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Abstract
A wide range of low-level security policies can be expressed as rules
on metadata tags and enforced using a combination of a hardware
rule cache and a software monitor. We present a generic framework
for defining tag-based reference monitors (or micro-policies) on a
simple tagged RISC processor, formalize this framework in Coq,
and use it to define and verify micro-policies for dynamic sealing,
control-flow integrity, memory safety, and compartmentalization; in
addition, we show how to use the tagging mechanism to protect its
own integrity. For each micro-policy, we prove by refinement that
the hardware running a correctly implemented monitor embodies a
high-level specification characterizing a useful security property.

1. Introduction
Today’s computer systems are distressingly insecure, but many of
their vulnerabilities can be avoided if low-level code is constrained
to obey well-known safety and security properties such as type and
memory safety, control flow integrity (CFI), “sealing” of sensitive
information, and strong separation into least-privilege compartments.
Ideally, such properties should be enforced statically, but for low-
level code it is often more practical to detect violations dynamically
using a reference monitor [3, 11, 26]. Reference monitors are
sometimes implemented in software, but this can significantly
degrade performance. Hardware implementation is thus an attractive
alternative, especially in an era of cheap transistors.

Many designs for hardware monitors have been proposed, at first
focusing on enforcing single hard-wired security policies and later
evolving toward more programmable mechanisms allowing quicker
adaptation to a shifting attack landscape. Our work is based on a
flexible hardware/software mechanism, called the Programmable
Unit for Metadata Processing (PUMP) [10], that can efficiently im-
plement a wide range of different policies, singly or in combination.

The PUMP is designed as an add-on to a conventional RISC pro-
cessor. Every word of data on the machine is associated with a piece
of metadata (a full machine word) called a tag. The interpretation
of tags is left entirely to software: the hardware simply propagates
tags from operands to results according to software-defined rules.
To propagate tags efficiently, the processor is augmented with a
rule cache that operates in parallel with instruction execution. On a
rule cache miss, control is transferred to a trusted miss handler that,
given the tags of the instruction’s arguments, decides whether the
current operation should be allowed and, if so, computes appropriate
tags for its results. It adds this set of argument and result tags to the
rule cache so that, when the same situation is encountered in the
future, the rule can be applied without slowing down the processor.
The software components that can be changed to enforce a particular
property are collectively called a micro-policy, or sometimes just
policy. (These policies are “micro” in the sense that they enforce
low-level security invariants such as spatio-temporal memory safety
or CFI rather than user-level properties like “My web browser sends
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my bank details only to my bank”). This mechanism achieves the
flexibility and adaptability of software with performance comparable
to dedicated hardware. Hardware simulations suggest that the aver-
age runtime overhead for fairly complex micro-policies like memory
safety and fine-grained CFI can be reduced to around 8–13% [14].

However, encoding desired properties as micro-policies that
perform well in practice can be nontrivial. While a higher-level
rule-based programming model helps in writing down micro-
policies [14], it is still easy to get them wrong: at the end of the
day, only formal verification can give complete confidence. This
observation motivated a recent formal definition and correctness
proof for PUMP-like tagging hardware running a specific monitor
for an information-flow control (IFC) policy [4].

In this paper, we offer a generic framework for defining, imple-
menting, and formally reasoning about micro-policies, and we use
it to study a diverse collection of micro-policies. The framework is
entirely implemented (and checked) in Coq [7].

Our investigation targets an idealized RISC ISA with a mini-
malist instruction set, extended with a PUMP—i.e., with word-size
tags on words in memory, registers, and the pc, a rule cache, and a
mechanism for trapping to software on cache misses. We call this
hardware platform the concrete machine (see Figure 1).

The heart of our framework is a symbolic machine that serves
both as a programming interface for the concrete machine—
abstracting away unnecessary implementation details and providing
a convenient platform for micro-policy designers—and as an inter-
mediate step in correctness proofs. This machine is parameterized
by a symbolic micro-policy that expresses tag propagation and
checking in terms of structured mathematical objects. Unlike the
concrete machine’s tags, which are unstructured words, a symbolic
tag might contain a list of principals for an IFC micro-policy, as
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in [4]. The designer also provides a transfer function that monitors
program execution and determines how tags are propagated in each
step. Finally, the micro-policy includes a set of monitor services,
represented as partial functions from machine states to machine
states, that can be directly invoked by user programs to control the
monitor’s behavior dynamically. For example, our dynamic sealing
policy uses keys as tags and includes monitor services for creating
new keys, sealing, and unsealing.

Each micro-policy is implemented at the concrete level by
providing machine code for the transfer function and monitor
services and a concrete bit-encoding for symbolic tags. This monitor
code can make use of a handful of privileged instructions of the
concrete machine, allowing it to inspect and change tags and to
update the cache. For all micro-policies, it is obviously necessary to
protect the integrity of the monitor’s code and data, and to prevent
user programs from invoking privileged instructions. We show that
we can achieve this protection using only the tagging mechanism
itself, by labeling the monitor’s memory and registers with a Monitor
tag that user programs are prevented from accessing by the monitor.
In order to allow the monitor to access this tag or execute privileged
instructions we pre-populate the cache with a set of non-evictable
ground rules.

To demonstrate its expressive power, we instantiate this generic
framework with a diverse set of security micro-policies: (a) dy-
namic sealing, a linguistic mechanism for protecting data [20];
(b) control-flow integrity (CFI), preventing code-reuse attacks such
as return-oriented programming [1]; (c) memory safety, preventing
temporal and spatial violations for heap-allocated data; and (d) com-
partmentalization, sandboxing untrusted code and allowing it to be
run alongside trusted code [27]. The intended behavior of each
micro-policy is specified by an abstract machine giving a clear char-
acterization of the micro-policy’s behavior as seen by a user-level
programmer. In some cases (e.g., dynamic sealing and memory
safety), the abstract machine definition itself is a sufficently clear
explanation of the invariants it enforces. In other cases, it is useful
to prove theorems that draw out key properties. For example, for the
CFI micro-policy we prove a variant of the original CFI property
proposed by Abadi et al. [1], while for our compartmentalization
micro-policy we prove a single-step property drawn from Wahbe et
al.’s original software fault isolation model (SFI) [27].

Our main technical results are refinements between the concrete
and abstract machines for each policy. We show that every valid
concrete behavior is a valid abstract behavior—hence, the concrete
machine always fail-stops on policy violations. Using the symbolic
machine as an intermediate point lets us factor out many commonal-
ities among the refinement proofs of different policies. Indeed, we
give a single generic refinement proof for the concrete and symbolic
machines, parameterized by a proof of correctness of the policy-
specific monitor code. For CFI, we additionally use this generic
refinement to transfer the CFI property [1] of the abstract machine
to the concrete level via a generic CFI-preservation theorem.

Our main contributions are as follows. First, we introduce a
generic framework for defining (§2–§3), implementing (§5), and for-
mally verifying a wide range of micro-policies for a simple PUMP-
enhanced RISC processor. Second, we give a generic refinement
proof (parameterized by crisp hypotheses about the behavior of
policy-specific components) between our concrete hardware plat-
form + generic miss handler and the symbolic machine; along the
way, we show how to use the PUMP to protect its own policy moni-
tor code (§6). And third, using this framework, we formally verify
four security micro-policies: dynamic sealing (§4), control-flow in-
tegrity (§7), memory safety (§8), and compartmentalization (§9).
We discuss related work in §10 (and, where appropriate, in §7–§9)
and future work in §11. Our Coq development is included with the
additional material for this submission.

Our work generalizes and formalizes previous work on PUMP-
like hardware structures and PUMP-supported micro-policies. An
important inspiration is [4], which formalizes an IFC micro-policy
using a special-purpose symbolic machine over a PUMP-like tag-
ging mechanism. Compared to [4], we base our work on a more
realistic RISC architecture. Moreover, we use the PUMP’s tagging
facilities not only to implement user-level micro-policies but also
to protect the instructions and data of the policy monitor itself. Our
symbolic machine generalizes the one in [4] beyond IFC and adds
arbitrary monitor services; the generic refinement proof between
concrete and symbolic machines is also new. A second related pa-
per [14] studies a programming model for the PUMP architecture
and experimentally evaluates runtime overhead and characteristics
like cache working set sizes for a set of micro-policies including
the CFI and memory safety policies we investigate here, faster un-
sound variations thereof, and simple policies for taint tracking and
low-level types. Our work here is complementary, focusing on for-
mal specification and verification of micro-policies. Moreover, the
micro-policies for compartmentalization and dynamic sealing are
completely new. Finally, while the informal rule format used here
to present symbolic transfer functions is based on [14], our Coq
development uses Coq’s internal language, Gallina.

Finally, one disclaimer on scope. There are two main steps in
using our framework to implement a given micro-policy: (1) defin-
ing an abstract machine that directly characterizes some property
of interest, devising symbolic tags, a symbolic transfer function,
and symbolic monitor services that enforce the property using the
features of the symbolic machine, and proving that this symbolic
machine instance refines this abstract machine; and (2) implement-
ing the transfer function and monitor services in machine code and
proving these implementations correct with respect to the symbolic
versions. We have completed only (1) for the policies described
in §4 and §7–§9, both to manage the size of the verification ef-
fort and because this is where the main conceptual novelty of our
framework lies. Our formal results assume the existence of correct
monitor implementations as hypotheses. These implementations are
generally straightforward, and verification of low-level code is a
well-studied [4, 5, 15], if not yet fully settled, area.

