
The Science of

Deep Specification
Benjamin C. Pierce

University of Pennsylvania

POST / ETAPS
April, 2018

The Science of

Deep Specification
Benjamin C. Pierce

University of Pennsylvania

POST / ETAPS
April, 2018

Toward a

“We can’t build
software that works!”

Or…?

How did that happen?

• Better programming languages

• Powerful mechanisms for abstraction and modularity

• Better software development methodology

• Agile workflows, unit testing, …

• Stable platforms and frameworks

• Posix, Win32, Android, iOS, apache, DOM/JS, …

Are we done?

No

What about
secure software?

Grounds for hope…
• Better programming languages :-)

• Basic safety guarantees built in

• Better understanding of risks and vulnerabilities

• Better system architectures for security
• Separation kernels, hypervisors, sandboxing, TPMs, …

• Success stories of formal specification and machine-checked
verification of critical software at scale

• Not a panacea (side channels, etc.)

• But a promising step in the right direction!

A Short Story
about a tiny compiler

and its specification(s)…

Inductive instr : Type :=
| PUSH : nat -> instr
| PLUS : instr
| MINUS : instr
| MULT : instr.

Definition my_favorite_instructions
: list instr :=

[PUSH 10; PUSH 4; MULT; PUSH 2; PLUS].

A datatype of stack machine instructions

An example instruction sequence

(All examples in Gallina, the language of the Coq proof assistant)

Fixpoint execute (s : list nat) (p : list instr) : list nat :=
match (s, p) with
| (_, nil) => s
| (_, (PUSH n) ::p') => execute (n ::s) p'
| (m::n::s', PLUS ::p') => execute ((m+n)::s') p'
| (m::n::s', MINUS ::p') => execute ((m-n)::s') p'
| (m::n::s‘, MULT ::p') => execute ((m*n)::s') p'
| (_, _ ::p') => execute s p'
end.

Operational semantics of the stack machine

Starting stack
Program

Final stack

Inductive exp : Type :=
| Num : nat -> exp
| Plus : exp -> exp -> exp
| Minus : exp -> exp -> exp
| Mult : exp -> exp -> exp.

Definition my_favorite_number : exp :=
Plus (Mult (Num 10) (Num 4)) (Num 2).

A datatype of arithmetic expressions

An example value belonging to the type exp

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

A compiler from arithmetic expressions to stack instructions

Specifying our compiler…

An Informal Specification

Compiling an arithmetic expression should yield
stack-machine instructions that compute the
corresponding numeric result:

• (Plus e1 e2) means add the results of e1 and e2

• (Minus e1 e2) means subtract the results of e1 and e2

• (Mult e1 e2) means multiply the results of e1 and e2

Formal ✘
Live ✘
Rich

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

Formal
Live
Rich ✘

A (Very) Simple Formal Specification
Types!

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

Example e1 : assert (eq (compile (Num 42))
[PUSH 42]).

Example e2 : assert (eq (compile (Plus (Num 2) (Num 2)))
[PUSH 2; PUSH 2; PLUS]).

Formal
Live
Rich /✘

Another Simple Formal Specification

Unit tests

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

Example e1 : assert (eq (compile (Num 42))
[PUSH 42]).

Example e2 : assert (eq (compile (Plus (Num 2) (Num 2)))
[PUSH 2; PUSH 2; PLUS]).

We don’t really care what
instructions we generate: we
just want executing them to

give the right answer!

For Coq savants:
Definition assert b := (b = true).

…which raises the
question: What is the

“right answer”?

Fixpoint eval (e : exp) : nat :=
match e with
| Num n => n
| Plus e1 e2 => (eval e1) + (eval e2)
| Minus e1 e2 => (eval e1) - (eval e2)
| Mult e1 e2 => (eval e1) * (eval e2)
end.

Definition compiles_correctly (e : exp) : bool :=
eq (execute [] (compile e)) [eval e].

Operational semantics of the source language

yields a stack containing the result of
evaluating the original expression.”“Executing the compiled code in

an empty stack…

Example e3 :
assert (compiles_correctly (Plus (Num 2) (Num 2))).

Example e4 :
assert (compiles_correctly (Plus (Num 5) (Num 3))).

Example e5 :
assert (compiles_correctly (Mult (Num 0) (Num 3))).

Example e6 :
assert (compiles_correctly (Mult (Num 2) (Num 2))).

Example e7 :
assert (compiles_correctly (Mult (Num 3) (Num 1))).

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

Example e7 :
assert (compiles_correctly (Mult (Num 3) (Num 1))).

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

Specification-Based Testing

Random Concolic

Enumerative

etc.

etc.

