The Spider Calculus

Computing in Active Graphs

Benjamin C. Pierce Alessandro Romanel
University of Pennsylvania CoSBi and Universita di Trento
bepierce@cis.upenn.edu romanel@cosbi.eu

Daniel Wagner
University of Pennsylvania
wagnerdm@seas.upenn.edu

January 17, 2010

Abstract

We explore a new class of process calculi, collectively called spider calculi, in which processes inhabit
the nodes of a directed graph, evolving and communicating by local structural mutations. We study
a variety of spider calculi, analyze their expressive power, and identify a kernel spider calculus that is
both minimal and expressive. In particular, processes in the kernel calculus can construct arbitrary finite
graphs, encode common data structures, and implement the communication primitives of the w-calculus.
Finally, we show how an even simpler variant of the kernel calculus, in which the universe is an undirected
graph, can encode the directed variant.

1 Introduction

The execution environment for modern software systems is fundamentally graph-structured. On both large
and small scales (from routers and fiber to processors, memories, and buses), software components inhabit
different physical or logical locations, and information must cross links for them to cooperate. Ordinarily,
this graph structure is hidden behind simpler abstractions, such as point-to-point internet communication
or the shared memory abstraction of a multiprocessor. But there are some situations where we want to deal
with it explicitly.

For example, the implementations of the abstraction layers themselves must deal directly with the un-
derlying graph structure. This includes many internet protocols, such as those for routing, broadcast, name
resolution, and so on. There are also applications that work directly with the graph structure to increase
efficiency. Content distribution networks such as Akamai [21] and Coral [11] fall in this category, as do nu-
merous distributed graph algorithms, for example algorithms for answering reachability queries on streaming
graphs [24] and approximating shortest paths with incomplete knowledge of the graph [15].

In all these applications, the graph structure is relatively fixed. In other cases, the graph may change
as the program evolves—for example, in routing algorithms for ad hoc mobile networks. Indeed, there are
cases where the program itself may alter the topology of the graph in which it is working. Peer-to-peer
networks do just this, establishing logical graph structures for organizing communication over the location-
transparent abstraction of internet routing. Also, some well-known parallel algorithms operate on virtual
graphs: Delaunay mesh triangulation modifies graphs in which nodes represent physical locations [18], and
n-body simulations often use graphs in which each node represents a volume of the space being simulated
[2].

In the theoretical literature, there has been a corresponding interest in foundational models that explic-
itly embody notions of locality and connectivity. Pi-calculus variants such as Nomadic Pict [25] and the

Distributed w-calculus [14] model mobile computation in the internet, allowing direct communication only
between processes that have migrated to the same location. Cardelli and Gordon’s Ambient Calculus [7],
the biologically-inspired Brane Calculus [4], and their many variants [3, 5, 6, 19] refine the full point-to-point
connectivity of the Distributed w-calculus by structuring locations into a tree; process movement is restricted
to paths in the tree, and processes can alter the tree structure in the immediate neighborhood of their cur-
rent location. Cardelli and Gardner’s 37 [8] model location within a coordinate system, so that movement is
associated with a physical change of coordinates. Connectivity in 37 is decided in part at runtime; processes
may refuse to receive a message based on the relative location of the sender.

We study here a new class of systems, dubbed Spider Calculi, that generalize the ideas of the Ambient
Calculus to arbitrary graphs. Our goal in this paper is to take the first steps into this new design space:
to explore the expressiveness of various primitives and to experiment with basic programming idioms. One
outcome of this investigation is that we identify a particular calculus, the kernel spider calculus (or sometimes
just “the spider calculus”) that strikes an attractive balance between expressiveness and simplicity.

2 Overview

To limit the design space to a manageable size, we start by adopting two fundamental constraints. First,
we consider computing in edge-labeled directed graphs—that is, the “universe” for a computation (called
the web, naturally) is a graph with labeled edges and anonymous nodes. (Other choices, such as labeling
the nodes, may be reasonable, but we do not study them here.) We call the edges links to emphasize the
labeling. We place no restriction on links or labels: there can be self-links, multiple links between any
particular pair of nodes, or multiple links with the same label. Second, we prohibit any action at a distance.
Each computational process (“spider”) is associated with a particular node in the graph, and only the links
incident to that node are visible to the spider. To observe or modify links elsewhere in the graph, the spider
must first travel there.

To describe computations in graphs, we need three things. First, we need a notation for describing
the graphs themselves. Second, we need a notation for local computations at the nodes, including data
structures, conditionals, loops, communication, synchronization, and so forth. And third, we need ways for
processes to navigate and observe the graph. In the interest of parsimony, we have tried to combine these
three as much as possible. In particular, there is no need for “local data”; as in the A-calculus and 7-calculus,
which encode local data in function structure and process structure, respectively, all the data and control
structures we need can be encoded in the web structure.

One consequence of this choice is that there are really two distinct kinds of links: links in the “real graph”
and links that are created and used for some spider’s local computation. To avoid interference between the
two kinds, and also to avoid interference between the local computations of distinct spiders, it is useful to
make one last assumption: that link names are scoped—that there is a way to generate fresh link names
that are only known to the spider that generates them—and that a spider can neither observe nor affect
links whose names it does not know. Formally, we follow the w-calculus and its relatives by introducing the
restriction operator v for this purpose.

For the spiders themselves, we again follow the lead of the w-calculus. Spiders are written using a few
generic combinators—an inert “null process,” parallel composition, and replication—plus a small set of
primitive actions. The actions express atomic steps of the computation that modify and navigate the graph.
Our main focus in this paper is on exploring the space of possible actions, striving for a compact, expressive
set. To assess compactness, Section 7 proves a number of independence results, showing how some sets of
actions can encode others. To assess expressiveness, we use two benchmarks: building arbitrarily shaped
finite graphs and emulating the 7-calculus. Our experience experimenting with spider programming suggests
that any calculus that can do these two things is expressive enough to capture a broad range of computations
in and on graphs.

