenever propagating all of the (otherwise non-conflicting) additions
and deletions of immediate children yields an ill-formed result, a conflict oc-
curs. This condition guarantees the existence of a maximal result because in
such problematic cases a conflict occurs, and safety requires that the origi-
nal replicas be returned when they are in conflict. Hence, the only safe run
is trivially maximal. These new conflicts are called schema domain conflicts
(see Definition 4 for a precise definition) because they can be detected using
the domain set of the schema. Returning to the example, a schema domain
conflict occurs at the root, since y and z cannot be validly added to b′.

Note, that the approach presented in this section is not the only way to en-
sure maximality in a schema-directed algorithm; we have considered several
alternatives. First, we could do away with schema domain conflicts and require
instead that schemas be closed under the “shuffling” of their domains with the
domains of other trees in the schema. This approach amounts to declaring,
by fiat, that the maximal result of every possible synchronization is present
in the schema. For example, the schema above would need to additionally
include {w, x, y, z}. We have not pursued this idea because it does not appear
that shuffled schemas would be able to express the kinds of invariants needed
by applications. Second, we could recognize schema domain conflicts, but, in-
stead of requiring that the replicas remain unchanged, only require that the
domains be unchanged. This approach would allow “deep” synchronization
of subtrees, which has some obvious advantages. However, finding a natural
notion of maximality for this variant has proved difficult. For these reasons,
our first—simplest—proposal seems best.

5 Algorithm

The synchronization algorithm is depicted in Figure 2. Its structure is as
follows: we first check for trivial cases (replicas being equal to each other
or unmodified), we then check for delete/create conflicts and, in the general
case, we recurse on each child label, checking for schema domain conflicts
before returning the results. In practice, synchronization will be performed
repeatedly, with additional updates applied to one or both of the replicas
between synchronizations. To support this, the algorithm constructs a new
archive: we use the synchronized version at every path where the replicas
agree and insert a conflict marker X at conflicting paths.

Formally, the algorithm takes as inputs a path-consistent schema S, an archive
o, and two current replicas a and b; it outputs a new archive o′ and two new
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sync(S, o, a, b) =
if a = b then(a, a, b) – equal replicas: done
else if a = o then (b, b, b) – no change to a: propagate b
else if b = o then (a, a, a) – no change to b: propagate a
else if o = X then (o, a, b) – unresolved conflict
else if a = ⊥ and b ⊏ o then (a, a, a) – a deleted more than b
else if a = ⊥ and b 6⊏ o then (X , a, b) – delete/create conflict
else if b = ⊥ and a ⊏ o then (b, b, b) – b deleted more than a
else if b = ⊥ and a 6⊏ o then (X , a, b) – delete/create conflict
else – proceed recursively

let (o′(k), a′(k), b′(k)) = sync(S(k), o(k), a(k), b(k))
∀k ∈ dom(a) ∪ dom(b)

in

if (dom(a′) 6∈ doms(S)) or (dom(b′) 6∈ doms(S))
then (X , a, b) – schema domain conflict
else (o′, a′, b′)

Fig. 2. Synchronization Algorithm

replicas a′ and b′. We require that both a and b belong to S⊥. The input archive
may contain the conflict marker X . As the replicas represent application data,
they do not contain X .

In the case where a and b are identical (i.e., the same tree or ⊥), they are
immediately returned, and the new archive is set to their value. If one of the
replicas is unchanged (equal to the archive), then all the changes in the other
replica can safely be propagated, so we simply return three copies of it as the
result replicas and archive. Otherwise, both replicas have changed, in different
ways. If there was a conflict in the previous run, then it has not been resolved.
If one replica is missing, then we check whether all the changes in the other
replica are also deletions; formally, we check if the replica is included in the
archive. If so, we consider the larger deletion (discarding the entire tree at this
path) as subsuming the smaller; otherwise, we have a delete/create conflict and
we return the original replicas.

Finally, in the general case, the algorithm recurses: for each k in the domain
of either current replica, we call sync with the corresponding subtrees, o(k),
a(k), and b(k) (any of which may be ⊥), and the sub-schema S(k); we collect
up the results of these calls to form new trees o′, a′, and b′. If either of the new
replicas is ill formed (i.e., its domain is not in the domain-set of the schema),
then we have a schema domain conflict and the original replicas are returned
unmodified. Otherwise, the synchronized results are returned.

(A naive implementation of this algorithm can perform many redundant equal-
ity checks in the common case when the replicas are almost equal—checking
the topmost nodes for equality, failing, recursing on their immediate children,
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checking these again for equality, etc. A combinatorial blowup in running time
can be avoided by caching the results of equality checks.)

Appendix A contains a proof of the following correctness theorem:

Theorem 1 Let S ⊆ T be a path-consistent schema. If a, b ∈ S⊥ and the run
sync(S, o, a, b) evaluates to o′, a′, b′, then the run is maximal.

6 Case Study: Address Books

We now present a brief case study, illustrating how schemas can be chosen so
as to obtain desirable behavior from our generic synchronizer on structures of
realistic complexity. The examples use an address book schema loosely based
on the vCard standard [7], which embodies some of the tricky issues that can
arise when synchronizing larger structures with varied substructure. We begin
with a concrete notation for schemas over unordered trees, based on the Tree
Logic of Dal Zilio et al [8].

Schemas Schemas are given by sets of mutually recursive equations of the
form X = S, where S is an expression generated by the following grammar:

S ::= {} | n[S] | !(F)[S] | *(F)[S] | S,S | S|S | X

The symbols n and F range over names in N and finite sets in P(N ), respec-
tively. The first form of schema, {}, denotes the singleton set containing the
empty tree; n[S] denotes the set of trees with a single child named n, where
the subtree under n is in S; the wildcard schema !(F)[S] denotes the set of
trees with any single child whose name is not in F, where the subtree under
that child is in S; the other wildcard schema, *(F)[S], denotes the set of trees
with any number of children with names not in F, where the subtree under
each child is in S. The set described by S1|S2 is the union of the sets described
by S1 and S2, while S1,S2 denotes the set of trees of the form t1 · t2 where t1
belongs to S1 and t2 to S2. Note that, as trees are unordered, the “,” operator
is commutative (e.g., n[X],m[Y] and m[Y],n[X] are equivalent). We abbreviate
n[S]|{} as n?[S], and likewise !(∅)[S] as ![S] and *(∅)[S] as *[S]. Variables
like X are used to express recursive schemas. As usual, recursive variables may
only appear contractively–e.g., we rule out definitions like X = X and X = {}|X.