Specification-Based Random Testing
• Generate lots of random expressions

• For each, see if compiles_correctly
returns true

• If a failing example is found, “shrink” it (by
greedy search) to a minimal failing example

Haskell
QuickCheck
[Claessen&Hughes]

QuickChick compiles_correctly.

Counterexample found after 4 tests and 8
shrinks:

Minus (Num 3) (Num 0)
Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

QuickChick compiles_correctly.

Counterexample found after 4 tests and 8
shrinks:

Minus (Num 3) (Num 0)
Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

Fixpoint execute (s : list nat) (p : list instr) : list nat :=
match (s, p) with
| (_, nil) => s
| (_, (PUSH n) ::p') => execute (n ::s) p'
| (m::n::s', PLUS ::p') => execute ((m+n)::s') p'
| (m::n::s', MINUS ::p') => execute ((m-n)::s') p'
| (m::n::s‘, MULT ::p') => execute ((m*n)::s') p'
| (_, _ ::p') => execute s p'
end.

compile leaves the results of subexpressions
in the wrong order on the stack!

Beyond Testing…

What else can we do with a specification?

• Synthesize programs that satisfy it

• Build run-time monitors that check for violations

• Prove that an implementation satisfies it

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.

Lemma execute_eval_comm : forall e stack,
execute stack (compile e) = eval e :: stack.

Theorem compile_correct : forall e,
assert (compiles_correctly e).

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.

Lemma execute_eval_comm : forall e stack,
execute stack (compile e) = eval e :: stack.

Theorem compile_correct : forall e,
assert (compiles_correctly e).

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.

Lemma execute_eval_comm : forall e stack,
execute stack (compile e) = eval e :: stack.

Theorem compile_correct : forall e,
assert (compiles_correctly e).

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.
- reflexivity.
- destruct a.
+ intros. simpl. rewrite IHp1.
reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

Qed.

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.
- reflexivity.
- destruct a.
+ intros. simpl. rewrite IHp1.
reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

Qed.

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.
- reflexivity.
- destruct a; simpl; intros;
destruct stack as [|x [|y stack']];
try rewrite IHp1; reflexivity.

Qed. Simple automation

No automation

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.
- reflexivity.
- destruct a.
+ intros. simpl. rewrite IHp1.
reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

Qed.

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.
- reflexivity.
- destruct a; simpl; intros;
destruct stack as [|x [|y stack']];
try rewrite IHp1; reflexivity.

Qed. Simple automation

No automation

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1;
try (destruct a);
try (destruct stack

as [|x [|y stack']]);
crush.

Qed. Chlipala automation

design

code

Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. …

informal specification

Example e3 :
assert (compiles_correctly (Plus (Num 2) (Num 2))).

Example e4 :
assert (compiles_correctly (Plus (Num 5) (Num 3))).

...

unit tests

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

executable specification
Definition compiles_correctly (e : exp) :=

eq (execute [] (compile e)) [eval e].

logical specification
∀(e : exp),

eq (execute [] (compile e)) [eval e].

thinking

ra
nd

om
 te

sti
ng

tes
ting

pr
oo

f
Formal

Live

Rich /✘

Formal

Live

Rich

Formal

Live

Rich

Formal ✘
Live ✘
Rich

nice story

does it scale?

• Accepts most of ISO C 99

• Produces machine code for PowerPC, ARM, x86 (32-bit),
and RISC-V architectures

• 90% of the performance of GCC (v4, opt. level 1)

• Real-world operating-system kernel

• With an end-to-end proof of implementation correctness
and security enforcement

• Verified down to machine code

• C verification framework based on
higher-order separation logic in Coq

• Verified implementations of OpenSSL-
HMAC and SHA-256

• working on additional cryto primitives
(HMAC-based Deterministic Random
Byte Generation, AES), parts of
TweetNaCL

• Bedrock system

• Ur/Web compiler

• CompCert TSO compiler

• CompCert static analysis tools

• Jitk and Data6 verified filesystems

• Fscq file system from MIT

• Verdi distributed system framework

• Testable formal spec for AutoSAR

• CakeML compiler

• Vellvm: Verified LLVM optimizations

• IronClad Apps

• Full-scale formal specifications of
critical system interfaces
• X86 instruction set
• TCP protocol suite
• Posix file system interface
• Weak memory consistency models for

x86, ARM, PowerPC
• ISO C / C++ concurrency
• Elf loader format
• C language (Cerberus – also see

Krebbers, K semantics, …)

And many, many more!

• Coq framework for implementing, specifying, verifying,
and compiling Bluespec-style hardware components.