Finally, after experimenting with versions of the calculus based on both directed and undirected graphs,
we have chosen to present the calculus in terms of directed graphs. Directed links—that is, links accessible
from only one “side” —seem to make programming slightly easier, though we discuss in Section 8 the possibility

(a) single path (b) spanning tree (¢) graph shape (d) edge renaming

Figure 1: Building a finite graph
that the undirected version of the calculus is more fundamental.

3 Example

Before coming to formalities, let’s look at a nontrivial program in the spider calculus, as a concrete demon-
stration of the generic features of the language and to give a flavor of the kind of primitives we are considering.

Any “graph computing calculus” worth its salt should certainly be expressive enough to construct finite
graphs of any shape. For instance, consider the graph in Figure 1d. We’d like to write a spider program
that builds this graph, beginning with a single node containing a single spider. Figures la, 1b, and 1c show
intermediate webs; these will act as subgoals.

The first task is to build a new node with edges to it. We introduce three primitives for this purpose:
create, copy, and reverse. The behavior of the create action is sketched in Figure 2a, which represents one
rule in the reduction semantics (given formally in the next section). The small dashed lines represent any
other links incident to the node; these are not affected by the create operation. The figure leaves implicit
the fact that there may be other spiders running at this node, which are also unaffected. This is an instance
of a general design principle: spiders interact only by observing each others’ effects on the graph. Also, the
continuation 7" of create remains at the same node rather than moving to the new node; this is a free choice
in the definition of the primitive.

The create operation builds a single directed link from the creating node to the new one. A little later,
we will also need another edge pointing back from the new node. The copy and reverse actions, sketched in
Figures 2b and 2c, make this possible. The copy primitive simply creates an additional link with the same
source and target as another link, while reverse swaps the source and target of an existing link. The three
can be combined—

S = create z. copy T as z. reverse x. S’

to create a new node with forward and backward links named z to it. (The reverse primitive chooses
nondeterministically between the two available z links, but since they are identical, the outcome is the
same.) This is a common enough task that we will use createboth z. S’ as shorthand for the above spider S.

We can now use our ability to create a single new node to create a path with unique names for each edge
on the path. (These names are temporary; the last step will be replacing them with the actual labels that we
want on these edges. Using distinct names during construction avoids ambiguity in cases where one node in
the final graph has two links with the same name, like the topmost node in Figure 1d.) After the execution
of a single createboth x operation, we have a new node accessible by a link named z, but no spider at the
new node. To put one there, we use the go action, depicted in Figure 2d. Together, the createboth and go
actions are enough to construct any finite path; the spider S, shown in Figure 3 demonstrates how to build

VVVVV m H B G yS - . N . N

(a) the create primitive (b) the copy primitive
(b0 — (20 GO — O
(c) the reverse primitive (d) the go primitive

Figure 2: Primitives used in subgoal la

S = vabede. Sy
Sp = createboth a. go a. Se. = createboth d. go d. Sy = copyd asw.
createboth b. go b. createboth e. go e. throw v over a. go a.
createboth c. go c. goe.god. S, throw v over b. go b.
go c. go b. go a.S, throw v over c. go c.

reverse v.
goc. gob. go a. go d.
throw v over e. go e.
goe.god. S,

Figure 3: Parts of the spider that builds the graph in Figure 1d.

the path in Figure 1la. (The redundant round-trip over ¢ clarifies the pattern for building arbitrary paths.)
The spider S, in Figure 3 finishes building the spanning tree by adding another path, then continues as .S,.

The next task is to introduce cycles. We can create a small cycle with copy = as y, then increase its
size using the throw action depicted in Figure 4. (As we will see later, throw has other important uses.)
The spider S, in Figure 3 demonstrates this process for building the v edge of our final graph, creating it
initially at the top of the graph by copying a and then throwing each end down the spanning tree to its final
destination. The spider S, (not shown) is similar, putting the two z edges into place, then continuing as S,.

We now have a graph with the desired shape with edges in all the right places, but with the wrong names.
To rectify this, we introduce the rename primitive, depicted in Figure 5. The spider S, shown in Figure 6
demonstrates the use of this primitive. This leaves us a graph with the right shape, but with some extra
links named a, b, ¢, d, and e. One way to tidy these up would use the delete primitive pictured in Figure 7.
Alternatively, we can leave them, but use the restriction operator v to ensure that they cannot affect the
behavior of other spiders. This gives us the final spider S shown in Figure 3.

The approach outlined so far can be improved by parallelizing. For example, to parallelize the spanning
tree creation, we can build the two branches in parallel rather than sequentially. The spiders Sgp. and Sy,

Figure 4: The throw primitive used for constructing cycles

Figure 5: The rename primitive

S, = goa.gob.
rename ¢ to w. go b.
rename b to y. go a.
rename a to z. go d.
rename e to t. go d.

rename d to z. nil

Figure 6: Renaming edges to match the desired graph.