In the following, all the schemas we write will be path consistent, a fact that
can be verified syntactically: if a name appears twice in a node, like m in
m[X],n[Y]|m[X],o[Z], the subschemas associated with each occurrence of the
name are textually identical.

Note that our schema formalism, like our generic synchronization algorithm,
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C = name[N],work[V],home?[V],org[O],email[E]

| name[N],work?[V],home[V],org?[O],email[E]

E = !(pref, alts)[{}] | pref[V],alts[VS]

N = first[V],other?[VL],last[V]

O = name[V],unit[V]

V = ![{}]

VL = head[V],tail[VL] | nil[{}]

VS = *[{}]

Fig. 3. Address book schemas

does not distinguish between “structure” edges and “data” edges in trees—
this distinction is just a matter of convention in each particular application.
This choice makes our technical work easier by simplifying the formal objects
(trees and schemas) that we manipulate.

Address Book Schema Here is a typical contact (the notation [t1; . . . ; tn],
which represents a list encoded as a tree, is explained below):

o =



























name 7→{first 7→Meg, other 7→[Liz; Jo], last 7→Smith} ,
email 7→{pref 7→ms@c.edu, alts 7→meg@s.com} ,
org 7→{name 7→City U, unit 7→CS Dept} ,
home 7→555-6666,
work 7→555-7777



























There are two sorts of contacts—“professional” contacts, which contain
mandatory work phone and organization entries, plus, optionally, a home
phone; and “personal” ones, which have a mandatory home phone and, op-
tionally, a work phone and organization information. Some contacts, like the
one for Meg, belong to both sorts. Each contact also has fields representing
name and email data.

The schema C, displayed in Figure 3, describes the record-like structure of
both sorts of contacts. One level down, the subtrees that may validly appear
below the home and work children are simple string values—i.e., trees with
a single child leading to the empty tree—that belong to the V schema. The
subtree below the name child in a valid contact belongs to the N schema, which
describes trees with a record-like structure containing mandatory first and
last children and optionally a child other. The first and last fields lead to
values belonging to the V schema. The other field leads to a list of alternate
names (e.g., middle names and nicknames) stored, for the sake of the exam-
ple, in some particular order. Because our actual trees are unordered, we use
a standard “cons cell” representation to encode ordered lists: [t1; . . . ; tn] is en-
coded as {head 7→t1 , tail 7→{. . . 7→{head 7→tn , tail 7→nil} . . .}}. The schema
VL describes lists of values encoded like this. The email data for a contact is
either a value or else a set of addresses with one distinguished “preferred” ad-
dress. The E schema describes these structures using a union of a wildcard to
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represent single values (excluding pref and alts to ensure path consistency)
and a record-like structure with fields pref and alts to represent sets of ad-
dresses. The schema VS describes bushes with any number of children, each
leading to the empty tree, which are a natural way of encoding sets of values.
Finally, organization data is represented by trees with two children, name and
unit, each leading to values, as described by the O schema.

The Need For Schemas To illustrate how and where schema conflicts can
occur, let us see what can go wrong when no schema information is used.
We consider four runs of the synchronizer using the universal schema Any =

*[Any] (whose denotation is T ); each run shows a different example where
schema-ignorant synchronization produces mangled results. In each case, the
archive, o, is the tree above.

Suppose, first, that the a replica is obtained by deleting the work and org

children, making the entry personal, and that the b replica is obtained by
deleting the home child, making the entry professional:

a =







name 7→{first 7→Meg, other 7→[Liz; Jo], last 7→Smith} ,
email 7→{pref 7→ms@c.edu, alts 7→meg@s.com} ,
home 7→555-6666







b =















name 7→{first 7→Meg, other 7→[Liz; Jo], last 7→Smith} ,
email 7→{pref 7→ms@c.edu, alts 7→meg@s.com} ,
org 7→{name 7→City U, unit 7→CS Dept} ,
work 7→555-7777















Although a and b are both valid address book contacts, the trees that result
from synchronizing them with respect to the Any schema are not, since they
have the structure neither of personal nor of professional contacts:

a′ = b′ =
{

name 7→{first 7→Meg, other 7→[Liz; Jo], last 7→Smith},
email 7→{pref 7→ms@c.edu, alts 7→meg@s.com}

}

Now suppose that the replicas are obtained by updating the trees along the
path name/first, replacing Meg with Maggie in a and Megan in b (from now
on, for the sake of brevity we only show the parts of the tree that are dif-
ferent from o and elide the rest): o(name/first) = Meg, a(name/first) =
Maggie, and b(name/first) = Megan. Synchronizing with respect to the Any

schema yields results where both names appear under first: a′(name/first) =
b′(name/first) = {Maggie, Megan}. These results are ill-formed because they
do not belong to the V schema, which describes trees that have a single child.

Next, consider updates to the email information where the a replica re-
places the set of addresses in o with a single address, and b updates both
pref and alts children in b: o(email) = {pref 7→ ms@c.edu, alts 7→
meg@s.com }, a(email) = {meg@s.com}, and b(email) = {pref 7→
meg.smith@cs.c.edu, alts 7→ ms@c.edu}. Synchronizing these trees with re-
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spect to Any propagates the addition of the edge labeled meg@s.com from
a to b′ and yields conflicts on both pref and alts children, since both
have been deleted in a but modified in b. The results after synchroniz-
ing are thus: a′(email) = meg@s.com and b′(email) = {meg@s.com, pref 7→
meg.smith@cs.c.edu, alts 7→ ms@c.edu}. The second result, b′, is ill-formed
because it contains three children, whereas all the trees in the email schema
E have either one or two children.

Next, consider changes to the list of names along the path name/other. Suppose
that a removes both Liz and Jo, but b only removes Jo: o(name/other) =
[Liz; Jo], a(name/other) = [], and b(name/other) = [Liz]. Comparing the a
replica to o, both head and tail are deleted and nil is newly added. Examining
the b replica, the tree under head is identical to the corresponding tree in
o but deleted from a. The tree under tail is different from o but deleted
from a. Collecting all of these changes, the algorithm yields these results:
a′(name/other) = nil and b′(name/other) = {tail 7→nil, nil}. Here again,
the second result, b′, is ill-formed: it has children tail and nil, which is not
a valid encoding of a list.