• E.g., a RISC-V implementation (w 4-stage pipeline), fully
verified down to RTL

Verified Textbooks!

Coq

Isabelle

Why now?

Urgent need for increased confidence
+

Diminishing value of “paper proofs”
+

Progress on enabling technologies

Enabling Technologies

• Logics
• Concurrent separation logic, …

• Proof assistants
• Coq, Isabelle, ACL2, Twelf, HOL-light, …

• Testing tools and methodologies
• QuickCheck, QuickChick, …

• DSLs for writing specifications
• OTT, Lem, Redex, …

• Languages with integrated specifications
• Dafny, Boogie, JML, F*, Liquid Types, Verilog PSL,

Dependent Haskell, ...

QuickCheck

Enabling Technologies

Are we done?
Nope.

C language

CompCert
Compiler

PowerPC ISA

Program Logic

Verifiable C
System

C language

IBM’s CPU

Transistors

PowerPC ISA

OS client interface

CertiKOS
hypervisor kernel

C language AppelShao

Sewell

Leroy

Lessons from CompCert

CompCert
Compiler

PowerPC ISA

C language

IBM’s CPU

Transistors

PowerPC ISA

Program Logic

Verifiable C
System

C language

OS client interface

CertiKOS
hypervisor kernel

C language AppelShao

Sewell

Leroy

Lessons from CompCert

CompCert
Compiler

IBM’s CPU

Transistors

Program Logic

Verifiable C
System

C language

OS client interface

CertiKOS
hypervisor kernel

C language

C language

PowerPC ISA

PowerPC ISA

AppelShao

Sewell

Leroy

Lessons from CompCert

Lessons from seL4

• Original specification and correctness proof for seL4 kernel took
~20 person years

• Later, the same team added a tool for setting up secure system
configurations
• where processes at different security levels were guaranteed not to interfere

• Proving correctness of this tool took ~4 person years, of which 1.5
years were devoted to upgrading the kernel specification
(and proof) to eliminate unwanted nondeterminism

Verified components
must connect at

specification boundaries

Two-sided specifications

Two-sided
specifications

Formal

“Deep” specifications:

Rich

Live

mathematically rigorous

Two-sided

automatically checked against
actual code (not just a model)

exercised by both “implementors”
and “clients”

precisely expressing intended
behavior of complex software

The Science
of Deep Specification

Stephanie Weirich
University of Pennsylvania

Steve Zdancewic
University of Pennsylvania

Andrew Appel
Princeton

Zhong Shao
Yale

Adam Chlipala
MIT

Yours truly
University of Pennsylvania

Andres Erbsen
Antal Spector-Zabusky
Antoine Voizard
Benjamin Sherman
Christine Rizkallah
David Costanzo
David Kaloper Meršinjak
Dmitri Garbuzov
Hernán Vanzetto
Jade Philipoom
Jason Gross
Ji-Yong Shin
Jieung Kim
Joachim Breitner
Joonwon Choi
Joshua Lockerman
Jérémie Koenig

Ronghui Gu
Samuel Gruetter
Santiago Cuellar
Unsung Lee
Vilhelm Sjöberg
William Mansky
Wolf Honore
Xiongnan (Newman) Wu
Yao Li
Yishuai Li
Yuanfeng Peng
Yuting Wang
Zoe Paraskevopoulou

Lennart Beringer
Leonidas Lampropoulos
Li-yao Xia
Lionel Rieg
Lucas Paul
Matthew Weaver
Mengqi Liu
Mirai Ikebuchi
Murali Vijayaraghavan
Nick Giannarakis
Olivier Savary Belanger
Pedro Henrique Avezedo de
Amorim
Pierre Wilke
Qinxiang Cao
Quentin Carbonneaux
Richard Zhang

And more importantly…

Move from

point success stories
to

sustainable engineering practice
at industrially relevant scale

Goal:

Many parts One whole

The DeepSpec Web Server
• Based on popular libmicrohttpd library

• Clean separation between core HTTP-level functionality (and specs) and the specifics of
particular web services

• Aimed at embedded web servers
• E.g. IoT device controllers

• Current state = simple first version
• Parsing / printing of core HTTP formats
• Basic GET / PUT functionality
• ETag support for concurrency control

• Later:
• Broader coverage of HTTP standard documents
• TLS authentication
• Support for database-backed web services

“Securing the
Internet of Things”