Figure 7: The delete primitive, which can be used for synchronization

S = Sabc | Sde | Swatchdog

Sape = createboth a. go a. Sqe = createboth d. go d. Swatchdog = delete done.
createboth b. go b. createboth e. go e. delete done.
createboth c. go c. go e. go d. Sy
go c. go b. go a. create done. nil

create done. nil

Figure 8: Another way to write S

ViW,Z = Nil |ve. W | VW | [S]]| i3]
R,S,T = nil |ve. S| S|T|!S]| MS
M == createx | goz | copyzasy |
rename z to y] throw x over y]

reverse r

Figure 9: Syntax of the Spider Calculus

fan(Nil) = 0 fn([S]) = f(S)u{i}
fa(vz. W) = m(W)\ {2} fn(W | V) = fm(W)ufn(V)
fn(M.S) = fn(M)Ufn(S) fn(i 5 j) = {x,i,j}
fn(nil) = 0 fn(lS) = fn(9S)
fa(vz. P) = fn(P)\ {z} fn(S|T) = n(S)uUf(T)
fn(rename z toy. S) = {x,y}Ufn(S) fn(create z. S) = {z}Ufn(S)

fn(copy z as y. S)
fn(throw z over y. S)

{z,y} Ufn(S) fn(go z. S) {z}Ufn(S)
{z,y} Ufn(S) fn(reverse z. S) = {z}Ufn(S)

Figure 10: Definition of free names for webs and spiders

shown in Figure 8 each build one branch of the tree. These two spiders can be run in parallel using the
parallel composition operator Sgp. | Sge. However, since the next phase of the construction relies on the
existence of the complete spanning tree, it waits for S,p. and Sy to signal their completion by creating a
link at the root node with an agreed-upon name (done). To observe when the completion links appear, the
spider at the root node uses the delete action, which waits until a link with a particular name exists, then
removes it from the web. The parallel version of S is shown in Figure 8.

4 Formal Definition

In the syntax of the spider calculus (Figure 9), we use V,W,Z to range over webs and R,S,T to range
over spiders. Both grammars include syntactic forms for restriction and for binary and nullary parallel
composition; when these forms appear at the top level of a spider, the structural congruence “promotes”
them to the analogous forms at the level of the web. The graph structure of the web is represented as a parallel
composition of nodes and edges, with node identity determined by name. For example, we regard a web
with one node labeled x containing a spider S|T" as structurally equivalent to a web with two nodes labeled
x, one containing S and one containing 7'. (This may appear to be a significant difference from Ambients,
where a solution with a single node is not equivalent to a solution with two nodes of the same name, but the
appearance is deceptive. Ambient node names correspond to edge names in the spider calculus.) The form
[S]? denotes a spider S living at node i, and i = j denotes an edge from i to j labeled .

We use the variable M to range over primitive actions and use lower-case letters for variable names. As
usual, the spider M. S blocks until M can be executed and then continues as S. The replication of spider
S is written !S. (There is no replication form at the level of webs and no structural congruence rule for
replication; instead, replication is implemented using a reduction rule.) We abbreviate M. nil as M and
vxy. ---vxe,. Wasvey,...,z,. Worve. W.

The structural congruence and operational semantics are mostly standard. Figure 10 gives the definition
of free names (v is the only name binder). Figure 11 defines the structural congruence. Name restrictions

| Nil =
|(WX) = (VW)X
| W = W |V

ve.vy. W = vy.ve. W

Viive W = va. (V|W)
if z ¢ fn(V)

[nil]¥ = Nil '

(S|T) = [S]|[T)

[ve. ST = va. [S]
ifx#£i

a-conversion

(par-nil)
(par-assoc)
(par-com)

(res-res)
(res-par)

(trans-nil)
(trans-par)
(trans-res)

Figure 11: Structural congruence laws

W — W'
W |V—W |V

w—w

ve,. W — v, W'

W =W =V =V
W —V

['S]F — [STI[ST

[throw z over y. S|' | i S j | iS5k
— (ST kSjlidk

(red-par)

(red-res)

(red-struct)

(red-repl)

(red-dthrow)

[create z. S]? — [S]'|vj.i 5 j (red-dcreate)

where j & {i,x}

[rename z toy. ST | i > j
— [S]P i

[copy zasy. S]P |i > 5
— (ST liS i

(red-drename)

(red-dcopy)

[gox. S |iSj — [S)Pli>j (red-dgo)

Figure 12: Operational semantics

X mSUCCmSUCCmSUCCmZEI’O
D /A G A G N | O

Figure 13: A number stored at location z in the structural encoding

via ¥ may be floated in and out of parallel compositions, node boundaries, and other restrictions provided
this does not orphan any names or cause any clashes. Figure 12 gives the operational semantics, which just
formalizes the informal diagrams we have already seen.!

5 Programming

5.1 Data Structures

There is no provision in the core calculus for data like numbers, strings, lists, and so on. In this subsection,
we will give three examples showing how to encode a natural number; each of these examples generalizes
naturally to more complicated data types.

Passive encoding The first encoding uses the graph structure of a web in a straightforward way. In this
encoding, a number is a location with either a link named succ pointing to another number or a link named
zero. Figure 13 shows the value 3 encoded in a web. Using numbers in this encoding is straightforward: you
choose one of two spiders based on the existence of one of the above links. For example, suppose we have a
number stored at the bidirectional link z. (By bidirectional, we mean that there are two copies of the link
pointing in opposite directions.) Then the following snippet will compute the predecessor of = and store it
in y:
go z. (copy succ as y. throw y over x | rename zero to zero. go x. copy x as y)

The first two actions in the parallel composition depend on succ and zero existing, respectively; if the
location really is a number, this means that only one of the two continuations will fire.

Active encoding In the second encoding, a number is represented as a spider that repeatedly answers
requests for its value. There is an globally agreed-upon link name val; a number will wait for a link named
val to appear, then go to that link, create either a succ or a zero link, and continue as its predecessor (if it
has one). Here is the 0 spider:

So =!vt. rename val to t. go t. create zero
Assuming S, is the spider representing the number n, here is the spider representing Sy11:
Sp+1 =lvt. rename val to t. go t. create succ. Sy,

Consuming a number in this representation is similar in spirit to the previous representation. For example,
assuming there is a bidirectional link z pointing to a location that contains (only) a number, here is a spider
that creates a link y pointing to a location containing that number’s predecessor:

go x. vt. createboth ¢. copy ¢ as val. go t.
(rename succ to succ. go t. rename t to y. throw y over z
| rename zero to zero. go t. go x. copy = as y)

Again, one of the two processes in the parallel composition will be stuck forever.