Situations like these—invalid records, multiple children where a single value
is expected, and mangled lists—provided the initial motivation for equipping
a straightforward “tree-merging” synchronization algorithm with schema in-
formation. Fortunately, in all of these examples, the step that breaks the
structural invariant can be detected by a simple, local, domain test. In the
first example, where the algorithm removed the home, work, and org children,
the algorithm tests if {name, email} is in doms(C). Similarly, in the second ex-
ample, where both replicas changed the first name to a different value, the
algorithm tests if {Maggie, Megan} is in doms(V). In the example involving the
tree under email, the algorithm tests if the domain {meg@s.com, pref, alts}
is in doms(E). Finally, in the example where both replicas updated the list of
other names, it tests whether {tail, nil} is in doms(VL). All of these local
tests fail, and so the synchronizer halts with a schema domain conflict at the
appropriate path in each case, ensuring that the results are valid according to
the schema.

Next, we further explore the strengths (and weaknesses) of our algorithm by
studying its behavior on the structures used in address books.

Values The simplest structures in our address books, string values, are rep-
resented as trees with a single child that leads to the empty tree and described
by ![{}]. When we synchronize two non-missing trees using this schema, there
are three possible cases: (1) if either of a or b is identical to o then the algo-
rithm set the results equal to the other replica; (2) if a and b are identical to
each other but different from o then the algorithm preserves the equality; (3) if
a and b are both different from o and each other then the algorithm reaches a

17



schema domain conflict and sets o′ = X , a′ = a and b′ = b. These behaviors fol-
low from the local alignment mechanism employed in the algorithm—children
with the same name are identified across replicas and so identical values are
aligned with each other and distinct values synchronized separately. In the
first two scenarios, the differences in a and b (with respect to o) can be assem-
bled into a value; in the third scenario, they cannot. That is, the algorithm
enforces atomic updates to values, propagating updates from one side to the
other only if o and either a or b are identical and otherwise leaving the replicas
unchanged and signaling a schema domain conflict.

Sets Sets can be represented as bushes—nodes with many children, each la-
beled with the key of an element in the set. For example, sets of values belong
to the schema *[{}]. When synchronizing two sets of values, the synchro-
nization algorithm never reaches a schema conflict; it always produces a valid
result, combining the additions and deletions of values from a and b. For exam-
ple, given these three trees representing value sets: o = {meg@s.com}, with a =
{ms@c.edu, meg.smith@cs.c.edu} and b = {meg@s.com, meg.smith@cs.c.edu}
The synchronizer propagates the deletion of meg@s.com and the addition of
two new children, ms@c.edu and meg.smith@cs.c.edu, yielding a′ = b′ =
{ms@c.edu, meg.smith@cs.c.edu}, as expected.

Records Two sorts of record structures appear in the address book schema.
The simplest records, like the one for organization data (name[V],unit[V]),
have a fixed set of mandatory fields. Given two trees representing such records,
the synchronizer aligns the common fields, which are all guaranteed to be
present, and synchronizes the nested data one level down. It never reaches
a schema domain conflict at the root of a tree representing such a record.
Other records, which we call sparse, allow some variation in the names of their
immediate children. For example, the contact schema uses a sparse record to
represent the structure of each entry; some fields, like org, may be mandatory
or optional (depending on the presence of other fields). As we saw in the
preceding section, on some inputs—namely, when the updates to the replicas
cannot be combined into a tree satisfying the constraint expressed by the
sparse record schema—the synchronizer yields a schema conflict but preserves
the sparse record structure.

Conclusion The examples in this section demonstrate that schemas are a
useful addition to a synchronization algorithm: (1) we are guaranteed valid
results in situations where a schema-blind algorithm would yield mangled re-
sults; (2) by selecting an appropriate encoding and schema for application data
(moving keys high in the tree, etc.), we can tune the behavior of the generic
algorithm to work well with many forms of data—both rigidly structured data
(e.g., values and records) and unstructured data (e.g., sets of values). However,
the local alignment strategy reaches its limits when confronted with ordered
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and semi-structured data such as lists and documents, as we shall see next.

7 Synchronizing Lists

The address book schema in the previous section uses lists of values to rep-
resent the ordered collection of optional other names for a contact. We in-
cluded this in the example to show how our synchronization algorithm behaves
when applied to structures that are a little beyond its intended scope—i.e.,
mostly consisting of unordered or rigidly ordered data, but also containing
small amounts of list-structured data. Lists present special challenges, because
we would like the algorithm to detect updates both to elements and to their
relative position. But our local alignment strategy matches up list elements
by absolute position, leading to surprising results on some inputs. In this sec-
tion we illustrate the problem and propose an extension of the algorithm that
provides a better treatment of lists.

To begin with, it is worth noting that, in many cases, updates to lists can
be propagated successfully even by the algorithm we have given. If either
replica is identical to the archive, or if each replica modifies a disjoint subset
of the elements of the list (leaving the list spine intact), then the synchronizer
merges the changes successfully. At each step in a recursive tree walk only one
of the elements will have changed, as in the following example (writing out
the low-level tree representation for each tree):

o = {head 7→Liz, tail 7→{head 7→Jo, tail 7→nil}}

a = {head 7→Elizabeth, tail 7→{head 7→Jo, tail 7→nil}}

b = {head 7→Liz, tail 7→{head 7→Joanna, tail 7→nil}}

The changes under head are propagated from a to b′, and the changes to tail

from b to a′, yielding results:

a′ = b′ = {head 7→Elizabeth, tail 7→{head 7→Joanna, tail 7→nil}}

There are some inputs, however, where synchronizing lists using the local align-
ment strategy and simple cons-cell encoding produces strange results. Consider
a run on the following inputs: o = [Liz; Jo], a = [Jo] and b = [Liz; Joanna].
Considering the changes that were made to each list from a high-level—a re-
moved the head and b renamed the second element—the result calculated for
b′ is surprising: [Jo; Joanna]. The algorithm does not recognize that Jo and
Joanna should be aligned (because Joanna was obtained by renaming Jo). In-
stead, it aligns pieces of the list by absolute position, matching Jo with Liz

and nil with [Joanna].
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sync(S, o, a, b) =
if a = b then(a, a, b) – equal replicas: done

. . .
else if S = List(T ) for some T , then diff3 (T, o, a, b) – special case for lists
else – proceed recursively

let (o′(k), a′(k), b′(k)) = sync(S(k), o(k), a(k), b(k))
∀k ∈ dom(a) ∪ dom(b)

in . . .

