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Toward a



“We can’t build 
software that works!”



Or…?



How did that happen?



• Better programming languages

• Powerful mechanisms for abstraction and modularity

• Better software development methodology

• Agile workflows, unit testing, …

• Stable platforms and frameworks

• Posix, Win32, Android, iOS, apache, DOM/JS, …



Are we done?

No



What about
secure software?



Grounds for hope…
• Better programming languages  :-)

• Basic safety guarantees built in

• Better understanding of risks and vulnerabilities

• Better system architectures for security
• Separation kernels, hypervisors, sandboxing, TPMs, …

• Success stories of formal specification and machine-checked 
verification of critical software at scale

• Not a panacea (side channels, etc.)

• But a promising step in the right direction!



A Short Story
about a tiny compiler

and its specification(s)…



Inductive instr : Type :=
| PUSH : nat -> instr
| PLUS : instr
| MINUS : instr
| MULT : instr.

Definition my_favorite_instructions 
: list instr :=

[PUSH 10; PUSH 4; MULT; PUSH 2; PLUS].

A datatype of stack machine instructions

An example instruction sequence

(All examples in Gallina, the language of the Coq proof assistant)



Fixpoint execute (s : list nat) (p : list instr) : list nat :=
match (s, p) with
| (_,        nil)           => s
| (_,        (PUSH n) ::p') => execute (n    ::s)  p'
| (m::n::s', PLUS     ::p') => execute ((m+n)::s') p'
| (m::n::s', MINUS    ::p') => execute ((m-n)::s') p'
| (m::n::s‘, MULT     ::p') => execute ((m*n)::s') p'
| (_,        _        ::p') => execute s           p'
end.

Operational semantics of the stack machine

Starting stack
Program

Final stack



Inductive exp : Type :=
| Num : nat -> exp
| Plus : exp -> exp -> exp
| Minus : exp -> exp -> exp
| Mult : exp -> exp -> exp.

Definition my_favorite_number : exp :=
Plus (Mult (Num 10) (Num 4)) (Num 2).

A datatype of arithmetic expressions

An example value belonging to the type exp



Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

A compiler from arithmetic expressions to stack instructions



Specifying our compiler…



An Informal Specification

Compiling an arithmetic expression should yield 
stack-machine instructions that compute the 
corresponding numeric result:

• (Plus e1 e2) means add the results of e1 and e2

• (Minus e1 e2) means subtract the results of e1 and e2

• (Mult e1 e2) means multiply the results of e1 and e2

Formal ✘
Live ✘
Rich



Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

Formal
Live
Rich ✘

A (Very) Simple Formal Specification
Types!



Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

Example e1 : assert (eq (compile (Num 42))
[PUSH 42]).

Example e2 : assert (eq (compile (Plus (Num 2) (Num 2)))
[PUSH 2; PUSH 2; PLUS]).

Formal
Live
Rich /✘

Another Simple Formal Specification

Unit tests



Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

Example e1 : assert (eq (compile (Num 42))
[PUSH 42]).

Example e2 : assert (eq (compile (Plus (Num 2) (Num 2)))
[PUSH 2; PUSH 2; PLUS]).

We don’t really care what 
instructions we generate: we 
just want executing them to 

give the right answer!

For Coq savants:
Definition assert b := (b = true).

…which raises the 
question: What is the 

“right answer”?



Fixpoint eval (e : exp) : nat :=
match e with
| Num n => n
| Plus e1 e2 => (eval e1) + (eval e2)
| Minus e1 e2  => (eval e1) - (eval e2)
| Mult e1 e2 => (eval e1) * (eval e2)
end.

Definition compiles_correctly (e : exp) : bool :=
eq (execute [] (compile e)) [eval e].

Operational semantics of the source language

yields a stack containing the result of 
evaluating the original expression.”“Executing the compiled code in 

an empty stack…



Example e3 : 
assert (compiles_correctly (Plus (Num 2) (Num 2))).

Example e4 : 
assert (compiles_correctly (Plus (Num 5) (Num 3))).

Example e5 : 
assert (compiles_correctly (Mult (Num 0) (Num 3))).

Example e6 : 
assert (compiles_correctly (Mult (Num 2) (Num 2))).



Example e7 : 
assert (compiles_correctly (Mult (Num 3) (Num 1))).

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.



Example e7 : 
assert (compiles_correctly (Mult (Num 3) (Num 1))).

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.



Specification-Based Testing

Random Concolic

Enumerative

etc.

etc.



Specification-Based Random Testing
• Generate lots of random expressions

• For each, see if compiles_correctly
returns true

• If a failing example is found, “shrink” it (by 
greedy search) to a minimal failing example

Haskell 
QuickCheck
[Claessen&Hughes]



QuickChick compiles_correctly.

Counterexample found after 4 tests and 8 
shrinks:

Minus (Num 3) (Num 0)
Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.



QuickChick compiles_correctly.