1One notable difference from pi-calculus (and variants of ambient calculus with communication primitives) is that the
operational semantics doesn’t involve substitution of one name for another. This makes it a little surprising that there is a
direct translation of the pi-calculus into the spider calculus. The intuition for why this works is that while we don’t have
substitution, we do have aliasing, in the form of two links (with different names) that point to the same node.

. y @

val D input t] | —» [[A\z.€] } [[e]]—x’
K\ lz
N J

Figure 14: Emulating beta-reduction in the Spider Calculus, assuming fn(e) = {z,y, z}

[Mx.e] = lvt. rename val to t. [e1 es] = wvty,ts. createboth t;. create ts.
closure fn(e) \ {z} at t. (closure fn(ey) at t1. [e1]
vz. rename input to z. [e] | closure fn(ez2) at t2. [e2]
| go t1. rename t; to val
|

[z] = !'throw val over z copy to as input)

Figure 15: Encoding the A-calculus

Church encoding The final encoding we describe encodes the A-calculus into webs, then uses the standard
Church-encoding of numbers. In encoded A-calculus webs, there are two kinds of locations, namely function
locations and argument locations. A function location has a spider waiting for a link named val that points
to an argument location; an argument location has a link named input pointing to a function location.
Function application involves transforming an argument location into a function location by consuming the
input link, then awaiting val links. Each variable name in the A-calculus corresponds to a link in the spider
calculus that points to the location holding the value associated with that name. The translation of a
variable simply forwards any wal requests along the link corresponding to that variable’s name, that is, to
the location associated with that variable.

We model closures as nodes with a link for each bound name. We often have to copy and transmit an
entire closure, so we introduce an abbreviation; if S = {z1,...,z,} is a set of names, then closure S at t. T
will stand for

copy 1 as &y. - - . COPYy T as Ty. throw xi over t. --- . throw z, over t. go t. T.

Figure 14 sketches the evolution of a beta reduction, and Figure 15 shows the complete encoding of the
A-calculus.

5.2 Encoding the m-calculus

In the overview, we chose two benchmarks for the expressiveness of the calculus: building finite graphs and
emulating the 7-calculus. Section 3 tackled the former; this section tackles the latter. As a reminder, the
syntax, structural congruence rules, and semantics of the standard (synchronous, choice-free) m-calculus are
given in Figure 16.

The idea is simple: all of the translations of 7 processes run in a single location (which we call root), and
a m channel is represented by a location with links named wval pointing to the messages waiting to be sent.
Using a channel in the w-calculus requires knowing a name for it; using a channel in the Spider Calculus
requires having an edge from root to the location for that channel. Figures 17a and 17b sketch the high-level
behavior of encoded input and output processes. The full definition of the encoding is given in Figure 18.

P,Q,R:=7y.P | a(y).P | (va)P | 1P | P|Q

PlQ =Q|P p-par-comm
PI(Q|R) = (P|Q)|R p-par-assoc
Plnil = P p-sc-par-nil
(vz)(P | Q) = P | (vz)Q p-res-par
if x ¢ fn(P)
(vx)(vy)P = (vy)(vz)P p-Tres-res
zy | x(2).P — P{y/z} p-red-comm
P— P'= (z)P — (x)P' p-red-res
P—P =P|Q—P|Q p-red-par
P|Q— P |Q =!P|Q—P|P|Q p-red-rep
P=P —Q = Q—P—Q p-red-struct

Figure 16: Semantics of the m-calculus.

(b) Output

Figure 17: The execution of encoded 7-calculus primitives

10

[P = [sriierr

[{z1, - 2z} " = (rootgj1| |rootﬂ“)jk)
[nil ™ = nil
[(vx)P ™ = wvx. (createx | [P]™)
[P — [P
[PlQI” = [P]"[[Q]"
[Zy]™ = vz,2'. 5

where

Sy = copy x as z. S

Ss = copy y as z'. S3
Ss = throw 2’ over z. S,
Sy = go z. 55

S5 = rename 2’ to val

[z(y).P]™ = vz, 2y Ty
where
Ty =copy z as z. Ts
T, = copy z as z'. T3
Ty = reverse z'. Ty
T5 = go z. T6
Ts = rename val to y. Tx
T; = throw y over 2'. T
Ts=goz. [P]”

provided z, z' & fn(P)

Figure 18: Encoding the w-calculus in directed webs

5.3 Encoding Recursion Using Replication

There is a well-known conversion [23] in the m-calculus from recursion into replication. In broad strokes, a
recursion creates a new channel and a process that repeatedly reads from that channel; when the process
is ready to recurse, it sends a message on that channel, allowing an additional copy of the replicated read
to make progress. A straightforward analogue in the Spider Calculus doesn’t quite work, because the go
primitive may take a spider to a different location than the replication it is trying to signal. The following
example suggests a modified translation that deals with this problem.

Suppose we are given a web whose graph shape is a binary tree: each node has two edges named left and
right. Additionally, there is a spider in this web that will be traveling through the tree, leaving messages
about which direction it went at each node via links named goleft and goright. Our task is to write a spider
which will follow these clues. If we had a u operator in the Spider Calculus, the following spider would do
nicely:

wS. (delete goleft. go left. S) | (delete goright. go right. S)

We can achieve the same effect with replication by using a home location where the replication lives, plus
one or more current locations where running incarnations of the replication are executing. We will connect
these locations with private links named £. This invariant will need to be preserved as the running spiders
move around the web; we can do this by throwing (a copy of) the £ link before each go command. A reverse
link from the home location to a current location can serve both as the signal for the replication to spin off
a new copy and as the pointer to where it should begin executing. Thus, our path-following spider would

11

look like this:

vl. createboth /. go /.

lvt. rename £ to t. go t.