2. Basic Machine
We begin by introducing a simplified RISC instruction set architec-
ture, which forms a common core for all the machines throughout the
paper. The machine has a fixed number of general-purpose registers
plus a pc register. It offers a small collection of familiar instructions

inst ::= Nop | Const i rd | Mov rs rd | Binop⊕ r1 r2 rd
Load rp rd | Store rp rs | Jump r | Jal r | Bnz r i | Halt

where ⊕ ∈ {+,−,×,=,≤, and, or, xor, shru, shl} (shru = shift
right unsigned, shl = shift left). Const i rd puts a constant i into
register rd. Mov rs rd copies the contents of rs into rd. Jump and
Jal (jump-and-link) are unconditional indirect jumps, while Bnz r i
branches to a fixed offset i (relative to the current pc) if register r is
nonzero. Each instruction is encoded in a fixed-size word.

A basic machine state (mem, reg, pc) consists of a word-
addressable memory (a partial function from words to words),
a register file (a function from register names to words), and a pc (a
word). Trying to address outside of the valid memory will halt the
machine. The step rules of the basic machine are written like this:

mem[pc] = i decode i = Store rp rs
reg[rp]=wp reg[rs]=ws mem′=mem[wp←ws]

(mem, reg, pc)→ (mem′, reg, pc+1)
(STORE)

The partial function decode maps binary words to the instr datatype
defined above. The notation mem[w1←w2] is defined only when
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mem[w1] is; it then yields a partial function that maps w1 to w2 and
behaves like mem on all other arguments.

Subroutine calls are implemented by the Jal instruction, which
saves the return address to a general-purpose register ra. Returns
from subroutines are just Jumps through the ra register.

mem[pc] = i decode i = Jal r
reg[r] = pc′ reg′ = reg[ra←pc+1]

(mem, reg, pc)→ (mem, reg′, pc′)
(JAL)

3. Symbolic Machine
The symbolic machine is the key component of our framework,
easing the micro-policy designer’s work in several ways. First, it
abstracts away from the hardware rule cache. Second, it allows
policies to be expressed and reasoned about not only as chunks
of machine code, but also as mathematical functions written in
Gallina. This allows formal reasoning about security properties of
micro-policies at an appropriate level of abstraction. And third,
it comes with a generic proof of refinement between symbolic
and concrete machine instances; all that needs to be supplied are
correctness proofs for the individual code sequences with respect to
their mathematical specifications.

The symbolic machine has the same general organization as
the basic machine from §2. It is abstracted on several parameters:
(1) A set T of symbolic tags, which are used to label words in
memory, register contents, and the pc. (2) A partial function transfer,
mapping an opcode and a 5-tuple of tags to a pair of tags, which is
invoked on each step of the machine to check whether the current
configuration is allowed by the current micro-policy and, if so, to
calculate the tags on the next pc and the instruction’s result (if any).
(3) A partial function get service mapping addresses to pairs of a
symbolic monitor service (a partial function on machine states) and
a symbolic tag used to identify the service. (4) A type EX of extra
machine state that can be used by the monitor services, plus an initial
value. These parameters collectively form a symbolic micro-policy.

The tagged memory contents, register contents, and pc are called
symbolic atoms and written w@t, where w (the “payload”) is a
machine word and t is a symbolic tag. The payload and tag parts
are not separately addressable—they are treated as an indivisible
unit except within the policy-specific transfer function and monitor
services. Symbolic states, written (mem, reg, pc, extra), consist of
a memory, registers, a pc, and a piece of extra state. The symbolic
stepping rules call the transfer function to decide whether the step
is allowed by the micro-policy; if not, the machine is stuck. (For
simplicity, we assume that policy violations are fatal; various error
recovery mechanisms could also be used.) The transfer function is
passed a tuple containing the current opcode and the tags on the
current pc, current instruction, and up to three inputs (depending on
the opcode). It returns the new pc and result tags. For example:

mem[pc] = i@ti decode i = Store rp rs
reg[rp]=wp@tp reg[rs]=ws@ts mem[wp]=wold@told

transfer(Store, tpc, ti, tp, ts, told) = (t′pc, t
′
d)

mem′ = mem[wp←ws@t′d]
(mem, reg, pc@tpc)→ (mem′, reg, (pc+1)@t′pc) (STORE)

Passing told , the tag on the current contents of the target memory
cell, allows the transfer function to see what kind of data is being
overwritten. This is used by the monitor protection policy in §6 to
protect monitor memory from damage by user code.

In addition, there is one step rule for all monitor services, which
applies when the pc is at a service entry point.

get service pc = (f, ti)
transfer(Service, tpc, ti,−,−,−) = (−,−)

f (mem, reg, pc@tpc, extra) = (mem′, reg′, pc′@t′pc, extra′)
(mem, reg, pc@tpc, extra)→ (mem′, reg′, pc′@t′pc, extra′)

(SVC)

The call to transfer checks that this particular service is permitted
from the current machine state. The last three inputs to transfer are
set to a fixed dummy value “−” , and the outputs are not used: we
only care whether the operation is allowed or not.

4. Sealing Micro-Policy
For a first example, let us build a simple micro-policy for dynamic
sealing [20], a linguistic mechanism related to perfect symmetric
encryption. Abstractly, we extend the basic machine with three new
primitives (presented as monitor services): mkkey creates a fresh
sealing key; seal takes a data value (a machine word) and a key and
returns an opaque “sealed value” that can be stored in memory and
registers but not used in any other way until it is passed (together
with the same key that was used to seal it) through the unseal service.

First, we define an abstract sealing machine, a straightforward
extension of the basic machine from §2 that directly captures the
“user’s view.” Second, we show how the abstract machine can be
emulated by the symbolic machine by providing an appropriate
encoding of abstract-machine values (words, sealed values, and
keys) as symbolic atoms, together with a transfer function and
Gallina implementations of the three monitor services. We prove
that the symbolic sealing machine refines the abstract one. Finally,
we build machine-code realizations of the symbolic transfer function
and the three monitor services. A generic policy monitor (§6) wraps
these four code blocks with boilerplate for interacting with the
hardware trap facility and rule cache, and a generic refinement proof
establishes (assuming the correctness of the micro-policy-specific
code blocks with respect to their symbolic versions) that the concrete
hardware (§5) running this policy monitor behaves the same as the
sealing instance of the symbolic machine, and hence also the abstract
sealing machine. We discuss just the first and second steps here.

Abstract Sealing Machine To define an abstract machine with
built-in sealing, we begin by replacing the raw words in the registers
and memory of the basic machine with values drawn from the more
structured set w | k | {w}k. Here, w ranges over machine words,
k ranges over an infinite set AK of abstract sealing keys, and {w}k
stands for the sealing of payloadw under key k. To keep the example
simple, we disallow nested sealing and sealing of keys: only raw
words can be sealed. We enrich basic machine states with a set ks of
previously allocated keys, and parametrize the machine by a total
function mkkey f that, given a ks, chooses a fresh key not in this set.

The rules of the basic step relation are modified to use this
richer set of values. Most instructions only work with raw words—
e.g., trying to compare sealed values will halt the machine. Load
and Store require a word as their first argument (the target memory
address) but place no restrictions on the value being loaded or stored;
similarly Mov copies arbitrary values between registers.

The operations of generating keys, sealing, and unsealing are
provided by monitor service routines located at specific addresses
(mkkey addr, seal addr, and unseal addr), which lie outside of
accessible memory at the symbolic and abstract levels (at the
concrete level, the code for the services will begin at these addresses).
By convention, these routines take their arguments (if any) in
general-purpose registers rarg1 and rarg2 and return their result in
a general-purpose register rret. The step relation includes a rule for
each service that applies when the pc is at the corresponding address
(the omitted rule for sealing is analogous):

mkkey f ks=k reg′=reg[rret←k] reg[ra]=pc′

(mem, reg,mkkey addr, ks)→ (mem, reg′, pc′, k::ks)
(MKKEY)
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reg[rarg1] = {w}k reg[rarg2] = k
reg′ = reg[rret←w] reg[ra] = pc′

(mem, reg, unseal addr, ks)→ (mem, reg′, pc′, ks)
(UNSEAL)

The pc is restored from register ra after each of these steps. To
invoke a monitor service, a user program simply performs a Jal to
the corresponding address, which sets ra appropriately. Invoking
services this way means that we can run exactly the same user code
on this abstract machine as we do on the concrete machine in §5.

Symbolic Sealing Machine The abstract machine constitutes a
specification of the sealing micro-policy. We next devise a symbolic
micro-policy that implements this specification in terms of tags by
representing each abstract value as a symbolic atom w@t, where
symbolic tags t have the form Data, Key k, or Sealed k. Keys are
represented as a dummy payload word tagged with a symbolic key
k drawn from an ordered finite set SK. A word w tagged Sealed k
represents the sealing of w under key k. The extra state type EX is
just SK, and the extra state consists of a monotonic counter storing
the next key. The initial extra state is the minimum key.