Fig. 4. Synchronization With Lists

Of course, it is not very surprising that our purely local algorithm does not do
a good job with lists. Detecting changes in relative position in a list requires
a global comparison of its current and previous states, and our algorithm
makes all its alignment decisions looking at just one structure at a time. We
are experimenting with a number of possible avenues for extending the local
algorithm to deal better with lists. A full treatment of this issue goes beyond
the scope of this paper—in particular, it is not clear how to reconcile powerful
tree-differencing techniques (e.g., [3–5]) with our core goal of maintaining well-
formedness of synchronized structures, or with the mostly unordered nature of
many of the trees we work with. However, we have implemented a very simple
refinement to the algorithm, which preserves its fundamentally local character
while handling many more cases of updates to lists.

The refined algorithm, sketched in Figure 4, uses the synchronization schema
S to test whether the replicas are actually representations of lists. If they are,
and if none of the trivial cases apply, then the algorithm invokes a different
procedure, called diff3, to analyze how the elements of the list should be
aligned; otherwise, it continues with the same recursive case as in the simple
algorithm. The details of what happens inside diff3 are not critical—any list
synchronization algorithm will do; in the version we have implemented, diff3
performs a global alignment of the list structures at the top of o, a, and b
by calculating maximal common sub-sequences between o and a and between
o and b to decide where changes have occurred, just like the standard UNIX
text utility diff3. It then propagates non-conflicting change regions from a
to b and vice versa. On regions where changes conflict, it calls back to sync
recursively on corresponding triples of elements from o, a, and b, passing T ,
the type of the list elements, as the synchronization schema; if a conflict region
does not have the same number of elements in o, a, and b, then a conflict is
signalled and the regions are left as-is in the output.

The result of this refinement is that unordered and rigidly ordered parts of the
input structures are synchronized precisely as before, while embedded lists of
atomic values are synchronized just as the diff3 utility would do. Embedded
lists of more structured data are synchronized first as with diff3 and then
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by recursively synchronizing corresponding subtrees. The well-formedness of
the resulting structures is guaranteed by construction. Of course, the cost
of this extra functionality is that the clear and simple specification of the
synchronizer’s behavior (Appendix A) is no longer applicable. In particular,
the notions of change, conflict, and maximality all become much more subtle.

8 Related Work

Harmony combines a synchronization component with a view update compo-
nent for dealing with alignment and heterogeneous replicas. The latter compo-
nent and related work on the view update problem are described elsewhere [1].
Here, we focus on work related to optimistic replication and synchroniza-
tion. For further information on this area, we recommend an excellent article
by Saito and Shapiro [9] surveying the area of optimistic replication. In the
taxonomy of the survey, Harmony is a multi-master state-transfer system,
recognizing sub-objects and manually resolving conflicts. Harmony is further
characterized by some distinctions not covered in that survey: it is generic,
loosely coupled to applications, and able to synchronize heterogeneous repre-
sentations, and it supports unsupervised operation, where Harmony does as
much work as it can, leaving conflicts for later resolution. This last property,
in particular, demands that the synchronizer’s behavior is intuitive and easy
to predict.

Synchronization Architectures Harmony’s state-based architecture only
requires loose coupling between the synchronizer and applications. By con-
trast, in an operation-based approach, applications must be capable of pro-
viding the synchronizer with a log of the operations performed on each replica.
The behavior of the synchronizer, then, is to merge logs so that, after quies-
cence, when each replica applies its merged log to the last synchronized state,
all the replicas share a uniform state. There are, broadly speaking, three alter-
natives when merging logs: (1) reorder operations on all replicas to achieve an
identical schedule (cf. Bayou [10]), (2) partially reorder operations, exploiting
semantic knowledge to leave equivalent sequences unordered (cf. IceCube [11])
or (3) perform no reordering, but transform the operations themselves, so
that the different schedules on each different replica all have a uniform result
(cf. Molli et al [12]). Although we favor the state-based approach, because it
facilitates loose coupling, there are some advantages to working with opera-
tions. State-based architectures have less information available at synchroniza-
tion time; they cannot exploit the knowledge of temporal sequencing available
in operation logs. When operation logs are available, systems can sometimes
determine that two modifications are not in conflict if one is in the opera-
tion history of the other. Further, in an operation-based system, the designer
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can often choose operations that encode high-level application semantics. The
synchronizer then manipulates operations that are close to the actual user
operations. Treating user-level operations as primitives makes it likely from
the perspective of the user that, even under conflict, the state computed by
the synchronizer will be well-formed.

Other state-based synchronizers include FCDP [5] and most file system syn-
chronizers. File system synchronizers (such as [13–18]) and PDA synchronizers
(such as Palm’s HotSync), are generally state-based but not generic. An in-
teresting exception is DARCS [19], a hybrid state-/operation-based revision
control system built on a “theory of patches.” FCDP is a generic, state-based
reconciler parameterized by ad-hoc translations from heterogeneous concrete
representations to XML and back again. Broadly speaking, FCDP can be
considered an instance of the Harmony architecture—but without the formal
underpinnings. FCDP is less generic (our lens language is easier to extend to
new applications), but it is better able to deal with certain edits to documents
than Harmony. FCDP achieves this by fixing a specific semantics for ordered
lists that is particularly suited for document editing.

On the other side, IceCube [11,20] is a generic, operation-based reconciler that
is parameterized over an algebra of operations specific to the application data
being synchronized and by a set of syntactic/static and semantic/dynamic
ordering constraints on these operations. Molli et al [21,22,12], have also im-
plemented a generic operation-based reconciler, using the technique of opera-
tional transformation. Their synchronizer is parameterized on transformation
functions for all operations, which must obey certain conditions, and also
obeys a formal specification.

It is worth noting that the distinction between state-based and operation-
based synchronizers is not black and white: various hybrids are possible. For
example, we can build a state-based system with an operation-based core by
comparing previous and current states to obtain a hypothetical (typically,
minimal) sequence of operations. But this involves complex heuristics, which
can conflict with our goal of presenting predictable behavior to the user. Simi-
larly, some loosely coupled systems can build an operation-based system with
a state-transfer core by using an operation log in order to determine what
part of the state to transfer. Bengal [23] is an interesting example of the hy-
brid approach; it is a loosely coupled synchronizer that uses operation logs as
an optimization to avoid scanning the entire replica during update detection.
Bengal supports updates to a wide range of databases via OLE/COM hooks,
but is not heterogeneous because reconciliation may only occur between repli-
cas of the same database.