(delete goleft. throw £ over left. go left. copy £ as £. reverse £) |
(delete goright. throw £ over right. go right. copy £ as . reverse ()

This idea can be generalized without too much trouble to arbitrary recursive spiders; details are omitted.
(A little care is needed to ensure that the throw and go primitives choose the same edge.)

6 Reasoning About Spiders

We often want, to compare the behavior of two spiders or webs, especially to claim that they behave the
same way. To make these claims precise, we can define a standard form of contextual equivalence for the
Spider Calculus. As usual, we begin with the concept of a barb, then define both strong and weak versions
of barbed bisimulation, bisimilarity, and equivalence.

6.1 Contextual Equivalence

Since spiders can only interact with each other via modifications to the shape of the web, the interesting
characteristics of a web are embodied in the evolution of its graph’s shape. The barb W |¥ indicates the
existence of a particular edge at a particular node: W |# means W = vi. (i = j | V), where = and i are
not in Z (though j may be). We define a strong barbed bisimulation R to be a symmetric relation on webs
such that, whenever V R W,

o if V |?, then W |7, and
o if V— V' then W — W' with V! R W', for some W'.

The largest strong barbed bisimulation, denoted ~ , is called strong barbed bisimilarity.

To define strong barbed equivalence, we introduce contexts, which are webs with exactly one occurrence
of Nil. We use C and D to range over contexts, and use the notation C[W] to mean the web where the one
occurrence of Nil in C' is replaced by the web W. Strong barbed equivalence is denoted by ~¢; V ~¢ W
means C[V] ~ C[W] for all contexts C.

The weak versions of these relations rely on the observation predicate W |7, which means there is a web
W' with W —* W’ and W' |?. Then, a weak barbed bisimulation R is a symmetric relation on webs such
that whenever V R W,

o if V|7, then W ¥, and
o if V—*V' then W —* W' and V' R W', for some W'.

Weak barbed bisimilarity is the largest weak barbed bisimulation, denoted =~ , and weak barbed equivalences
like V ~¢ W mean C[V] ~ C[W] for all contexts C.>2

When there is no ambiguity, we will abbreviate [S]¢ ~¢ [T']' to S ~° T (and similarly for the other
relations defined in this section).

Lemma 6.1. The following facts about bisimulations hold.

1. The identity relation Idyy is both a strong barbed bisimulation and a weak barbed bisimulation.

2Later, we will vary which primitive actions are available. One subtlety of the above definitions is that they implicitly depend
on the available primitives (via the reduction relation); this means that any results about these relations will need to explicitly
state which actions are available.

12

2. Each class of bisimulation is closed under composition, inverse, and union.

3. Strong barbed equivalence is a strong barbed bisimulation, and weak barbed equivalence is a weak barbed
bisimulation.

4. Strong barbed bisimulations are weak barbed bisimulations, too.

5. Structural congruence = is a strong barbed bisimulation.

6.2 Correctness of the 7 Encoding

We would like to talk about the relationship between 7 processes and their encodings; however, the encodings
are longer than the m processes in the sense that it takes many reduction steps in the spider calculus to
emulate one reduction step of the 7w calculus. This means that to precisely characterize the relationship
between the two calculi, we must allow a single m process to be related not only to its encoding, but also
to reductions of translations where a particular w redex has been chosen for emulation, but has not yet
executed all of its reduction steps. The P ~, W relation, which can be found in the full version of the paper,
formalizes this notion. The correctness of the encoding is stated in terms of this relation: any step in the 7
world can be mirrored in the spider world by related webs, and any step in the spider world can be mirrored
in the 7 world by related processes.

7 The Design Space of Spider Primitives

There is a broad class of Spider Calculus variants that share the basic web and spider syntax and semantics,
but choose different sets of primitive actions. The particular set we have presented so far is minimal (in the
sense that they are mutually independent) and expressive (in the sense that many other useful actions can
be encoded in them), but there are other reasonable choices with equivalent expressive power. To go beyond
this degree of expressiveness, we can consider two primitives that strictly expand the power of the system:
merge and absent. Adding merge doesn’t greatly change the fundamental character of the system, but we
only know of one example where it is needed: encoding the open primitive of ambients; absent, on the other
hand, seems to be both more generally useful and a more radical extension.

As evidence of the independence of the primitives we have chosen, we provide two things for each: a
schematic of a graph transformation that is possible using that primitive (and perhaps some others), and
an invariant that is preserved by the other primitives but that is broken by the given transformation. The
schematics are meant to be interpreted “up to garbage” — for example, ignoring chunks of the web with
no free names. Figure 19 lists the transformations and invariants. For example, consider the throw action.
Define a self-link to be a link that points from and to the same node. We observe that execution of each
of the other actions (create, copy, go, rename, and reverse) preserves a critical property: if the web before
the action’s execution had no self-links, then the web after the action’s execution also has no self-links. The
throw primitive, however, can violate that property; the web

W=i%j]i%j|[throw z over y]’

has no self-links, but executing the throw at node ¢ will create a self-link named = at j. Therefore, no
sequence of other primitives can emulate a throw.

There are several additional primitives (that are not necessarily independent). The build and self primi-
tives (shown in Figure 20) are sometimes convenient, but are readily emulated with the primitives that are
already available. The merge primitive shown there makes it possible to “join” two nodes together; after
the merge, the joined node contains all the spiders and edges from both nodes. The merge primitive is
inspired by the open action of mobile ambients, and is needed to make a natural encoding of ambients in
the Spider Calculus. However, most other uses of merge can be replaced with other primitives like copy and
go. Formalizing merge requires some work—including the addition of a syntactic form for identifying two
nodes—but does not cause any significant theoretical problems.

13

Primitive

Invariant

Graph transformation

create

copy

go

throw

rename

reverse

the number of links
the number of nodes with two in-
coming links

the number of non-nil spiders at j

the number of self links

the existence of visible links

the number of cycles

v
3.
3

3
H
3

Figure 19: Reductions that support the independence of the primitives.