Except for the rules for monitor services, which are implemented
directly as described below, all side conditions on the step relation
involving the shapes of values are captured by the transfer function
of the symbolic machine. In our formal development, transfer
functions are written in Gallina; but for readability we will present
examples as a collection of symbolic rules [14]

opcode : (PC ,CI ,OP1 ,OP2 ,OP3 )→ (PC ′,R′)

where the metavariables range over symbolic expressions, including
variables and “−” to indicate input or output fields that are ignored.
For example, the restriction that Store requires an unsealed word in
its pointer register (OP1) and copies the tag of the source register
(OP2) is captured by the following symbolic rule:

Store : (Data,Data,Data, tsrc ,−)→ (Data, tsrc)

Similarly, the Jal rule ensures that the target register (OP1) is tagged
Data and tags the ra register (R′) as Data:

Jal : (Data,Data,Data,−,−)→ (Data,Data)

The get service function is {mkkey addr 7→ (mkkey,Data),
seal addr 7→ (seal,Data), unseal addr 7→ (unseal,Data)},
where mkkey and unseal (seal is similar) are defined by:

reg′ = reg[rret←max word@Key nk]
nk 6= max key nk′ = nk + 1

mkkey (mem, reg, pc, nk) (mem, reg′, pc, nk′)
(MKKEY)

reg[rarg1] = w@Sealed k reg[rarg2] = w′@Key k
reg′ = reg[rret←w@Data]

unseal (mem, reg, pc, nk) (mem, reg′, pc, nk)
(UNSEAL)

The constant max key stands for the largest representable key, while
max word is used as a dummy payload. Note that mkkey can fail if
all keys have been used up. By contrast, the abstract sealing machine
uses an infinite set of keys, so it will never fail for this reason. This
discrepancy causes no problems for our backward refinement proof,
which only requires us to show that if the symbolic machine takes a
step then a corresponding step can be taken by the abstract machine.
Forward refinement, on the other hand, does not always hold: the
symbolic machine will fail to simulate the abstract one when it runs
out of fresh keys. Giving up forward refinement is the price we pay
for not exposing the details of key allocation at the abstract level.

Refinement We formalize the connection between the abstract and
symbolic sealing machines as a backward (from concrete to abstract)
refinement property on traces. We state this here in general form and
instantiate it repeatedly throughout the paper.

Definition 4.1 (Backward refinement). We say that a low-level
machine (StateL,→L) backward refines a high-level machine
(StateH ,→H) with respect to simulation relation ∼ between low-
level and high-level states if sL1 ∼ sH1 and sL1 →∗ sL2 implies that
there exists sH2 such that sH1 →∗ sH2 and sL2 ∼ sH2 .

Following standard practice, we prove refinement by showing
simulation between individual execution steps. In the case of sealing,
we can prove a strong 1-backward simulation theorem showing that
each step of the symbolic machine is simulated by exactly one
corresponding step of the abstract one.

Definition 4.2 (1-backward simulation). If sL1 ∼ sH1 and sL1 → sL2
then there exists sH2 such that sH1 → sH2 and sL2 ∼ sH2 .

Theorem 4.3 (1-backward SA-simulation for sealing). The sym-
bolic machine 1-backward-simulates the abstract machine with re-
spect to the simulation relation λ sS sA. ∃ψ. sS ∼SA

ψ sA.

The relation ∼SA
ψ on states is itself defined in terms of the

following relation between symbolic atoms and abstract values (plus
some additional invariants described below):

w@Data ∼SA
ψ w′ = w = w′

w@(Key kS) ∼SA
ψ kA = ψ[kA] = kS

w@(Sealed kS) ∼SA
ψ {w′}kA = w = w′ ∧ ψ[kA] = kS

w@t ∼SA
ψ v = false, otherwise

Since keys are dynamically allocated, the relation is parameterized
by a partial function ψ from abstract to symbolic keys. This mapping
is extended on each call to mk key to maintain the correspondence
between the newly generated keys, which are drawn from different
sets at the two levels. This setup allows us to elide irrelevant details
of key allocation from the abstract machine—this is only a minor
convenience for sealing, but the idiom becomes quite important
in other micro-policies for hiding complex objects like memory
allocators (§8) from the high-level specification.

The simulation relation on states ∼SA
ψ is lifted “pointwise” from

atoms, plus these invariants: (a) all abstract keys in the domain of ψ
are in the set of currently allocated keys in the abstract state; (b) all
symbolic keys in the range of ψ are strictly smaller than the current
value of the monotonic counter; and (c) ψ is injective.

5. Concrete Machine
The concrete machine extends the basic machine with generic
hardware for efficiently enforcing symbolic micro-policies, in the
form of a rule cache and a software miss handler. Its memory,
registers, and pc hold concrete atoms of the form w@t, where the
concrete tag t is simply a machine word. The instruction set includes
four additional instructions for use by low-level monitor code:

AddRule | JumpEpc | GetTag rs rd | PutTag rs rtag rd

AddRule, described in detail below, inserts a new rule into the
cache. JumpEpc jumps to the address in epc, a new special-purpose
register that holds the address of the faulting instruction after a
cache miss. GetTag r1 r2 takes the tag t from the atom w@t stored
in r1 and returns it as the payload part of a new atom t@Monitor
in r2, where Monitor is a fixed concrete tag used by monitor code.
PutTag r1 r2 r3 does the converse: if r1 and r2 contain w1@t1
and w2@t2, it stores w1@w2 into r3. The monitor self-protection
mechanism described in §6 ensures that these instructions can only
be executed by monitor code.

Concrete states have the form (mem, reg, pc, epc, cache), where
cache is a set of concrete rules, each of the form (iv, ov). Intuitively,
each concrete rule encodes a single tuple in the graph of the transfer
function. The input vector iv represents the key for rule cache
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lookups and contains the instruction opcode, the tag of the current
instruction, the tag of the pc, and up to three operand tags. The output
vector ov provides the tags of the result and the new pc. On each
step, the machine constructs iv from the current instruction opcode
and the relevant tags and looks it up in the cache. If a matching rule
is found (written cache ` iv 7→ ov below), the instruction is allowed
and the next state is tagged according to ov. If no rule matches
(cache ` iv ↑), then iv is saved in memory, the current pc is saved
in epc, and control is transferred to a fixed address where the miss
handler is loaded (trapaddr).

Each rule in the step relation is split into two variants—one for
when we hit in the cache and one for when we trap to the miss
handler. For example, here are the rules for Store:

mem[pc] = i@ti decode i = Store rp rs
reg[rp]=wp@tp reg[rs]=ws@ts mem[wp]=wold@told

cache ` (Store, tpc, ti, tp, ts, told) 7→ (t′pc, t
′
d)

mem′ = mem[wp←ws@t′d]
(mem, reg, pc@tpc, epc, cache)

→ (mem′, reg, (pc+1)@t′pc, epc, cache)
(STORE)

mem[pc] = i@ti decode i = Store rp rs
reg[rp]=wp@tp reg[rs]=ws@ts mem[wp]=wold@told

cache ` (Store, tpc, ti, tp, ts, told) ↑
mem′ = mem[0..5← (Store, tpc, ti, tp, ts, told)]

(mem, reg, pc@tpc, epc, cache)
→ (mem′, reg, trapaddr@Monitor, pc@tpc, cache)

(STORE-MISS)

Addresses 0 to 5 are used to store the current iv for use by the miss
handler in the final premise of the second rule. The miss handler
computes the result tags, stores them at addresses 6 and 7, and uses
the AddRule instruction to insert the new rule into the cache.

mem[pc] = i@ti decode i = AddRule
cache ` (AddRule, tpc, ti,−,−,−) 7→ (t′pc,−)
mem[0..7] = (opcode, t1, t2, t3, t4, t5, t6, t7)

cache′ = cache ] ((opcode, t1, t2, t3, t4, t5) 7→ (t6, t7))

(mem, reg, pc@tpc, epc, cache)
→ (mem, reg′, (pc+1)@t′pc, epc, cache′)

(ADDRULE)

Here ] denotes map update, overwriting any previous value for
(opcode, t1, t2, t3, t4, t5). We do not model cache eviction.

A final technical detail is that the machine can be configured
on a per-opcode basis to mask out (i.e., set to a predefined “don’t
care” tag) selected fields of the iv before matching against the cache.
This is easy to implement in hardware, and it permits a single cache
entry to match many different iv tuples. The machine can also be
configured on a per-opcode basis to “copy through” a specified iv
tag to either of the ov tag fields. These features allow more compact
representation of transfer functions as concrete rules. We use them
in the next section to ensure that the set of ground rules is finite.

6. Concrete Policy Monitor
It is not obvious that the simple mechanisms of the concrete machine
are rich enough to implement the high-level model proposed by
the symbolic machine. To demonstrate that they are, we present a
generic framework for implementing micro-policies on the concrete
machine and proving them correct in the sense of enjoying a two-
way refinement with the corresponding symbolic machine instance.
To use the framework, a policy designer must provide: (a) an
encoding function enc that converts symbolic tags to concrete
words (bit vectors)1; (b) a way of representing the policy-specific
extra state in the memory of the concrete machine; (c) machine

1 For the moment, we assume the existence of correct encodings for all
policies but dynamic sealing. Moreover, we assume that every symbolic tag
can be encoded as a word; in reality, complex tags should be encoded as

code for computing the micro-policy’s transfer function on encoded
tags; (d) machine code for implementing each monitor service;
(e) correctness proofs for the above with respect to the corresponding
symbolic components. We first present the framework, then show
how to instantiate it to obtain a concrete implementation and a
refinement proof for the sealing micro-policy of §4 (modulo the
correctness assumptions for machine code, which we do not prove).