Conflicts and Convergence Harmony, unlike many reconcilers, does not
guarantee convergence in the case of conflicts. When conflicts occur, reconcilers
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can choose one of three broad strategies.

• They can settle all conflicts by fiat, for example by choosing the variant
with the latest modification time and discarding the other.

• They can converge without resolving the conflict. In other words, they can
keep enough information to record both conflicting updates, and converge
to a single state containing the union of the conflicting updates.

• They can choose to diverge. They can maintain the conflicting updates
locally, only, and not converge until the conflicts are (manually) resolved.

Most modern reconcilers will not simply discard updates (they obey a “no
lost updates” policy). Harmony chooses the third option (divergence) over the
second (unconditional convergence).

Systems such as Ficus [24], Rumor [15], Clique [16], Bengal [23], and
TAL/S5 [21,22,12] converge by making additional copies of primitive objects
that conflict and renaming one of the copies. Additionally, conflicts in Bengal
may be handled by user-programmed conflict resolvers. CVS embeds mark-
ers in the bodies of files where conflicts occurred. By contrast, systems such
as Harmony and IceCube [11] do not reconcile objects affected by conflict-
ing updates. Systems that allow reconciliation to end with divergent replicas
have a further choice. They must choose whether to leave the replicas com-
pletely untouched by reconciliation, or to try to achieve partial convergence.
Harmony aims for partial convergence; in Appendix A we show that Harmony
is a maximal synchronizer, propagating as many safe changes as possible.

Like Harmony, the synchronizer of Molli et al [21,22,12] uses formal speci-
fications to ensure safety, but unlike Harmony it chooses convergence over
persistence of user changes. As a result, Molli’s synchronizer is satisfied with
recording multiple conflicting versions in the reconciled replicas, and its speci-
fication is limited to describing the correctness of its transformation functions.

Operational transforms resolve conflicting schedules by transforming local op-
erations to undo the local operation, performing the remote operation, and
finally redoing the local operation. Understanding the correct behavior of
“undo” in a collaborative environment is an additional prerequisite to the
correct behavior of operational transformation. Munson and Dewan [25] note
that group “undo” may remove the need for a merge capability in optimistic
replication. Prakash and Knister [26] provide formal properties that individ-
ual primitive operations in a system must satisfy in order to be undoable in a
groupware setting. Abowd and Dix [27] formally describe the desired behavior
of undo (and hence of conflict resolution) in “groupware”, and identify cases
in which undo is fundamentally ambiguous. In such ambiguous cases—even if
the primitive operations are defined to have unique undo functions—the user’s
intention cannot be preserved and it is preferable to report conflict than to
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lose a user’s modification.

Heterogeneity Answering queries from heterogeneous data sources is a
well-studied area in the context of data integration [28–31]. If we consider
the problem of augmenting a data integration system with view update (an-
other well-studied area—see [1] for a survey), then the result can be used to
implement an optimistic replication system that reconciles conflicts between
heterogeneous data sources However, to the best of our knowledge, no other
generic synchronizers support reconciliation over truly heterogeneous replicas.
FCDP [5] is designed to be generic, but the genericity is limited to using XML
as the internal representation, and it currently only reconciles documents.
Some file synchronizers do support diversity in small ways. For example, file
synchronizers often grapple with different representations of file names and
properties when reconciling between two different system types. Some map
between length-limited and/or case insensitive names and their less restric-
tive counterparts (cf. [17,16]). Others map complex file attributes (e.g. Apple
resource forks) into directories, rather than files, on the remote replicas.

Alignment Harmony’s emphasis on schema-based pre-alignment is influ-
enced by examples we have found in the context of data integration where het-
erogeneity is a primary concern. Alignment, in the form of schema-mapping,
has been frequently used to good effect (cf. [32–36]). The goal of alignment,
there, is to construct views over heterogeneous data, much as we transform
concrete views into abstract views with a shared schema to make alignment
trivial for the reconciler.

Some synchronizers differ mainly in their treatment of alignment. For exam-
ple, the main difference between Unison [17,37] (which has almost trivial align-
ment) and CVS, is the comparative alignment strategy (based on the standard
Unix tool diff3) used by CVS. At this stage, Harmony’s core synchroniza-
tion algorithm is deliberately simplistic, particularly with respect to ordered
data. As we develop an understanding of how to integrate more sophisticated
alignment algorithms in a generic and principled way, we hope to incorporate
them into Harmony, developing the line of inquiry sketched in Section 7. Of
particular interest are diff3’s XML based descendants: Lindholm’s 3DM [3],
the work of Chawathe et al [4], and FCDP [5].

9 Conclusions and Future Work

We have described the design of Harmony, a generic synchronization frame-
work for tree-structured data based around the idea of schema-directed syn-
chronization. A prototype implementation is available for download from the
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Fig. 5. Web demo screenshot

Harmony web site, http://www.seas.upenn.edu/∼harmony. The web site
also includes a live demo that allows experimenting with synchronization
of small tree structures; Figure 5 shows a screenshot of the demo, operat-
ing on heterogeneous address book formats. The prototype has been used to
construct specific synchronizers for a number of data formats, including sev-
eral calendar formats (Palm Datebook, Unix ical, and iCalendar), bookmarks
(Mozilla, Safari, and Internet Explorer), address books, application preference
files, drawings, and bibliographic databases. Some of these instances are now
in daily use.

One ongoing project is combining the core features of Harmony with a
more sophisticated treatment of ordered structures, continuing along the lines
sketched in Section 7. More speculatively, although the Harmony framework
has been designed with tree synchronization in mind, it may be generalizable
to richer structures such as DAGs. Along the same lines, another ongoing
effort in our group aims to apply the ideas in Harmony (both lenses and syn-
chronization) to the domain of relational data [38]. We are also interested in
studying schema-aware data synchronization using classical tree processing
formalisms, including tree automata and transducers.
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A Specification

This technical appendix contains a formal specification of the properties of
the synchronization algorithm presented in Section 5. Our presentation follows
the basic approach used for specifying the Unison file synchronizer [17,37]. We
start with a few auxiliary definitions which are needed in the formal statements
of safety and maximality. Both safety and maximality are based on a notion of
local similarity, which relates two trees if their top-level nodes are similar—i.e.,
intuitively, if both are present, both are missing, or both represent conflicts.