- build T at x.5 | —»

Figure 20: Pictorial representation of the semantics of some additional primitives

14

Purpose Condition Possible primitives | Additional power
node creation create build

mobility with create go

cycle creation with create self copy merge
mobility and cycle creation with build, choose two go copy merge
topology changes throw

hiding rename

edge reversal reverse

absence detection absent

Figure 21: A recipe for choosing directed primitives

There is one final category of primitives to consider. We can think of rename as an action that tests
whether an edge exists; for example rename = to x is an action that waits for a link named x to appear,
then continues. Is there a way to wait until an edge disappears? In short, the answer is no, and there are
concrete tasks that require such a test; for example, if we would like to do something when two nodes have
different identities. Thus, we considered adding the absent primitive, which only executes when an edge
with a given name does not exist. Unfortunately, spiders with such primitives violate a key monotonicity
property, namely that ift W — W' then V | W — V | W'.

Figure 21 summarizes our exploration of these primitives. To create a minimal system that is at least as
expressive as the Spider Calculus, simply choose one primitive from each row in the table. Some primitives
influence the choices of others; these conditions are shown in the second column. For example, a system
that has create for node creation will need go and one of self, copy, or merge to achieve our benchmarks. A
system with build for node creation can recover mobility and cycle creation from any two of copy, go, and
merge. Figure 22 shows how to emulate any primitives you may leave out during this process. We conjecture
that each of the encodings given preserve weak barbed congruence, i.e., if [-] is the encoding for any one of
the primitives (and expanded with syntactic congruence rules), then

Conjecture 7.1. [W] ~* W

8 The Undirected Spider Calculus

Another natural variant of the Spider Calculus involves considering undirected webs, that is, webs in which
links are visible to spiders on both ends of the link. Syntactically, we distinguish undirected links i < j from
directed links i = j, and introduce a structural congruence axiom i & j = j < i that allows undirected
links to be “reversed.” We will also distinguish primitives that act on undirected links from primitives that
act on directed links; Figure 23 gives the replacement for the syntactic category M of primitives, Figure 24
gives the definition of free names for them, and Figure 25 gives their operational semantics. A variant that
includes both directed and undirected links could potentially also include some semantic rules allowing the
mixing of edge types, such as the rules suggested in Figure 26.

The undirected Spider Calculus may actually be more fundamental than the directed system: it is possible
to emulate a directed graph in an undirected graph by fixing a globally known name dir, then expanding

directed edges i = j into a pair of undirected edges with a waypoint node vk. i & k| k & j. Figure 27
shows this pictorially, using a dotted box to indicate the scope restriction of the waypoint node. Figure 28
gives an encoding of all the directed primitives; we conjecture that extending this to an encoding of directed
webs gives a correct emulation of directed webs in undirected ones.

Theorem 8.1. For any directed web W, if W — W', then [W] — [W'].

Conjecture 8.1. For any directed web W, if [W] — W', then there is a directed web W'" such that
W — W" and W' =~ [W"].

15

[create z. S| = [self z. S] = vt.
build nil at z. [S] create t.
merge t. [5]
[self z. S] = vt. [self z. S] = vt.
build (create t.
copy t as t. copy t as t.
throw ¢ over ¢ reverse t.
) at t. go t.
reverse t. copy t as .
rename ¢ to z. [5] throw x over z.
go t. [S]
[copy = as y. S| = vt,t'. [build S at z. T] = vt.
rename x to ¢. create ¢.
self ¢'. copy t as t.
throw ¢’ over t. reverse t.
go t. go t.
self ¢. (IS7 |
throw t over t'. go t.
go t'. rename t to . [T]

rename ¢ to .
rename ¢ to y. [S]

[go z. S] = vt,t'.

build (merge t'. [S]) at t.

copy = as t'.
throw t' over ¢t

Figure 22: Writing directed primitives in terms of each other.

M = ucreate x ‘ ugo «] ucopy x as y
urename r to y | uthrow z over y

Figure 23: Undirected spider primitives

fn(urename z to y. S) {z,y} Ufn(S) fn(ucreate z. S) = {z}Ufn(S)
fn(ucopy z asy. S) = {z,y}Ufn(S) fn(ugo z. S) = {z}uUfn(S)
fn(uthrow z over y. S) = {z,y}Ufn(S)

Figure 24: Free names for undirected spider primitives

16

[uthrow z over y. S1 | i & j | i &k (red-throw)
— [S)|kSjlidE

[ucreate 7. S|P — [S]'|vj.i&) (red-create)
where j & {i,z}

[urename z toy. S| |i &5 — [S]]idj (red-rename)
[ucopy zasy. S) |i&j — [S]|i&j|idj (red-copy)

[ugoz. ST |i&j — [SP|idj (red-go)
Figure 25: Semantics of the undirected primitives

[throw z over y. S)' | i 5 j | i &k (red-dthrow-hybrid)
— (ST kSj1idk

[uthrow z over y. S]* | i & j | i %k (red-uthrow-hybrid)
— [ST kS liSE

Figure 26: Optional semantics for the hybrid system.

Figure 27: How to encode a directed edge into undirected webs.

17

Finally, we have constructed a recipe (similar to the one given in Section 7) for choosing variants of the
undirected Spider Calculus with different sets of primitives. Figure 29 summarizes our findings. Figure 30
gives the encodings.

9 Related Work

Mobile ambients [5], a key inspiration for the Spider Calculus, structure processes into edge-labeled trees,
much like the Spider Calculus’s edge-labeled graphs. Many Spider Calculus actions are direct analogues
of mobile ambient actions; in particular, the in x and out capabilities of mobile ambients are analogous to
the go x action of spiders, and the open capability is analogous to merge—and they cause similar sorts of
headaches (the danger of code injection, etc.)! An interesting difference is that, whereas open is a fundamental
operation of ambients, omitting merge from the Spider Calculus still leaves us with an expressive language.