Tagging Scheme At the symbolic level, the interaction between
user code and the tagging infrastructure is limited. In particular, it
is impossible by construction to circumvent micro-policy enforce-
ment. At the concrete level, however, some form of isolation for
monitor memory is required. Moreover, on the symbolic machine
the privileged instructions we added in §5 do not exist; on the
concrete machine we need to ensure that only monitor code can
execute them—otherwise, malicious or compromised code could,
for instance, add arbitrary rules to the cache. We use the PUMP
to simultaneously enforce the symbolic micro-policy, protect the
monitor, and prevent user code from executing privileged instruc-
tions. Conceptually, our tags have the form User st, Entry st, or
Monitor. They are represented concretely using two low-order bits
to distinguish between the different cases: User st→ enc st · 0 · 1,
Entry st→ enc st · 1 · 0, and Monitor→ 0̄, where · is bitstring con-
catenation and 0̄ is the all-zero bitstring. The concrete tag User st is
used to label a user-level atom with (binary-encoded) symbolic tag
st. Monitor is used to tag monitor memory as well as a few reserved
monitor registers; at the symbolic level, these are undefined. The
pc is also tagged User or Monitor to indicate which kind of code is
running; the tag flips on cache misses (via MISS rules), returns from
misses (via JumpEpc), returns from service routines (via Jump ra),
and when an instruction tagged Entry is executed while the pc is
tagged User, as explained below.

Miss Handler The miss handler has two jobs: enforcing the
symbolic micro-policy and protecting the monitor from the user.
Accordingly, we split the miss handler into a policy-specific transfer
function implementation (provided by the policy designer) and a
generic monitor protection wrapper. The generic wrapper reads the
iv out of memory into a specific set of monitor registers, checks that
the low-order bits of all the tags represent User, strips them off, runs
the transfer function (which should halt the machine if iv violates
the policy), re-wraps the tags in the resulting ov, stores it into the
appropriate memory slots, calls AddRule to install it, and restarts
the instruction that trapped by jumping through the epc register.

If the generic wrapper detects that user code is trying to manipu-
late or overwrite private monitor data, it halts the machine without
invoking the transfer function. Its ability to do this relies crucially
on the fact that tags from the “old contents” of registers and mem-
ory are included in the iv. The only exception is when the current
instruction is tagged Entry, which happens when invoking monitor
services. In this case, the wrapper does invoke the policy transfer
function, after replacing the current opcode with the special value
Service; this allows the transfer function to decide which services
can be invoked from which user states. The wrapper also halts if
user code tries to execute any of the privileged instructions.

We ensure that monitor code itself never faults (which could lead
to inefficiency or infinite regress) by populating the rule cache in
the initial machine state with a finite set of ground rules, one for
each opcode, saying that this opcode can be executed when the PC
and CI tags in the iv are Monitor and that the next pc and any result
of the instruction are also tagged Monitor. A technical detail is that
we use separate don’t-care and copy-through masks when running

word-sized pointers to structures in memory. We know how to relax both
these assumptions. For the former we already have the infrastructure in place,
while for the latter we plan to follow [4]. This should require a few days of
work.
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monitor code (i.e., when the pc tag is Monitor), to ensure that the
monitor does not fault when coming in contact with user tags (for
instance when returning back to user mode).

Refinement We formalize the relation between the symbolic and
concrete machines as a two-way refinement (forward and backward)
between their step relations.2 We consider a symbolic machine
instance for an arbitrary micro-policy, assuming the policy designer
has supplied an encoding scheme for symbolic tags in terms of
machine words, together with compatible implementations for the
transfer function and monitor services.

We provide generic backward and forward simulation proofs.
The backward simulation statement and proof are, however, more
complicated, because the steps of the concrete monitor cannot be
mapped to any symbolic steps. Moreover, the concrete monitor
will often temporarily break both the invariants and any strong
correspondence with respect to some symbolic state, and only
reestablish these before returning back to user code. To address
these challenges, we define a weak simulation relation ∼CS

I between
concrete and symbolic states in terms of a strong simulation relation
≈CS
I . We prove backward simulation with respect to∼CS

I and forward
simulation with respect to ≈CS

I . Both relations are parametric in I ,
an implementation-specific invariant that ensures that the policy
extra state is correctly represented in memory.

Definition 6.1. We say that sC weakly simulates sS , written
sC ∼CS

I sS , if either the pc of sC is tagged User and sC ≈CS
I sS , or

else if the pc of sC is tagged Monitor and there exists another state
sCU with a pc tagged User such that sCU ≈CS

I sS and sCU →∗ sC and
all states in this execution have the pc tagged Monitor.

The second case handles concrete states in which the monitor
executes, and for which we do not have a direct correspondence
with any symbolic state, but for which we need to remember enough
information from the point in the past where the monitor was
invoked to be able to reestablish strong simulation once execution
returns to user mode. Strong simulation ≈CS

I is defined as follows:

regC ∼ regS memC ∼ memS

cache ok(cache) services ok(memC)
∀a, get service a = ( , t) ⇐⇒ memC [a] = @(Entry t)

memC [0..7] = [ @Monitor, . . . , @Monitor]
Iw(memC , regC , cache, extra) I(memC , extra)

(memC , regC , pc@(User t), epc, cache)
≈CS
I (memS , regS , pc@t, extra)

where regC ∼ regS means ∀r, x, t′, regC [r] = x@(User t′) ⇐⇒
regS [r] = x@t′, and similarly for memC ∼ memS . The predicate
cache ok states that, whenever a rule with pc tag User is found in
the cache, the rule’s result matches that of the symbolic transfer
function, modulo the tag encoding. The predicate services ok states
that each location in the concrete memory that corresponds to a
monitor service is tagged Entry st, where st is that service’s tag.
Finally, Iw is a generic wrapper invariant used to ensure that monitor
code and data are tagged the appropriate way and located in the
expected memory regions, and that the ground rules are good.

The two-way concrete to symbolic (CS) simulation theorem also
relies on the following definition (1-forward simulation is just the
dual of Definition 4.2, switching the roles of L and H):

2 Only backward refinement is used in the rest of the paper—indeed, forward
refinement doesn’t hold at the symbolic-to-abstract level for most of the
micro-policies we consider because their abstract machines abstract away
from resource constraints that can cause the symbolic machines to fail.
However, the forward direction may be interesting for other micro-policies.
For example, we believe it holds for CFI.

Definition 6.2 ({0, 1}-backward simulation). If sL1 ∼ sH1 and
sL1 → sL2 then sL1 ∼ sH2 or ∃sH2 such that sH1 → sH2 and sL2 ∼ sH2 .

Theorem 6.3 (Two-way CS-simulation). (1) The concrete machine
{0, 1}-backward-simulates the symbolic machine, with respect to
∼CS
I . (2) The concrete machine 1-forward-simulates the symbolic

machine, with respect to ≈CS
I .

The proof assumes the correctness of the machine code provided
by the policy designer. Specifically: (1) On a cache miss, if all
the refinement invariants (including I) are satisfied at the faulting
instruction, then the miss handler must successfully return to a
user state iff the faulting tag combination is allowed by the transfer
function. In that case, the resulting user state must be a refinement
of the original symbolic state, and the cache must be updated to
allow execution to proceed. (2) When executing a monitor service,
the concrete machine returns to user code iff the corresponding
symbolic monitor service allows that execution. In this case, the
resulting user state must be a refinement of the new symbolic state.

Example: Concrete Sealing Machine To implement the symbolic
sealing machine on the concrete machine, we represent symbolic
sealing tags as follows: enc Data = 0̄; enc (Key k) = k · 0 · 1; and
enc (Sealed k) = k ·1 ·1. The key counter on the symbolic machine
is represented concretely as a single word of monitor memory;
the key inside is a sub-word though since it needs to fit in 28
bits of a Key user tag. Implementing the transfer function is just
a matter of checking that all required tags are indeed enc Data
and propagating tags that need to be preserved, following the
symbolic rules presented in §4. Implementing the monitor services
is also simple. The mkkey routine increments the key counter and
remembers the old value k. It then tags the return register with
User (Key k) (with a dummy payload) and returns to user code.
The seal routine checks (using GetTag) that its first argument
has the form x@(User Data) and its second argument is tagged
User (Key k), assembles x@(User (Sealed k)) in rret using PutTag,
and returns; unseal does the converse. All of these routines halt if
the arguments do not have the required form.

Theorem 6.4 (Backward CA-refinement for sealing). The con-
crete sealing implementation backward-refines (Definition 4.1) the
abstract sealing machine, with respect to the simulation relation
∼CS

true ◦ (λ sS sA. ∃ψ. sS ∼SA
ψ sA), where ◦ stands for relation

composition, ∼CS
I was defined above (we just choose the invariant I

to be true), and ∼SA
ψ was explained at the end of §4.

The structure of the backward refinement proofs for the other
micro-policies is very similar: we compose a policy-specific 1-
backwards SA-simulation proof, with an instance of the generic
{0, 1}-backwards CS-simulation proof above (Theorem 6.3, part a).

7. Control-Flow Integrity Micro-Policy
We close our story with three more challenging micro-policies. The
first targets control-flow hijacking attacks, in which an attacker
exploits a low-level vulnerability (e.g. a buffer or integer overflow)
to gain full control of a target program. As a first line of defense,
we can use tags to make code non-writable (NWC [1]) and data
non-executable (NXD [1]), preventing the injection and execution
of an attacker payload. This useful defense appears in various forms
in existing systems. However, it does not prevent code-reuse attacks
(e.g., return- or jump-oriented programming), where the attacker
chains together existing code snippets to induce arbitrary malicious
behavior. We therefore use tags to ensure fine-grained control-flow
integrity (CFI) [1] on top of basic NWC and NXD protection. Our
CFI micro-policy dynamically enforces that all indirect control flows
(computed jumps) adhere to a fixed control flow graph (CFG).
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The main result of this section is a variant of the CFI property of
Abadi et al. [1] for our concrete machine running a CFI monitor. For
this we prove that CFI is preserved by {0, 1}-backward simulation,
under certain additional assumptions. We then show that our instance
of the concrete machine simulates an instance of the symbolic
machine from §3, which in turn simulates an abstract machine that
has CFI by construction.