HTTP(S) spec

OS

POSIX API

RISC-V

RISC-V ISA

Transistors

Web server

Executable high-level specification of
HTTP(S) protocols and web services

Instruction-set specification

System call interface specification

RTL-level description of circuit behaviors

=

Goal: A
 “sin

gle QED”

encompassin
g th

e whole stac
k

HTTP(S) spec

OS

POSIX API

RISC-V

RISC-V ISA

Transistors

POSIX API

Web server

Low-level functional spec

RISC-V ISA

Executable high-level specification of
HTTP(S) protocols and web services

RTL-level description of circuit behaviors

Instruction-set specification
(machine-code level, flat memory model)

Instruction-set specification
(assembly level, structured memory model)

System call interface specification
(CertiKOS “layer interface”)

System call interface specification
(separation logic Hoare triples)

Functional program with same observable
behavior as C web server

Challenge:
A Testable High-Level

Specification

HTTP(S) spec

Web server

Stock web servers

Strategy:
Write specification in the form of an acceptance
tester: a functional program that interacts with a
server and accepts / rejects traces.

Status:
• Core HTTP(S) header formats

• Basic GET / PUT commands

• ETag commands for bandwidth reduction / concurrency control

Early results: Testing stock web servers

• Nginx
• Passes all tests so far

• Apache
• Nonstandard responses:

• For GET requests that expect 200 OK, Apache sometimes closes connection before sending the full
response

• For GET requests that expect 404 Not Found, Apache sometimes responds 403 Forbidden

• Wrong behavior:
1. Unconditional PUT, return 204 No Content
2. Unconditional GET, return 200 OK with ETag
3. Conditional If-Match PUT with ETag from 2, return 412 Precondition Failed
4. Unconditional GET, return 200 OK with content from 3

I.e.,. The server said it
was rejecting our PUT,
but actually executed it.

Ongoing Work

• More features of HTTP
• Cookies

• Authentication and encryption

• Streaming

• Etc., etc.

• Deeper testing of stock web servers

• More extensive “mutation testing”
• to confirm that the test framework is able to detect manually inserted bugs

Challenge:
Unifying Specification Styles

Too many metalanguages!

• Network-level HTTP spec
• Acceptance tester (functional program)

• Web server implementation
• CompCert “observation traces”

• VST C verification tool
• Hoare triples in separation logic

• CertiKOS
• “Layer interfaces”

Acceptance Tester

Web Server

Written in C
over POSIX API

Written in Gallina
over bytestream API

“zipper”
OK
Fail

Want to “zip them
together” and show that

the composite system does
not reach a Fail state

But:
• C != Gallina
• Posix != bytestreams

Acceptance Tester

Web Server

Written in C
over POSIX API

Written in Gallina
over bytestream API

Verifiable C

Monadic
semantics

Hoare axioms for
Posix calls

Networking
semantics

bytestream-level Interaction
Tree with failures

Posix-level ITree

network-level
ITree

“zipper”
Skeleton ITree
with just failures

Web Server

Written in Gallina
over POSIX API Monadic

semantics

Server Tester

connect

“ab”

“ab”

An “Echo Server”

Acceptance Tester

Acceptance tester as
an interaction tree:

More formally…

An M E X is the denotation of a program as a possibly infinite
(coinductive) tree, parameterized over a type Event of observable
events where:

• leaves correspond to final results labeled with X,

• internal nodes node are either
• internal events (labeled Tau), or

• observable events (labeled Vis, with a child for every element of the event’s result type Y).

CoInductive M (Event : Type -> Type) X :=
| Ret (x:X)
| Tau (k: M Event X).
| Vis {Y: Type} (e : Event Y) (k : Y -> M Event X)

Network events

Posix socket events

Failure events

Nondeterminism events

Status

• “Echo server” correctness proof almost complete

Next steps
• Prove that CertiKOS implementation of POSIX socket API satisfies the

axioms

• Scale proofs up to web server…

Challenge:
Exercising the HTTP specification

from both sides

HTTP(S) + web service spec

Web service

Stock web servers

User-level spec

HTTP-based
application
(running in
browser)

Challenge:
Upgrading CompCert

multicore

COMPCERT

Present-day CompCert is proved correct only
for single-module, single-thread (sequential)
programs; and only down to assembly
language (not machine language); and only
down to a block-structured memory model,
not the flat address space of a real ISA.

Ongoing Work
Specifying and proving that

CompCert is correct on shared-
memory concurrent programs.

New semantic approaches to
separate compilation

Assembly-to-machine-language
and structured-memory-model-

to-flat-memory-model
specifications and proofs

Join us!

Summer schools

Technical workshops
(next one @ PLDI 2018)

Visit deepspec.org to see what’s happening
and join our mailing list

visitors program
PhD and

Thank you!
(any (more) questions?)

postdoc positions

Teaching materials