Definition 2 (Local similarity) Two elements of TX⊥ are locally similar,
written t ∼ t′, iff (1) t = t′ = X or (2) t = t′ = ⊥ or (3) t 6= ⊥∧ t 6= X ∧ t′ 6=
⊥ ∧ t′ 6= X .

The definition of safety relies on the notion of conflict. We use local similarity
to capture all the simple notions of conflicts that consider only the presence
or absence of a single node.

Definition 3 (Local conflict) An archive o and replicas (a, b) have a local
conflict, written localconflict(o, a, b), iff either (1) (o = X ) ∧ (a 6= b) or (2)
(o 6= a) ∧ (o 6= b) ∧ (a ≁ b) ∧ (a = ⊥ =⇒ b 6⊏ o) ∧ (b = ⊥ =⇒ a 6⊏ o).

Intuitively, replicas (a, b) have a local conflict if there is an unresolved conflict
recorded in the archive o, or if they have both changed since the state recorded
in the archive but are not locally similar and are in a delete/create conflict.
Schema domain conflicts are defined via a local test on domains.

Definition 4 (Schema domain conflict) Let S be a schema. An
archive o and replicas (a, b) have a schema domain conflict, writ-
ten sdomconflict(S, o, a, b), iff (a 6= ⊥) ∧ (b 6= ⊥) ∧ (mdom(o, a, b) 6∈
doms(S) ∨ mdom(o, b, a) 6∈ doms(S)) where mdom(o, a, b) = {k ∈
dom(a) | a(k) 6⊏ o(k)} ∪ (dom(b) \ dom(o)) ∪ (dom(a) ∩ dom(b)).

The set of names mdom(o, a, b) is the maximal tree domain that results from
propagating into replica a all the changes to immediate children from replica
b, that also respects local conflicts. It contains every name under which there
is a change that is not simply a deletion in replica a, all names added by
replica b, and all the names preserved in both a and b.

Definition 5 (Conflict) Let S be a schema. An archive o and replicas
(a, b) have a conflict, written conflict(S, o, a, b), iff localconflict(o, a, b) or
sdomconflict(S, o, a, b).

Safety and maximality are both expressed as properties of runs.
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Definition 6 (Synchronizer run) A synchronizer run is a tuple
(S, o, a, b, o′, a′, b′) comprising a schema S together with trees represent-
ing the archive and replicas supplied as inputs, (o, a, b), and computed as
outputs, (o′, a′, b′), by the synchronizer.

A safe synchronizer run satisfies the following safety properties: the result of
synchronization must reflect all user changes, it must not include changes that
do not come from either replica, trees under a conflicting node should remain
untouched, and the results should belong to the schema.

Definition 7 (Locally safe run) A synchronizer run is locally safe, written
locallysafe(S, o, a, b, o′, a′, b′), iff:

(1) It does not discard changes: (o ≁ a =⇒ a′ ∼ a) and (o ≁ b =⇒ b′ ∼ b),
(2) It does not “make up” content: (a ≁ a′ =⇒ b ∼ a′) and (b ≁ b′ =⇒

a ∼ b′) and (o′ 6= X =⇒ o′ ∼ a′ ∧ o′ ∼ b′),
(3) It stops at conflicting paths (leaving replicas in their current states and

recording the conflict): conflict(o, a, b) =⇒ (a′, b′, o′) = (a, b,X ),
(4) The results belong to the schema (or are missing): a′ ∈ S⊥ and b′ ∈ S⊥.

Definition 8 (Safe run) A synchronizer run (S, o, a, b, o′, a′, b′) is safe, writ-
ten safe(S, o, a, b, o′, a′, b′) iff it is locally safe on every path p:

∀p ∈ P. locallysafe(S(p), o(p), a(p), b(p), o′(p), a′(p), b′(p))

Definition 9 (Maximal run) A synchronizer run (S,o,a,b, o′,a′,b′) is max-
imal iff it is safe and propagates at least the same changes as any other safe
run, i.e.

∀o′′, a′′, b′′. safe(S, o, a, b, o′′, a′′, b′′) =⇒
{

∀p ∈ P. a′′(p) ∼ b′′(p) =⇒ a′(p) ∼ b′(p)

∀p ∈ P. o′′(p) 6= X =⇒ o′(p) 6= X .

Next we give a precise specification of Harmony’s synchronization algorithm.

Theorem 10 Let S be a path-consistent schema. If a, b ∈ S⊥ and
sync(S, o, a, b) evaluates to (o′, a′, b′), then (S, o, a, b, o′, a′, b′) is maximal.

Before proving Theorem 10, we prove a few technical lemmas. First we note
that path consistency is stable under projection on a single name.

Lemma 11 Let n be a name and S a path-consistent schema; the schema
S(n) is also path consistent.

Proof. Let tn and t′n be trees in S(n), and p a path with tn(p) ∈ T and
t′n(p) ∈ T . As tn and t′n are in S(n), there exist t and t′ in S with t(n) = tn
and t′(n) = t′n. As S is path consistent and t(n/p) = tn(p) ∈ T and t′(n/p) =
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t′n(p) ∈ T , we have

t[n/p 7→ t′(n/p)] = t[n/p 7→ t′n(p)]

=
{

n 7→t(n)[p 7→ t′n(p)]
m 7→t(m) for m ∈ dom(t) \ {n}

}

=
{

n 7→tn[p 7→ t′n(p)]
m 7→t(m) for m ∈ dom(t) \ {n}

}

∈ S

hence tn[p 7→ t′n(p)] ∈ S(n). 2

The key property enjoyed by path-consistent schemas is that we can assemble
well-formed trees (belonging to the schema) out of well-formed subtrees.

Lemma 12 Let S be a path-consistent schema. If dom(t) ∈ doms(S) and for
each k ∈ dom(t) we have t(k) ∈ S(k) then t ∈ S.

Proof. Let dom(t) = {n1, . . . , nj}. As t(k) ∈ S(k) for every k ∈ dom(t), for
each k ∈ {n1 . . . nj} there exists a tree t′k ∈ S with t′k(k) = t(k). Moreover,
as dom(t) ∈ doms(S), there is a tree t′′ ∈ S with dom(t′′) = dom(t). We now
show by a finite induction on i ≤ j that t′′[n1 7→ t′n1

(n1)] . . . [ni 7→ t′ni
(ni)] ∈ S.