Safe ambients [19] and boxed ambients [3] propose different restrictions that permit a more controlled
style of programming than original ambients. Safe ambients introduce co-actions, and only allow actions to
fire when they are properly paired with an identical co-action in the destination ambient. In essence, an
action represents a request and a co-action represents permission. Boxed ambients replace open with special
communication channels between a parent and its children. Processes stay within a single ambient, and only
the communication topology changes. The Spider Calculus has no analog of safe ambients’ co-actions or of
boxed ambients’ restricted mobility; indeed, the introduction of either feature seems at first glance to severely
cripple the calculus. But it would be interesting to look for similar restrictions with better properties.

The brane calculus [4] shares many ideas with safe ambients, but it has two kinds of locations (the
“membrane” and the “fluid”), which must alternate within the tree. This leads us to wonder whether it
might be interesting to study a generalization of the Spider Calculus with processes at both nodes and links.

The distributed 7-calculus [14] and Nomadic Pict [25] both have explicit, named locations. Processes
can go to any location whose name they know, that is, the connection topology for any given process is the
complete graph on the set of known location names. The formal presentation of the Spider Calculus also
has explicit locations, but processes themselves cannot refer to the location names in any way; only the local
connectivity—which may not be complete—is known. The distributed 7-calculus’ notion of located channels
is quite similar to the Spider Calculus’ notion of located links.

The 37 calculus [8] proposes an alternative form of location. Rather than keeping locations abstract, 3w
uses a 3D coordinate system (actually, a full 3D affine transformation) as its set of locations. This provides
great expressiveness for modeling physical systems.

The Chorus language [20] proposes another approach—intuitively rather similar to that of the Spider
Calculus—to computing in graphs. Chorus models synchronization with neighborhoods: variables in any
particular neighborhood are synchronous, and the basic operations merge and split neighborhoods. Syn-
chronization in the Spider Calculus is implicit: certain edges may be interpreted as locks. Nevertheless, we
believe that Chorus and the Spider Calculus may both prove to be good models for the same sorts of sparse
parallel algorithms: physical simulations, computing spanning trees, n-body problems, social networking
simulations, and sparse matrix computations.

Bigraphs [22] offer an abstract framework for a great variety of process calculi, including located ones.
Bigraphs share some characteristics with spiders—in particular, nodes and named edges. However, the
structure of nodes and edges differ significantly from webs: nodes are arranged in a tree structure, they have
have prescribed arities telling how many edges must be incident to them, and edges can connect arbitrarily
many nodes. The result is that the nodes and edges of bigraphs are used for significantly different purposes
than the nodes and edges of a web. Nevertheless, it seems likely that the Spider Calculus could be presented
as an instance of the bigraph framework.

The Distributed Join Calculus [10] extends the join calculus (a pi-calculus variant) by adding locations
and primitives for mobility. Although locations are arranged in a tree, processes may migrate directly to any
location whose name they know. When a process migrates, it brings along any sublocations as well. In the
Spider Calculus, by contrast, processes cannot refer directly to names of locations; only local migration along

18

[copy z as . S]q = va', e, t. Sy

Si
Sy
Ss
Sy
Ss
Se
S7
Sg
Sy

urename z to z'. Sy
ucrosslink ¢ on 2’ dir. S
ucreate c. Sy

uthrow ¢ over c¢. Si

ugo c. Sg

urename t to dir. Sy
ugo c. Sg

urename c to x. Sy
urename z' to z. [S]a

[throw z over y. S]q = va',y',t. Sis

Sis

[rename

urnboth z y to z' y'. Sig
ucrosslink ¢ on y' dir. S
uthrow z’ over t. Sig

ugo t. 519

urename z' to z. Sy

ugo t. 521

urename y' to y. [S]q4

ztoy. Sla=
urename z to y. [S]q

ucrosslink x on a b. S = vy, z. S3;

Sa1

533

utryrn x
Saq
Sus
Sae
Sar
Sag
Sag
S50
Ss1

ucopy a as y. Ssa
ugo y. Ss3

ucopy b as z. Sz
uthrow y over z. Sss
ugo 2. ugo y. Sse
urename y to . S

into y do S orelse T'=vl,n. Sy

Sis | Sse | Sas

ucreate £

udelete £. Sy

ucreate n. T’

urename z to y. (Sa9 | Ss0)
udelete £. S

udelete n. Sx;

urename y to x

[reverse z.

Sla =vy. Swo
urename z to y. S11
ugo y. Sio

urename dir to xz. Si3
ugo y. Si4

urename y to dir. [S]4

[create . S]q = vz. Sao

522

ucreate z. Sos

ugo z. Soy

ucreate dir. Sax

ugo z. Sog

urename z to z. [S]a

=vz' t. Sor

urename z to z'. Sag
ucrosslink ¢ on 2’ dir. Sag
urename z' to x. Ssg

ugo t. [S]4

urnboth z y to 2’ y'. S = vf. S37

ucreate £. !S3g

udelete £. Ssq

urename to z'. Sig

utryrn y into y' do S orelse Sy
urename z' to z. Siy

urename y to y. Sy3

ucreate £

Figure 28: Converting directed primitives to undirected ones.

19

Purpose Condition

Possible primitives

Additional power

node creation

cycle creation

mobility with ubuild
mobility with ucreate
node identification with ucreate
topology changes

hiding

absence detection

ucreate ubuild
ucopy uself
ugo
ugo

uthrow
urename

umerge
umerge

umerge

uabsent

Figure 29: A recipe for full-featured sets of undirected primitives

[ugo z. S] = (¢,t)
ubuild (umerge ¢'. [S]) at ¢.
ucopy z as t'.
uthrow ¢’ over ¢

[uself 2. S| = vt.
ucreate t.
umerge t.
urename t to .