CFI property and attacker model We give a generic CFI defini-
tion that will be instantiated to the three machines, adapting the
original definition by Abadi et al. [1] to our setting. The two main
technical differences are that (1) our tag-based mechanism detects a
CFI violation on the step after it has occurred (i.e., when checking
the instruction following an illegal control transfer, rather than the
instruction that caused the transfer) and (2) at the concrete level,
detecting a violation is not immediate; rather, it involves failing
in the hardware rule cache and running the miss handler, which
eventually halts. While these details are immaterial for security, they
lead to a slightly more complex CFI definition.

As usual [1], the definition is given with respect to an extended
step relation→, which is the union of normal machine steps→n

and attacker steps →a (formally →=→n ∪ →a). The →n and
→a relations are parameters of the general CFI definition. The
→a relation represents an overapproximation of the attacker’s
capabilities, allowing the attacker to change any user-level data
in the system but none of the code. At the concrete and symbolic
levels, the attacker will also be prevented from directly changing the
tags. This models an attacker that can mount buffer-overflow attacks
but cannot directly subvert our NWC, NXD, or CFI protections.

We start by defining when an execution trace has CFI with
respect to a set of allowed indirect jumps J (a binary relation on
code addresses). From J we can easily construct the complete CFG,
a relation on machine states written cfg J . This involves adding all
direct control flow edges that are obvious from the code (e.g., a Nop
or a Bnz can reach the next instruction, a Bnz can reach its target).

Definition 7.1. We say that an execution trace s0 → s1 → . . .→
sn has CFI if (si, si+1) ∈ cfg J for all i ∈ [0, . . . , n).

Compared to Abadi et al. [1], this definition additionally requires
that the steps that are in the intersection of →a and →n are in
the CFG, which is helpful for proving CFI preservation. So if we
required that all traces of a machine have CFI, we would obtain a
definition slightly stronger than Abadi et al.’s. Instead we use the
following incomparable definition, which allows a single violation
in a trace, as long as the machine is “stopping” afterwards.

Definition 7.2 (CFI). We say that the machine (State, initial,→n,
→a, cfg, stopping) has CFI with respect to the set of allowed
indirect jumps J if, for any execution starting from initial state
s0 and producing a trace s0 → . . . → sn, either (1) the whole
trace has CFI according to Definition 7.1, or else (2) there is some i
such that si →n si+1, and (si, si+1) 6∈ cfg J , where the sub-traces
s0 → . . . → si and si+1 → . . . → sn both have CFI and the
sub-trace si+1 → . . .→ sn is stopping.

At the abstract and symbolic levels a trace is stopping if it is
formed only of attacker steps (→a) between states that are all stuck
with respect to normal steps ( 6→n). We need this definition because
the attacker can take steps even after a violation has occurred and
the machine has halted with respect to normal steps. At the concrete
level the attacker can even take steps before the machine is fully
halted; this is discussed together with the concrete machine for CFI.

Abstract CFI machine The abstract machine has CFI by construc-
tion. It has separate instruction and data memories (im and dm);
the instruction memory is fixed (NWC), and all instructions to be
executed are fetched from this memory (NXD):

im[pc] = i decode i = Store rp rs reg[rp] = p
reg[rs] = w dm′ = dm[p←w]

(im, dm, reg, pc, true)→n (im, dm′, reg′, pc + 1, true)
(STORE)

The machine state also contains an additional bit ok. The machine
executes instructions only when this bit is true; otherwise it gets
stuck with respect to normal steps (the attacker can take steps at any
time). Indirect jumps are checked against the allowed set J ; if the
control flow is invalid the jump is taken but the violation is recorded
by setting ok to false so that the machine will stop on the next step.
This behavior is designed to match rule-based enforcement at lower
levels, thus simplifying the proofs (we can prove a 1-backward
SA-simulation instead of a {0, 1} one).

im[pc] = i decode i = Jal r reg[r] = pc′

reg′ = reg[ra←pc+ 1] ok = (pc, pc′) ∈ J
(im, dm, reg, pc, true)→n (im, dm, reg′, pc′, ok)

(JAL)

While the CFI micro-policy does not provide any monitor
services itself, the abstract machine fully exposes (“paravirtualizes”)
the lower-level monitor service mechanism—that is, the abstract
machine can be instantiated with an arbitrary set of monitor services.

get service pc = (f, ti)
f (im, dm, reg, pc, true) = (im, dm′, reg′, pc′, true)

(im, dm, reg, pc, true)→n (im, dm′, reg′, pc′, true)
(SERVICE)

As for all other step rules we proceed only when the ok bit is true,
which prevents monitor service calls outside the allowed CFG (i.e.,
it prevents jump-to-monitor-service code-reuse attacks).

Proving CFI for this abstract machine is straightforward. We
capture the attacker’s capabilities by the following relation:

dom dm = dom dm′ dom reg = dom reg′

(im, dm, reg, pc, true)→A
a (im, dm′, reg′, pc, true)

This allows the attacker to arbitrarily change the data memory and
registers at any time. Finally, the only requirement on initial states
is that the ok bit starts out true.

Theorem 7.3 (Abstract CFI). This abstract machine has CFI.

Symbolic CFI machine At the symbolic level, code and data
are stored in the same memory, and we use tags to distinguish
between the two. Tags on memory and the pc are drawn from the
set Data | Instr addr | Instr ⊥ (registers are always tagged Data).
To simplify the CFG conformance checks, instructions that are the
source or target of indirect control flows are tagged with Instr addr,
where addr is the address of the instruction in memory. For example,
a Jump instruction stored at address 500 is tagged Instr 500. All
other instructions are tagged Instr⊥. Only memory locations tagged
Data can be modified (NWC), and only instructions fetched from
locations tagged Instr can be executed (NXD). The symbolic rule
for Store illustrates both these points:

Store : (Data, Instr ,−,−,Data)→ (Data,−)

It requires the fetched Store instruction to be tagged Instr and the
written location to be tagged Data. Performing a computed jump
requires that the current instruction be tagged Instr src for an address
src; it then copies Instr src to the pc tag.

Jal : (Data, Instr src,−,−,−)→ (Instr src,−)

Only on the next instruction do we have enough information about
the destination in the tags to check that the jump is indeed allowed
by J . For this we add a second rule for Store, dealing with the case
where it is the target of a jump and thus the pc is Instr src.

(src, dst) ∈ J
Store : (Instr src, Instr dst,−,−,Data)→ (Data,−)

Draft 7 July 9, 2014 at 08:37:11



We add a similar rule for each instruction, including jumps, since
the target of a computed jump can itself be another computed jump.

We capture the attacker at the symbolic level by the relation

mem→S
a mem′ reg→S

a reg′

(mem, reg, pc@tpc)→S
a (mem′, reg′, pc@tpc)

where the→S
a relation on memories and registers is the pointwise

extension of the following inductive relation on atoms:

w1@Data→S
a w2@Data w@(Instr id)→S

a w@(Instr id)

This allows attackers to change words tagged Data but prevents
them from changing words tagged Instr or tags themselves.

Two properties are invariant under execution: all words in
memory tagged Instr addr are indeed located at address addr, and
all sources and destinations in J are tagged Instr addr. A symbolic
machine state is initial if it satisfies these invariants and the pc is
tagged Data (no jump in progress).

Concrete machine As opposed to the other policies, which simply
instantiate the generic refinement result from §6, for CFI we need
to define all concepts appearing in the CFI property also for the
concrete machine. The concrete attacker is only allowed to take
steps when the machine is in user mode. It can change memory and
registers but not the contents of the cache, the pc or the epc.

mem→C
a mem′ reg→C

a reg′

(mem, reg, cache, pc@(User ut), epc)
→C
a (mem′, reg′, cache, pc@(User ut), epc)

The attacker relation for memories and registers, directly extends
the one at the symbolic level to the additional low-level tags:

w1@ut1 →S
a w2@ut2

w1@(User ut1)→C
a w2@(User ut2)

This allows the concrete attacker to change atoms tagged User ut
for some symbolic tag ut under the same conditions as at the
symbolic level, but prevents it from changing any other atoms
(in particular monitor code, data, and registers) or any of the tags.
This attacker model relies on the correctness of the monitor-self
protection mechanism from §6.

The initial steps at the concrete level are defined as the image
under ≈CS

I of symbolic initial states that additionally satisfy our
symbolic invariants. This ensures that concrete initial states satisfy
both the generic low-level conditions from §6 (Iw) and that they
respect the symbolic invariants.

A concrete trace is stopping if it has an (optional) prefix formed
only of attacker steps between user states that are all stuck with
respect to normal steps, followed by an (optional) suffix of kernel
states. This captures either immediately getting stuck with respect to
normal steps or missing in the rule cache, faulting into the monitor,
and eventually halting without returning from monitor mode. This
definition also deals with the fact that we allow the attacker to take
steps even after a violation has occurred but before the machine is
halted (right before the fault into the miss handler).

The cfg function is defined so that, when the machine is in
monitor mode, all control flows are allowed. We assume that monitor
code is correct, so we do not need to enforce CFI there.