Case (i = 0): immediate as t′′ ∈ S.
Case (i = k + 1): By IH, t′′′ = t′′[n1 7→ t′n1

(n1)] . . . [nk 7→ t′nk
(nk)] ∈ S. We

also have t′nk+1
∈ S by assumption. Moreover, both t′′′(nk+1) = t′′(nk+1) ∈ T

and t′nk+1
(nk+1) ∈ T . By path consistency for S, we hence have t′′′[nk+1 7→

t′nk+1
(nk+1)] ∈ S. We conclude that t = t′′[n1 7→ t′n1

(n1)] . . . [nj 7→ t′nj
(nj)] ∈

S. 2

The next lemma records some examples of safe runs (both to illuminate the
definitions and to shorten the proof of Theorem 10).

Lemma 13 If a ∈ S⊥ and b ∈ S⊥ then the following synchronizer runs are
safe:

(1) (S, o, a, b,X , a, b)
(2) (S, o, a, a, a, a, a)
(3) (S, o, o, b, b, b, b)

(4) (S, o, a, o, a, a, a)
(5) (S, o,⊥, b,⊥,⊥,⊥), assuming b ⊏ o
(6) (S, o, a,⊥,⊥,⊥,⊥), assuming a ⊏ o

Proof. Each case is straightforward.

Now we are ready to come back to Theorem 10.

Proof of Theorem 10. By induction on the sum of the depth of o, a, and b,
with a case analysis according to the first rule in the algorithm that applies.
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Case (a = b): sync(S, o, a, b) = (a, a, b)
By Lemma 13(2) the run (S, o, a, a, a, a, a) is safe. We must show that
(S, o, a, a, a, a, a) is maximal. The first condition for maximality is imme-
diate as for all paths p, we have a′(p) ∼ b′(p). The second condition is also
satisfied, since o′ = a, hence we have o′(p) 6= X for all paths p.

Case (a = o): sync(S, o, a, b) = (b, b, b)
By Lemma 13(3) the run (S, o, o, b, b, b, b) is safe. We must show that
(S, o, o, b, b, b, b) is maximal. The first condition for maximality is imme-
diate as for all paths p, we have a′(p) ∼ b′(p). The second condition is also
satisfied, since o′ = b, hence we have o′(p) 6= X for all paths p.

Case (b = o): sync(S, o, a, b) = (a, a, a)
Symmetric to the previous case, inverting the roles of a and b.

Case (o = X ): sync(S, o, a, b) = (X , a, b)
By Lemma 13(1) the run (S,X , a, b,X , a, b) is safe. We must now show that
the run is maximal. The predicate localconflict(X , a, b) is satisfied because we
know that o = X and a 6= b (as the first case of the algorithm did not apply).
Therefore, by safety condition (3), the only safe run is (S, o, a, b,X , a, b),
hence it is maximal.

Case (a = ⊥): there are two subcases to consider.
Subcase (b ⊏ o): sync(S, o, a, b) = (⊥,⊥,⊥)

By Lemma 13(5) the run (S, o,⊥, b,⊥,⊥,⊥) is safe if b ⊏ o. The first
maximality condition is immediate as for all paths p, we have a′(p) ∼
b′(p). The second condition is also satisfied since o′ = ⊥, hence we have
o′(p) 6= X for all paths p.

Subcase (b 6⊏ o): sync(S, o, a, b) = (X ,⊥, b)
By Lemma 13(1) the run (S, o,⊥, b,X ,⊥, b) is safe. We must now prove
that the run is maximal. None of the previous cases of the algorithm
apply, so we must have b 6= a = ⊥, o 6= a = ⊥, and b 6= o. Since
a = ⊥ and b 6= ⊥, we have a ≁ b. Moreover, we have b 6⊏ o and b 6= ⊥.
Hence the predicate localconflict(o, a, b) is satisfied. As before, by safety
condition (3), the only safe run is (S, o, a, b,X ,⊥, b), hence it is maximal.

Case (b = ⊥): symmetric to the previous case, inverting the roles of a and b
and using Lemma 13(6) instead of Lemma 13(5) in the first subcase.

Recursive case: Since previous cases of the algorithm do not apply, we have
a 6= b, o 6= X , a 6= ⊥, b 6= ⊥, and a ∼ b.

By Lemma 11, each of the schemas S(k) are path consistent for k ∈
dom(a)∪dom(b). By the definition of schema projection, for each k we have
a(k), b(k) ∈ S(k)⊥. Thus, by the IH (which applies as a 6= ⊥ 6= b, hence
the sum of the depths decreases), each recursive sub-run is maximal. In
particular, each sub-run is safe and gives results in S(k)⊥.

Let o′r, a′

r, and b′r be trees obtained by the recursive calls, i.e.
(o′r(k), a′

r(k), b′r(k)) = sync(S(k), o(k), a(k), b(k)) for all k ∈ dom(a) ∪
dom(b). From the facts obtained by IH and the definition of safety, it follows
that the run (S, o, a, b, o′r, a

′

r, b
′

r) is locally safe at every non-empty path. We
now check that it is locally safe at the empty path and maximal.
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We first consider local safety. We start by showing that dom(a′

r) =
mdom(o, a, b). For this let k ∈ dom(a) ∪ dom(b) and consider the shape
of possible tuples (o(k), a(k), b(k)). We let the variables to, ta, tb range over
elements of T :
Subcases (X ,⊥,⊥), (⊥,⊥,⊥), (to,⊥,⊥): Cannot happen because the

given child k ∈ dom(a) ∪ dom(b).
Subcases (⊥, ta,⊥),(⊥, ta, tb): Since o(k) ≁ a(k) we get by local safety

condition (1) that a′

r(k) ∼ ta and in particular a′

r(k) 6= ⊥, hence k ∈
dom(a′

r). On the other hand, since k ∈ {n ∈ dom(a) | a(n) 6⊏ o(n)} we
also have that k ∈ mdom(o, a, b).

Subcases (X , ta,⊥),(X , ta, tb): Same as previous case, as ta 6⊏ X .
Subcases (to,⊥, tb),(X ,⊥, tb): Since o(k) ≁ a(k) we get by local safety

condition (1) that a′

r(k) ∼ ⊥ and therefore a′

r(k) = ⊥, so k 6∈ dom(a′

r).
On the other hand, since a(k) = ⊥ we have that k 6∈ dom(a) so especially
k 6∈ {n ∈ dom(a) | a(n) 6⊏ o(n)}, k 6∈ dom(a)∩dom(b), and since o(k) 6= ⊥
we have that k 6∈ {n ∈ dom(b) | o(n) = ⊥}, hence also k 6∈ mdom(o, a, b).