[5]

[uself z. S] =
ubuild (umerge z. [S]) at «

[ucopy z as y. S| = vt.
uself ¢.
uthrow ¢ over z.
urename ¢ to y.

[5]

[ubuild S at z. T =
ucreate ¢.
ugo t.

vt.

(IT] | ugo t. urename ¢ to x. [S])

[uself . S| = (¢,t")
ucreate 1.
ucopy t as t'.
ugo t'.
uthrow ¢ over t'.
ugo t'.
urename t to x.

[5]

[ucreate z. S| =

ubuild nil at z. [S]

Figure 30: Writing undirected primitives in terms of each other

20

named edges is allowed. Also, the Spider Calculus separates process migration primitives from primitives
that modify the topology.

Meld [1] is another language for distributed computing on networks with shifting connection topologies,
but with some key differences. Like the Spider Calculus, there are nodes and links arranged in a graph
structure, and computation occurs at the nodes, but in Meld, each node runs the same program. Meld’s
roots are in logic programming; each node generates base facts (representing local connectivity or observations
of the node’s environment, for example) and inferred facts (which may be inferred from either facts local to
the current node or facts from logically connected nodes). Nodes themselves do not influence the connection
topology, and migration does not make sense, since all nodes are executing the same program.

Since the Spider Calculus is concerned with local transformations of graph structures, we should also
mention graph rewriting (also called graph transformations or graph grammars) [9]. The root of its founda-
tional theory lies in the sixties, as an extension of the theory of string transformations, and its applications
range from layout algorithms to robotics, where new frameworks and tools (e.g., embedded graph grammars)
have been introduced and used [16]. Connections between graph grammars and process calculi have been
studied in terms of semantics and behavioural theory [12, 17, 13]. One interesting question in this connection
is what forms of graph rewriting can be encoded in the Spider Calculus.

10 Future Work

We have presented only informal arguments for the correctness of our programs. In particular, the theory of
contextual equivalence in the spider calculus is not yet sufficiently developed to prove the correctness of the
pi-calculus encoding or the encoding of directed webs into undirected ones. More broadly, our examination of
related work suggests several possible directions of interest: relating the Spider Calculus to graph rewriting
or improving safety via typing, co-actions, or more restrictive primitives.

10.0.1 Acknowledgments

Many thanks to Davide Sangiorgi, Giorgio Ghelli, Andrew Gordon, David Walker, Michael Kearns, Martin
Hofmann, and Arnaud Sahuguet for insightful discussions and pointers to proof techniques. Thanks also to
the moca mailing list, who suggested many relevant papers.

References

[1] M.P. Ashley-Rollman, P. Lee, S.C. Goldstein, P. Pillai, and J.D. Campbell. A Language for Large
Ensembles of Independently Executing Nodes. In Proceedings of the 25th International Conference on
Logic Programming, page 280. Springer, 2009.

[2] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. nature, 324:4, 1986.

[3] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. Lecture Notes in Computer Science, pages
38-63, 2001.

[4] L. Cardelli. Brane calculi. In CMSB, volume 4, pages 257—278. Springer, 2004.

[5] L. Cardelli, G. Ghelli, and A.D. Gordon. Mobility types for mobile ambients. Lecture Notes in Computer
Science, 1644:230-239, 1999.

[6] L. Cardelli and A.D. Gordon. Types for mobile ambients. In Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 79-92. ACM New York, NY, USA,
1999.

[7] L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177-213, 2000.

21

(8]

[24]

[25]

Luca Cardelli and Philippa Gardner. Processes in Space. Technical Report 4, Imperial College London
Department of Computing, 2009.

H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of graph grammars and
computing by graph transformation: vol. 3: concurrency, parallelism, and distribution. World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 1999.

C. Fournet and G. Gonthier. The join calculus: a language for distributed mobile programming. Lecture
Notes in Computer Science, 2395:268-332, 2002.

M.J. Freedman, E. Freudenthal, and D. Mazieres. Democratizing content publication with Coral.

F. Gadducci. Graph rewriting for the pi-calculus. Mathematical Structures in Computer Science,
17(3):407-437, 2007.

F. Gadducci and U. Montanari. A concurrent graph semantics for mobile ambients. Electr. Notes Theor.
Comput. Sci., 45, 2001.

M. Hennessy. A distributed pi-calculus. Cambridge Univ Pr, 2007.

M.R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar
graphs. Journal of Computer and System Sciences, 55(1):3-23, 1997.

E. Klavins. Programmable Self Assembly. IEEE Control Systems Magazine, 27:43-56, 2007.

B. Konig. A graph rewriting semantics for the polyadic calculus. In ICALP Satellite Workshops, pages
451-458, 2000.

M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L.P. Chew. Optimistic parallelism
requires abstractions. In Proceedings of the 2007 ACM SIGPLAN conference on Programming language
design and implementation, page 222. ACM, 2007.

F. Levi and D. Sangiorgi. Mobile safe ambients. ACM Transactions on Programming Languages and
Systems, 25(1):1-69, 2003.

R. Lublinerman, S. Chaudhuri, and P. Cerny. Parallel programming with object assemblies. 2009.

B. Maggs. Global internet content delivery. In Proc. 1st IEEE/ACM Int. Symposium on Cluster
Computing and the Grid, CCGrid, 2001.

R. Milner. Space and Motion of Communicating Agents. Cambridge Univ Press, 2009.

D. Sangiorgi and D. Walker. The pi-calculus: a Theory of Mobile Processes. Cambridge University
Press, 2003.

G. Unel, F. Fischer, and B. Bishop. Answering reachability queries on streaming graphs. Stream
Reasoning, 2009.

PT Wojciechowski and P. Sewell. Nomadic Pict: Language and infrastructure design for mobile agents.
IEEE Concurrency, 8(2):42-52, 2000.

22