Counterexample found after 4 tests and 8 
shrinks:

Minus (Num 3) (Num 0)
Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

Fixpoint execute (s : list nat) (p : list instr) : list nat :=
match (s, p) with
| (_,        nil)           => s
| (_,        (PUSH n) ::p') => execute (n    ::s)  p'
| (m::n::s', PLUS     ::p') => execute ((m+n)::s') p'
| (m::n::s', MINUS    ::p') => execute ((m-n)::s') p'
| (m::n::s‘, MULT     ::p') => execute ((m*n)::s') p'
| (_,        _        ::p') => execute s           p'
end.

compile leaves the results of subexpressions 
in the wrong order on the stack!



Beyond Testing…



What else can we do with a specification?

• Synthesize programs that satisfy it

• Build run-time monitors that check for violations

• Prove that an implementation satisfies it



Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.

Lemma execute_eval_comm : forall e stack,
execute stack (compile e) = eval e :: stack.

Theorem compile_correct : forall e,
assert (compiles_correctly e).



Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.

Lemma execute_eval_comm : forall e stack,
execute stack (compile e) = eval e :: stack.

Theorem compile_correct : forall e,
assert (compiles_correctly e).



Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.

Lemma execute_eval_comm : forall e stack,
execute stack (compile e) = eval e :: stack.

Theorem compile_correct : forall e,
assert (compiles_correctly e).



Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.
- reflexivity.
- destruct a.
+ intros. simpl. rewrite IHp1. 
reflexivity.

+ intros. simpl. 
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl. 
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl. 
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

Qed.



Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.
- reflexivity.
- destruct a.
+ intros. simpl. rewrite IHp1. 
reflexivity.

+ intros. simpl. 
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl. 
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl. 
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

Qed.

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.
- reflexivity.
- destruct a; simpl; intros;
destruct stack as [|x [|y stack']];
try rewrite IHp1; reflexivity.

Qed. Simple automation

No automation



Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.
- reflexivity.
- destruct a.
+ intros. simpl. rewrite IHp1. 
reflexivity.

+ intros. simpl. 
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl. 
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl. 
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

Qed.

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.
- reflexivity.
- destruct a; simpl; intros;
destruct stack as [|x [|y stack']];
try rewrite IHp1; reflexivity.

Qed. Simple automation

No automation

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1;
try (destruct a);
try (destruct stack 

as [|x [|y stack']]);
crush.

Qed. Chlipala automation



design

code

Lorem ipsum dolor sit amet, consectetur adipiscing 
elit, sed do eiusmod tempor incididunt ut labore et 
dolore magna aliqua. Ut enim ad minim veniam, quis 
nostrud exercitation ullamco laboris nisi ut aliquip ex 
ea commodo consequat. …

informal specification

Example e3 : 
assert (compiles_correctly (Plus (Num 2) (Num 2))).

Example e4 : 
assert (compiles_correctly (Plus (Num 5) (Num 3))).

...

unit tests

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

executable specification
Definition compiles_correctly (e : exp) :=

eq (execute [] (compile e)) [eval e].

logical specification
∀(e : exp),

eq (execute [] (compile e)) [eval e].

thinking
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tes
ting
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f
Formal

Live

Rich /✘

Formal

Live

Rich

Formal

Live

Rich

Formal ✘
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nice story

does it scale?



• Accepts most of ISO C 99

• Produces machine code for PowerPC, ARM, x86 (32-bit), 
and RISC-V architectures

• 90% of the performance of GCC  (v4, opt. level 1)



• Real-world operating-system kernel

• With an end-to-end proof of implementation correctness 
and security enforcement

• Verified down to machine code





• C verification framework based on 
higher-order separation logic in Coq

• Verified implementations of OpenSSL-
HMAC and SHA-256

• working on additional cryto primitives 
(HMAC-based Deterministic Random 
Byte Generation, AES), parts of 
TweetNaCL



• Bedrock system

• Ur/Web compiler

• CompCert TSO compiler

• CompCert static analysis tools

• Jitk and Data6 verified filesystems

• Fscq file system from MIT

• Verdi distributed system framework

• Testable formal spec for AutoSAR

• CakeML compiler

• Vellvm: Verified LLVM optimizations

• IronClad Apps

• Full-scale formal specifications of 
critical system interfaces
• X86 instruction set
• TCP protocol suite
• Posix file system interface
• Weak memory consistency models for 

x86, ARM, PowerPC
• ISO C / C++ concurrency
• Elf loader format
• C language (Cerberus – also see 

Krebbers, K semantics, …)

And many, many more!



• Coq framework for implementing, specifying, verifying, 
and compiling Bluespec-style hardware components.

• E.g., a RISC-V implementation (w 4-stage pipeline), fully 
verified down to RTL 



Verified Textbooks!

Coq

Isabelle



Why now?

Urgent need for increased confidence
+

Diminishing value of “paper proofs”
+

Progress on enabling technologies



Enabling Technologies

• Logics
• Concurrent separation logic, …

• Proof assistants
• Coq, Isabelle, ACL2, Twelf, HOL-light, …

• Testing tools and methodologies
• QuickCheck, QuickChick, …

• DSLs for writing specifications 
• OTT, Lem, Redex, …

• Languages with integrated specifications
• Dafny, Boogie, JML, F*, Liquid Types, Verilog PSL, 

Dependent Haskell, ...