Subcase (⊥,⊥, tb): By Lemma 13(3) the run (S(k),⊥,⊥, tb, tb, tb, tb) is
safe. Letting a′′ and b′′ stand for the replica outputs of this run, which
are both tb, we have that a′′ ∼ b′′. By the maximality of the recursive
sub-run we get that a′

r(k) ∼ b′r(k). As tb ≁ ⊥, we have b′r(k) ∼ tb thus
b′r(k) 6= ⊥ by local safety (1), hence a′

r(k) 6= ⊥. From this, we have
k ∈ dom(a′

r). On the other hand, since k ∈ (dom(b) \ dom(o)) we also
have that k ∈ mdom(o, a, b).

Subcase (to, ta,⊥): We first consider the case ta 6⊏ to, which immediately
implies ta 6= to. In this case, as we have ta 6= to, to 6= ⊥, ta ≁ ⊥, ta 6= ⊥,
and ta 6⊏ to, the predicate localconflict(to, ta,⊥) is satisfied. By local safety
condition (3), we have a′

r(k) = ta so k ∈ dom(a′

r). On the other hand,
since a(k) 6⊏ o(k) we have that k ∈ {n ∈ dom(a) | a(n) 6⊏ o(n)}, hence
also k ∈ mdom(o, a, b).

We now consider the other case, ta ⊏ to. By Lemma 13(6) the run
(S(k), to, ta,⊥,⊥,⊥,⊥) is safe as ta ⊏ to. Letting a′′ and b′′ stand for
the replica outputs of this run, which are both ⊥, we have that a′′ ∼ b′′.
Therefore, by maximality of the recursive sub-run we get that a′

r(k) ∼
b′r(k). Next we show that a′

r(k) = ⊥. Since to ≁ ⊥ we have b′r(k) ∼ ⊥ by
local safety (1) and hence a′

r(k) = ⊥. It follows that k 6∈ dom(a′

r). On the
other hand, since a(k) ⊏ o(k) we have k 6∈ {n ∈ dom(a) | a(n) 6⊏ o(n)},
and since k 6∈ dom(b) we have k 6∈ dom(a) ∩ dom(b) and k 6∈ (dom(b) \
dom(o)), hence also k 6∈ mdom(o, a, b).

Subcase (to, ta, tb): We first show that a′

r(k) 6= ⊥, by contradiction. As-
sume a′

r(k) = ⊥ ≁ ta, hence by local safety condition (2) we have tb ∼
a′

r(k) = ⊥, a contradiction. Thus k ∈ dom(a′

r). As k ∈ dom(a) ∩ dom(b),
we conclude by k ∈ mdom(o, a, b).

By a symmetric argument, we can show that dom(b′r) = mdom(o, b, a). Re-
turning now to our original argument that the run is locally safe at the root,
we first consider the case where dom(a′

r) 6∈ doms(S) or dom(b′r) 6∈ doms(S).
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In this case sync(S, o, a, b) = (X , a, b) and it follows immediately from
Lemma 13(1) that the run (S, o, a, b,X , a, b) is safe. To show that it is maxi-
mal we show that there is a schema domain conflict at the root. We have that
mdom(o, a, b) = dom(a′

r) 6∈ doms(S) or mdom(o, b, a) = dom(b′r) 6∈ doms(S),
so sdomconflict(S, o, a, b) holds. As above, by safety condition (3), the only
safe run is (S, o, a, b,X , a, b), hence it is maximal.

Finally, we consider the case where dom(a′

r) ∈ doms(S) and dom(b′r) ∈
doms(S). In this case o′ = o′r, a′ = a′

r, and b′ = b′r and since these are
assembled as the concatenation of the results of each recursive call, we have
o′ 6= ⊥, a′ 6= ⊥, and b′ 6= ⊥ (recall the difference between the empty tree
and the missing tree). It follows directly that a ∼ a′, b ∼ b′, a′ ∼ b′, o′ ∼ a′,
and o′ ∼ b′, which immediately satisfies local safety conditions (1, 2). Local
safety condition (3) is satisfied because there cannot be a conflict at the
root: there is no local conflict because o 6= X and a ∼ b, and there is no
schema domain conflict because mdom(o, a, b) = dom(a′

r) ∈ doms(S) and
mdom(o, b, a) = dom(b′r) ∈ doms(S). For the final safety condition (4), we
show that a′, b′ ∈ S⊥. As each sub-run is maximal (and hence, safe), for
every k ∈ dom(a′) we have a′(k) ∈ S(k)⊥. Also, since k ∈ dom(a′) we have
a′(k) 6= ⊥ and so a′(k) ∈ S(k). We also have that dom(a′) ∈ doms(S). By
Lemma 12, a′ ∈ S and hence a′ ∈ S⊥. By a symmetric argument, we have
b′ ∈ S⊥. We conclude that the run is locally safe at the root.

To finish the proof, let (S, o, a, b, o′′, a′′, b′′) be another safe run and let p
be a path. We show that both maximality conditions are satisfied by cases
on p:
Subcase p = •: Both conditions trivially hold as a′ ∼ b′ and o′ 6= X .
Subcase p = k/p′: The sub-run (S(k), o(k), a(k), b(k), o′′(k), a′′(k), b′′(k))

is also safe by definition. We have a′′(p) = a′′(k/p′) = (a′′(k))(p′), and
b′′(p) = b′′(k/p′) = (b′′(k))(p′).

• To show the first maximality condition, observe that if a′′(p) ∼
b′′(p), then a′′(p) = (a′′(k))(p′) ∼ (b′′(k))(p′) = b′′(p). By IH, the
run (o(k), a(k), b(k), o′(k), a′(k), b′(k)) is maximal. It follows that
(a′(k))(p′) ∼ (b′(k))(p′), hence a′(p) ∼ b′(p).

• For the second condition, observe that if o′′(p) 6= X , then
(o′′(k))(p′) 6= X . By IH, the run (o(k), a(k), b(k), o′(k), a′(k), b′(k)))
is maximal and so (o′(k))(p′) 6= X . Hence, we have o′(p) 6= X . 2
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