Proof technique We prove CFI for the concrete machine running
a CFI monitor by transporting CFI from the abstract machine to
the symbolic and then to the concrete one using a general CFI
preservation result. This organization has significant advantages.
Most importantly, it reduces the proof effort by allowing us to reuse
the generic simulation result from §6 for relating the concrete and
the symbolic machines. Secondly, using the symbolic machine as

an intermediate step allows us to do most of the reasoning at the
symbolic level, even for the proofs involving the concrete machine.
Basically, the invariants we use at the concrete level come either
from the generic framework in §6 or from symbolic invariants via the
simulation relation; we do not need to reestablish them. Moreover,
we use the symbolic invariants for proving both 1-backward SA-
simulation and SC-CFI-preservation. Finally, the refinement with
the correct-by-construction abstract machine provides additional
assurance in the correctness of the micro-policy.

Theorem 7.4 (CFI Preservation). Given a high-level machine
MH = (StateH , initialH ,→H

n ,→H
a , cfgH , stoppingH), a low-

level machineML = (StateL, initialL,→L
n ,→L

a , cfgL, stoppingL),
a simulation relation between states sL ∼ sH , a predicate
checked sL1 s

L
2 indicating which low-level steps need to be checked

for CFI, and a set of allowed indirect jumps J , if MH has CFI, then
ML also has CFI under the following additional assumptions:

A1. 1-backward simulation wrt ∼ for checked steps in→L
n ;

A2. {0, 1}-backward simulation wrt ∼ for unchecked steps in→L
n ;

A3. 1-backward simulation wrt ∼ for attacker steps (→L
a );

A4. if initial sL, then ∃sH so that initial sH and sL ∼ sH ;
A5. if sL1 ∼ sH1 , sL2 ∼ sH2 , checked sL1 s

L
2 , then cfgH J = cfgL J ;

(the following 3 assumptions also have sL1 ∼ sH1 as a hypothesis)
A6. if sL1 →n s

L
2 and ¬checked sL1 s

L
2 , then (sL1 , s

L
2 ) ∈ cfgL J ;

A7. if (sH1 , s
H
2 ) 6∈ cfgH J and sH1 →n s

H
2 then ¬(sH1 →a s

H
2 );

A8. and if checked sL1 s
L
2 , (sH1 , s

H
2 ) 6∈ cfgH J , and sH1 → sH2 , and

the trace sL2 :: tL refines the trace sH2 :: tH with respect to
simulation relation ∼, and stopping (sH2 :: tH), implies that
also stopping (sL2 :: tL).

Assumption A3 states that low-level attacker steps (→L
a ) are

simulated by corresponding high-level attacker steps, which ensures
that the low-level attacker is at most as strong as the high-level
one. A4 enforces that all low-level initial states can be mapped to
related high-level initial states. A5 ensures that for checked low-
level steps the two cfg functions completely agree. A6 states that
all unchecked low-level steps are allowed by cfgL (e.g., monitor
steps are allowed by the CFG). A7 states that CFG violations are not
simultaneously attacker steps. Finally, A8 ensures that a high-level
stopping trace can only be mapped by the simulation relation to a
stopping low-level trace.

Theorem 7.5 (CFI Concrete). The concrete machine running a CFI
monitor satisfying the assumptions described in §6 has CFI.

Related Work Abadi et al. [1] proposed both the first CFI defini-
tion and a relatively efficient but coarse-grained enforcement mech-
anism based on binary analysis and rewriting, in which each node in
the CFG is assigned to 1 out of 3 equivalence classes. This seminal
work was extended in various directions, very often by trading off
precision for low overheads and practicality [28]. Recent attacks
against coarse-grained CFI [12] illustrate the security risks of im-
precision. This has spurred interest in fine-grained CFI, sometimes
called complete or ideal CFI [8, 25]; this, however, is often deemed
“very expensive” [12]. The PUMP mechanism supports fine-grained
CFI with average overheads around 8% [14]. Previous formal veri-
fication efforts for CFI include ARMor [29] and KCoFI [8]. Like
most work on CFI, they use inline reference monitoring [11]; their
verification targets a small-TCB component that validates that the
right checks were inserted in the instrumented binary.

8. Memory Safety Micro-Policy
In this section we devise a micro-policy that prevents all spatial and
temporal memory safety violations on heap-allocated data. Such
violations are a common source of serious security vulnerabilities:
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e.g., heap-based buffer overflows, confidential data leaks, use-after-
free and double-free bugs, etc. The micro-policy we study here only
guards heap-allocated data, for which calls to the malloc and free
monitor services tell us how to set up and tear down memory regions;
we leave stack allocation and C-like unboxed structs as future work.

Abstract machine The memory-safety abstract machine presents
a block-based memory model [4, 19]: it operates on values that are
either machine words w or pointers p. A pointer is a pair (b, o) of
a block identifier b (drawn from an infinite set) and an offset o (a
regular machine word). The memory is a partial function from block
identifiers to lists of values; its domain is the set of allocated blocks.
Load and Store require pointer values (b, o). Store first looks up b
in the memory; if this block is currently allocated, it obtains a list of
values vs, which it updates at index o (provided o is in bounds).

mem[bpc] = vspc vspc[opc] = i
decode i=Store rp rs reg[rp]=(b, o) reg[rs]=v
mem[b]=vs vs′=vs[o←v] mem′=mem[b←vs′]
(mem, reg, (bpc, opc))→ (mem′, reg, (bpc, opc+1))

(STORE)

The pc is itself a pointer with a block and an offset; instruction
fetches work the same as normal memory loads.

As with key generation in §4, the allocation and freeing monitor
services are partially specified in terms of functions alloc f and
free f that satisfy certain high-level properties. The alloc f function
takes a memory and a size and returns a block that was not already
allocated and a new memory in which this block is mapped to a
frame.The free f function takes a memory and an allocated block
and returns a new memory in which the block is no longer allocated,
keeping all other blocks the same.

Symbolic Machine The tag encoding of the memory-safety policy
replaces the block-structured memory of the abstract machine by a
flat memory where each cell is tagged with a color representing the
block to which it belongs. Pointers are also tagged with colors, and
when a pointer is dereferenced we check that its color matches the
color of the memory cell it points to. (The point of view here is a little
different from what we saw in the symbolic sealing machine, where
the tag on a memory cell was intuitively a tag on the value stored
in the cell. Here, the tag is thought of as the color of the memory
location itself; it persists when new values are stored there.)

We use different sets of tags for values in registers (and the pc)
and in memory. The former are either pointers tagged with a color
c or non-pointers tagged ⊥; we use the variable tv for value tags.
Allocated memory locations are tagged with a pair (c, tv), where c
is the color of the encompassing block and tv is the tag of the stored
value. Unallocated memory is tagged with the special tag F (free).
We use tm to range over memory tags. The key idea of this tagging
scheme is that when we read or write through a pointer, we check
that its color is the same as the color on the memory cell it points to.

The malloc monitor service first searches its list of free memory
blocks for one of at least the required size, cuts off the excess if
needed, then generates a fresh color c (using a monotonic counter),
initializes the new memory block with 0@(c,⊥), and returns the
atom w@c in a register, where w is the start address of the block.

The free monitor service reads the pointer color, deallocates the
corresponding block, tags its cells with F and adds it to the freelist
for later re-use. The new tags prevent any remaining pointers to the
deallocated block from being used to access it immediately after
deallocation. Later, if another allocation reuses the same memory,
it will be tagged with a different (larger) color, so these dangling
pointers will still be unusable.

The symbolic rules for Load and Store check that the pointer is
tagged with the same color c as the memory it points to.

Load : (cpc, (cpc,⊥), c, (c, tv),−)→ (cpc, tv)

Store : (cpc, (cpc,⊥), c, tv, (c, t
′
v))→ (cpc, (c, tv))

We additionally require that the pc tag cpc match the color of the
block to which the pc points. On Jumps we change the color of the
pc to that of the pointer

Jump : (cpc, (cpc,⊥), c,−,−)→ (c,−)

while for Jal we also use the color of the old pc to tag the ra register:

Jal : (cpc, (cpc,⊥), tv,−,−)→ (tv, cpc).

We also allow Jals to values tagged ⊥. This is needed for monitor
services, which lie outside the accessible memory at this level of
abstraction and so cannot be referenced by normal pointers.

All binary operations are allowed between values tagged⊥ (non-
pointers), and they produce values tagged ⊥:

Binop⊕ : (cpc, (cpc,⊥),⊥,⊥,−)→ (cpc,⊥)

Additional rules allow adding/substracting integers to pointers:

Binop+,− :(cpc, (cpc,⊥), c,⊥,−)→ (cpc, c)

Binop+ : (cpc, (cpc,⊥),⊥, c,−)→ (cpc, c)

The result of such pointer arithmetic is a pointer with the same color
c. The new pointer is not necessarily in bounds, but the rules for
Load and Store above prevent invalid accesses. Taking a pointer out
of bounds is not a violation per se (indeed, it happens quite often in
practice, e.g., at the end of loops). Subtraction can also compute the
offset between two pointers to the same block:

Binop−,= :(cpc, (cpc,⊥), c, c,−)→ (cpc,⊥)

Pointers to the same block can also be compared for equality using
Binop=. However, comparing a pointer with a non-pointer or with
a pointer to a different block is disallowed, to avoid producing a
result that could be wrong with respect to the abstract machine
defined below. (For instance, offsetting a concrete pointer can take
it out of bounds and thus make it numerically equal to a pointer
into a different block, which is impossible in the abstract machine.)
Finally, we provide a monitor service for getting the base address of
a pointer’s block. We believe we can also provide a size service in
the future but have not completed the refinement proof for that.

Refinement We prove a backward simulation theorem similar to
the one for sealing (§4):

Theorem 8.1 (1-backward SA-simulation). The symbolic memory
safety machine backward-simulates the abstract machine, with
respect to the simulation relation ∼φ.

The map φ relates the two memory models by sending colors to
pairs of an abstract block identifier and the base address of the
corresponding block on the symbolic machine. The simulation
relation on states ∼φ is defined in terms of the relation ∼φ,tv
between abstract values and symbolic words tagged tv :

w′ ∼φ,⊥ w = w = w′

(w + o) ∼φ,c (b, o) = φ(c) = (b, w)
w ∼φ,tv v = false, otherwise

This relation is extended pointwise to register banks, whereas the
relation between memories memS ∼φ memA says that whenever
a memory location can be accessed on the symbolic machine, the
corresponding location on the abstract machine can also be and that
the two values found in these locations are in refinement:

memS [w1] = w2@(c, tc)⇒
φ(c) = (b, base) ∧ memA[b][base − w1] = v ∧ w2 ∼φ,tc v
Since we want to preserve both spatial and temporal safety, the

map φ keeps track of both live and freed blocks. Hence, φ is left
unchanged if the two machines take corresponding steps, except for
allocation, which extends the domain of φ with the newly allocated
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block. The key property of φ is (left) injectivity: two colors that are
mapped to the same block are identical.

The core of this proof consisted in verifying the allocator that
we provide at the symbolic level. In particular, the allocator has to
maintain a list of block descriptors keeping track of regions and
colors, which is more than what a usual free list would give. We
showed formally that some invariants are preserved, such as block
descriptors cover the whole memory and are non-overlapping.

Related Work Our scheme is inspired by the metadata tainting
technique of Clause et al. [6]. Similar ideas are used by Watch-
dog [22] (for temporal safety). These systems do not have formal
proofs. Nagarakatte et al. have verified in Coq that the SoftBound
pass in LLVM/Vellvm satisfies “spatial safety” [24] and that the
CETS temporal safety extension to SoftBound is correct [23] in
the sense of backward simulation. These proofs are with respect
to correct-by-construction special-purpose machines. Abadi and
Plotkin [2] show that address space layout randomization can be
used to prevent low-level attacks, including memory safety vio-
lations, by proving full abstraction with respect to a high-level
language semantics.

9. Compartmentalization Micro-Policy
The last of our micro-policies enforces isolation between program-
defined “compartments,” dynamically demarcated memory regions
that by default cannot jump or write to each other. To allow
controlled communication, each compartment has sets of allowed
jump targets and allowed store targets. This model is based on
Wahbe et al.’s software fault isolation (SFI) model [27], with
a few differences discussed below. To prove isolation, we show
that a symbolic-machine encoding using tags refines an abstract
machine that enforces compartmentalization by construction. As
a sanity check, we prove that this abstract machine satisfies a
compartmentalization property drawn from Wahbe et al. [27].3

Abstract machine The abstract machine enforces compartmental-
ization directly by maintaining a set C of current compartments. It
has no tags, and its values are plain words; compartmentalization is
enforced by referring to C on each step to prevent one compartment
from transferring execution to or writing to another.

Each abstract compartment in C is a triple (A, J, S) containing
(1) an address spaceA of addresses that the compartment is allowed
to execute and write to; (2) a set of jump targets J (additional
addresses that it is allowed to jump to); and (3) a set of store targets
S (additional addresses that it is allowed to write to). Compartments
are not limited to contiguous regions of memory. As in Wahbe et
al.’s model [27], all compartments are permitted to read all memory
locations. We maintain the invariant that all compartments have
disjoint address spaces (and some other invariants discussed later).

The machine state contains a flag F ∈ {Jumped, Internal} that
records whether or not the previous instruction was a Jump or a Jal,
and a record of the previously-executing compartment, prev. This
information is used to maintain compartmentalized execution and to
allow monitor services to see which compartment called them.

At the abstract level, all instructions behave as in the basic
machine in §2, modulo the addition of a compartmentalization
check. Each step rule checks that the current instruction is executing
inside some compartment and (using prev) that execution arrived at
this instruction either (a) from the same compartment, or (b) with
F = Jumped and the current pc in the previous compartment’s
set of jump targets. Deferring detection of execution violations
until one step after they have occurred (as we also do for CFI §7) is

3 For this section, our Coq proofs are slightly incomplete. We’ve proved the
correctness of the transfer function, but the formal proofs that the monitor
services preserve refinement are missing a few steps.

essential to our tag-based implementation strategy. Finally, Store has
an additional check that its write is to either the current compartment
or one of its store targets (wp ∈ A ∪ S):

mem[pc] = i decode i = Store rp rs
reg[rp] = wp reg[rs] = ws mem′ = mem[wp←ws]

(A, J, S) ∈ C pc ∈ A wp ∈ A ∪ S
(A, J, S) = (Aprev, Jprev, Sprev) ∨ (F = Jumped ∧ pc ∈ Jprev)

(mem, reg, pc, C, F, (Aprev, Jprev, Sprev))

→ (mem′, reg, pc + 1, C, Internal, (A, J, S)) (STORE)

The abstract machine also provides three monitor services. The
core service is isolate, which creates a new compartment. At a
high level, it takes as input the description of a fresh compartment
(A′, J ′, S′) and adds it to C, also removing the addresses in A′

from the address space of the parent compartment. Before allowing
the operation, the service checks, relative to the parent compartment
(A, J, S), that A′ ⊆ A, that J ′ ⊆ A ∪ J , and that S′ ⊆ A ∪ S.
This ensures that the new compartment is at most as privileged as its
parent. The argument sets are passed in as pointers to sets of words
represented in memory.

By itself, isolate does not give the parent compartment access to
the address space of the child, but it leaves the store and jump targets
of the parent unchanged, and these can point to the child’s address
space. Before creating the child, the parent can use the monitor
services add jump target and add store target to add addresses
from its address space set to its set of jump and store targets.

In the initial configuration of the abstract machine, all defined
addresses lie in one main compartment and each monitor service
address (recall that these are undefined, at the abstract level) has its
own unique compartment. The main compartment has the addresses
of the monitor services in its set of jump targets, allowing it to call
them; the monitor service compartments have all defined addresses
in their set of jump targets, allowing them to return to any address.
Since, in order to call a monitor service, its address must lie in the
calling compartment’s set of jump targets, a parent compartment can
choose to prevent a child it creates from calling specific services.

Before returning, each monitor service checks that the compart-
ment it is returning to is the same as the one it was called from.
This detail is needed to prevent malicious use of monitor services
to change compartments: otherwise, calling a service from the last
address of a compartment would cause execution to proceed from
the first address of a subsequent compartment, even if the original
compartment was not allowed to jump there.

Symbolic machine To implement this abstract machine in terms
of tags requires “dualizing” the representation of compartments:
rather than maintaining global state recording which compartments
exist and what addresses they are allowed to affect, we instead
tag memory locations to record which compartments are allowed
to affect them. Compartments are represented by unique ids, and
the additional state of the symbolic machine contains a monotonic
counter next for the next available compartment id.

We use two kinds of symbolic tags: one for memory locations
and one for the pc (registers are labeled with a dummy tag Reg).
(1) A memory tag is a triple 〈c, I,W 〉, where c is the id of the
compartment to which this memory location belongs, I is the set of
incoming compartment ids identifying which other compartments
are allowed to jump to this location, and W is the set of writer ids
identifying which other compartments are allowed to write to this
location. (2) A pc tag is a pair 〈F, c〉, where the flag F has the same
role as on the abstract machine and c is the ID of the compartment
that was previously executing.

We use extra state cells tI, tAJ, and tAS to store the tag on the
monitor services entry points. We require that the compartment ids
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of these tags be distinct and not be used as tags on defined addresses.
Here are a few of the symbolic rules (the rest are very similar):

c = c′ ∨ (F = Jumped ∧ c ∈ I)

Nop : (〈F, c〉, 〈c′, I,W 〉,−,−,−)→ (〈Internal, c′〉,Reg)

c = c′ ∨ (F = Jumped ∧ c ∈ I)

Jump : (〈F, c〉, 〈c′, I,W 〉,Reg,−,−)→ (〈Jumped, c′〉,Reg)

c = c′ ∨ (F = Jumped ∧ c ∈ I) c′ = c′′ ∨ c′ ∈W ′

Store : (〈F, c〉, 〈c′, I,W 〉,Reg, 〈c′′, I ′,W ′〉,Reg)

→ (〈Internal, c′〉, 〈c′′, I ′,W ′〉)

The side-condition on the first two rules guarantees compartment-
safe execution. Recall that c is the previously-executing compart-
ment; c′, which tags the current instruction, is the current compart-
ment. An execution step is allowed if it is in the same compartment
(c = c′), or if it follows a jump from a permitted incoming compart-
ment (F = Jumped ∧ c ∈ I). Similarly, the extra side-condition for
Store checks that the write is to a location in the currently-executing
compartment (c′ = c′′) or to a location that accepts current com-
partment as a writer (c′ ∈W ′).

This encoding scheme scatters the information in the abstract
jump tables across the various incoming components of tags; sim-
ilarly, the store targets now live in the writers’ components. The
state maintained in the pc tag corresponds exactly to prev in the
abstract machine, except that we use a compartment id rather than
an abstract compartment.

The monitor services must now be rephrased in terms of tags. The
add jump target service simply modifies the tag on the given ad-
dress; if the previous tag was 〈c, I,W 〉 and the current compartment
is c′, then the new tag will be 〈c, I∪{c′},W 〉. The add store target
service is analogous. The isolate service does four things: (1) It
gets a fresh compartment id cnew (from the counter, which it then
increments). (2) It retags the new compartment’s address space,
changing each tag from 〈c, I,W 〉 into 〈cnew, I,W 〉. (3) It retags
the new compartment’s set of jump targets, changing each tag from
〈cJ , IJ ,WJ〉 into 〈cJ , IJ ∪ {cnew},WJ〉. (4) It retags the new com-
partment’s set of store targets, changing each tag from 〈cS , IS ,WS〉
into 〈cS , IS ,WS ∪ {cnew}〉.

Abstract compartmentalization We start by proving that the ab-
stract machine satisfies a high-level compartmentalization property
drawn from [27]. We will establish a notion of “good” abstract states,
such that we can prove the following:

Theorem 9.1 (Compartmentalization). Let (mem, reg, pc, C, F,
prev) be a good abstract machine state (explained below) such that
the pc lies in the compartment (A, J, S). If this state steps to the
state (mem′, reg′, pc′, C′, F ′, prev′), then (a) if this resulting state
isn’t stuck, then pc′ ∈ A ∪ J ; and (b) for any address a such that
mem[a] 6= mem′[a], we have a ∈ A ∪ S.

An abstract state (mem, reg, pc, C, F, prev) is good if: (1) prev ∈ C;
(2) the address spaces of the compartments in C are pairwise
non-overlapping; (3) all jump and store targets in C lie inside some
address space in C; (4) each monitor service address lies in its own
compartment; and (5) all non-monitor-service address spaces con-
tain only defined addresses. We proved that goodness is preserved
by the step relation, with particular care in the rules for Jump, Jal,
and Store and in the definition of the monitor services.

Backward refinement Additionally, we prove backward refine-
ment between the concrete machine running a correct implementa-
tion of our compartmentalization monitor and the abstract machine,
by way of the symbolic compartmentalization machine:

Theorem 9.2 (backward CA-refinement). The concrete compart-
mentalization implementation backward-refines the abstract ma-
chine, with respect to the simulation relation ∼CS

I ◦ ∼SA.

The relation ∼SA is defined as follows: (memS , regS ,
pcS@〈FS , prevS〉, next, tI, tAJ, tAS) ∼SA (memA, regA, pcA, C,
FA, prevA) when (1) regS = regA; (2) pcS = pcA; (3) FS = FA;
(4) memS and memA agree on all values, and memS has only data
tags; (5) prevS simulates prevA; (6) all compartments in C are
simulated by something (explained below); (7) the symbolic state
simulates C (explained below); (8) the addresses of system calls
are distinct and are undefined in both memS and memA; and (9) the
symbolic auxiliary state satisfies the appropriate invariants. This
requires a notion of simulation between a compartment id and a
single abstract compartment, as well as between a symbolic state
and a set of abstract compartments. The former guarantees that a
compartment id represents the same thing as a particular compart-
ment; the latter guarantees that the set of all data tags captures the
same thing as the original set of compartments.

A compartment id cS simulates an abstract compartment (A, J, S),
relative to a symbolic state sS , when (1) all addresses in A have
the compartment id cS in their data tag in sS ; (2) the compartment
id cS occurs in the set of incoming compartments in the tag on all
addresses in J in sS ; and (3) the compartment id cS occurs in the
set of writer ids in the tag on all addresses in S in sS .

Simulation between a symbolic state sS and a set C of abstract
compartments is defined as follows. If a memory location p has a
tag t in sS , we require three things. First, t must have the form
〈cS , I,W 〉. Second, there must be some abstract compartment
(A, J, S) ∈ C with p ∈ A. Third, the tags of other addresses p′

in sS must have the form 〈c′S , I ′,W ′〉 and satisfy some additional
constraints: cS = c′S iff p′ ∈ A; if cS ∈ I ′, then p′ ∈ J ; and if
cS ∈W ′, then p′ ∈ S.

Related Work There are several verified SFI systems, including
ARMor [29], RockSalt [21], and a portable one by Kroll et al. [16].
Our compartmentalization model, while based on Wahbe et al.’s
original SFI work [27], differs from that in several important ways.
Most importantly, our monitor is not based on binary rewriting,
instead using the hardware / software mechanism of the PUMP
architecture. Our model is also richer in that it provides a hierarchical
compartment-creation mechanism, as opposed to a single trusted
top-level program that can spawn one level of untrusted plugins.
One feature Wahbe et al.’s model that we do not support is inter-
compartment RPCs; we instead require programs to manually
predeclare inter-compartment calls and returns.

10. Related Work on Micro-Policies
Work related to specific micro-policies has already been discussed.
Here we focus on micro-policies in general.

The micro-policies framework and the PUMP architecture have
their roots in SAFE, a clean-slate, security-oriented architecture [9].
In that context the PUMP was used only to implement dynamic
IFC; various other special-purpose hardware mechanisms enforced
properties like memory safety [17] and compartmentalization [9].
The PUMP was designed to be quite flexible because dynamic IFC
is an active area of research, with various mechanisms and “label
models” being proposed regularly. This use of the PUMP has been
studied formally for a very simplified version of SAFE [4].

The present work, together with [14] and [10], aims to demon-
strate the applicability of the PUMP beyond IFC and beyond SAFE.
We consider a diverse set of micro-policies and a more conventional
architecture, a (less) simplified RISC machine, with bit-strings as
words instead of integers as in [4], with registers instead of a hard-
ware stack, and with no separate instruction memory, no call-stack
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or memory protection, no special monitor mode with access to pro-
tected memory, and no special monitor invocation instruction. We
show that one single hardware mechanism, the PUMP, is enough to
obtain in software similar kinds of protection to what the concrete
machine from [4] provided in hardware.

The general structure of our proofs is similar to [4]; in particular,
that paper also proves refinement between a concrete machine and an
abstract one, using a “symbolic IFC rule machine” as an intermediate
step, and, as we do for CFI, it proves a generic preservation theorem
that non-interference can be carried to the lowest level. The rule
machine, however, is merely a reformulation of an IFC abstract
machine to factor a “rule table” written in a simple DSL out of
the semantics. In contrast, our symbolic machine is fully generic
and is reused by all micro-policies. Moreover, with the exception
of dynamic sealing, the symbolic machine instances we study are
not just reformulations of (in a sense degenerate) abstract machines
that expose low-level tags; indeed, devising these instances is by
and large the hardest and most creative part of designing micro-
policies, and the refinement between the symbolic and abstract
machines is generally challenging. Our end-to-end abstract-to-
concrete refinement proofs are obtained from a generic theorem
for all micro-policies.

On the other hand, the proofs in [4] include the verification
of an IFC monitor at the machine code level using a framework
for structured code generators and a verified DSL compiler, both
specially crafted for their simple architecture. We chose here to focus
on devising a generic micro-policy framework and on designing
and verifying the symbolic machine instances for a diverse set of
micro-policies. We did not verify (or indeed, with the exception
of dynamic sealing, even write) machine code for the concrete
monitors. In the future we hope to close this gap by porting our
micro-policies framework to a conventional RISC architecture, for
which verification infrastructure for low-level code [4, 5, 15] or a
verified compiler [18] already exists (e.g., ARM), or at least where
the payoff of building such infrastructure is worth the high upfront
costs. This might also be a good target for property-based testing.

11. Conclusions and Future Work
We have presented a formal framework for specifying, implement-
ing, and verifying micro-policies for a simple RISC machine en-
hanced with hardware for propagating and checking tags. Our Coq
development runs to about 23.4k lines of code, out of which 8.8k
lines are generic and the rest specific to our four micro-policies.

We are currently working on a micro-policy for call stack
protection, as well as extensions of the current policies such as
memory protection for stack-allocated data and unboxed structs.
An obvious question at the level of the framework itself is how
to combine or compose micro-policies. Certain combinations are
known to compose sensibly and some of them perform reasonably
on practical workloads [14], but the general picture remains unclear.
Another obvious target for future work is formalizing the informal
symbolic rule language used to present examples here and in [14].

We used a simplified ISA with a limited instruction set, a single
core, no hardware concurrency or interrupts, etc. An interesting
challenge is to scale our formalization to a more realistic RISC
architecture such as MIPS, Alpha, RISC-V, or ARM extended with
a PUMP. We have not explicitly considered the role of the compiler
or loader here, although in reality their support is sometimes crucial.
For example, CFI relies on having a control-flow graph, which
would naturally come from a compiler, and on the initial tags on
instructions, which would have to be added or at least vetted by
the loader. We have not formalized the operating system or its
interaction with policy monitoring. Indeed, micro-policies might
even live below an OS, and could then help protect the OS itself from

attacks. Another alternative (discussed in [14]) is to only protect
user-level code, but this would generally lead to a much larger TCB.

Finally, while precisely characterizing the class of properties
that can be expressed as micro-policies and efficiently enforced by
the PUMP is an interesting open problem, we know for sure that it
includes interesting security properties: IFC, CFI, compartmentaliza-
tion, and memory safety. For attacking the expressiveness question
one can try to take inspiration in the work done by Schneider et al.
[13, 26] for execution monitors and program rewriting.
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