QuickCheck



Enabling Technologies



Are we done?
Nope.



C language

CompCert
Compiler

PowerPC ISA

Program Logic

Verifiable C
System

C language

IBM’s CPU

Transistors

PowerPC ISA

OS client interface

CertiKOS
hypervisor kernel

C language AppelShao

Sewell

Leroy

Lessons from CompCert
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CompCert
Compiler

IBM’s CPU

Transistors

Program Logic

Verifiable C
System

C language

OS client interface

CertiKOS
hypervisor kernel

C language

C language

PowerPC ISA

PowerPC ISA

AppelShao

Sewell

Leroy

Lessons from CompCert



Lessons from seL4

• Original specification and correctness proof for seL4 kernel took 
~20 person years

• Later, the same team added a tool for setting up secure system 
configurations 
• where processes at different security levels were guaranteed not to interfere

• Proving correctness of this tool took ~4 person years, of which 1.5 
years were devoted to upgrading the kernel specification 
(and proof) to eliminate unwanted nondeterminism



Verified components 
must connect at 

specification boundaries

Two-sided specifications

Two-sided 
specifications



Formal

“Deep” specifications:

Rich

Live

mathematically rigorous

Two-sided

automatically checked against  
actual code (not just a model)

exercised by both “implementors” 
and “clients”

precisely expressing intended 
behavior of complex software
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Move from

point success stories
to

sustainable engineering practice 
at industrially relevant scale

Goal:



Many parts One whole



The DeepSpec Web Server
• Based on popular libmicrohttpd library

• Clean separation between core HTTP-level functionality (and specs) and the specifics of 
particular web services

• Aimed at embedded web servers
• E.g. IoT device controllers

• Current state = simple first version
• Parsing / printing of core HTTP formats
• Basic GET / PUT functionality
• ETag support for concurrency control

• Later:
• Broader coverage of HTTP standard documents
• TLS authentication
• Support for database-backed web services

“Securing the 
Internet of Things”



HTTP(S) spec

OS

POSIX API

RISC-V

RISC-V ISA

Transistors

Web server

Executable high-level specification of 
HTTP(S) protocols and web services

Instruction-set specification 

System call interface specification 

RTL-level description of circuit behaviors

=

Goal: A
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gle QED” 
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HTTP(S) spec

OS

POSIX API

RISC-V

RISC-V ISA

Transistors

POSIX API

Web server

Low-level functional spec

RISC-V ISA

Executable high-level specification of 
HTTP(S) protocols and web services

RTL-level description of circuit behaviors

Instruction-set specification 
(machine-code level, flat memory model)

Instruction-set specification 
(assembly level, structured memory model)

System call interface specification 
(CertiKOS “layer interface”)

System call interface specification 
(separation logic Hoare triples)

Functional program with same observable 
behavior as C web server



Challenge: 
A Testable High-Level 

Specification



HTTP(S) spec

Web server

Stock web servers



Strategy: 
Write specification in the form of an acceptance 
tester: a functional program that interacts with a 
server and accepts / rejects traces. 

Status:
• Core HTTP(S) header formats

• Basic GET / PUT commands

• ETag commands for bandwidth reduction / concurrency control



Early results: Testing stock web servers

• Nginx
• Passes all tests so far

• Apache
• Nonstandard responses:

• For GET requests that expect 200 OK, Apache sometimes closes connection before sending the full 
response

• For GET requests that expect 404 Not Found, Apache sometimes responds 403 Forbidden

• Wrong behavior:
1. Unconditional PUT, return 204 No Content
2. Unconditional GET, return 200 OK with ETag
3. Conditional If-Match PUT with ETag from 2, return 412 Precondition Failed 
4. Unconditional GET, return 200 OK with content from 3

I.e.,. The server said it 
was rejecting our PUT, 
but actually executed it.



Ongoing Work

• More features of HTTP
• Cookies

• Authentication and encryption

• Streaming

• Etc., etc.

• Deeper testing of stock web servers

• More extensive “mutation testing” 
• to confirm that the test framework is able to detect manually inserted bugs



Challenge: 
Unifying Specification Styles



Too many metalanguages!

• Network-level HTTP spec
• Acceptance tester (functional program)

• Web server implementation
• CompCert “observation traces”

• VST C verification tool
• Hoare triples in separation logic

• CertiKOS
• “Layer interfaces”



Acceptance Tester

Web Server

Written in C
over POSIX API

Written in Gallina
over bytestream API

“zipper”
OK
Fail

Want to “zip them 
together” and show that 

the composite system does 
not reach a Fail state

But:
• C != Gallina
• Posix != bytestreams



Acceptance Tester

Web Server

Written in C
over POSIX API

Written in Gallina
over bytestream API

Verifiable C

Monadic 
semantics

Hoare axioms for 
Posix calls

Networking
semantics

bytestream-level Interaction 
Tree with failures

Posix-level ITree

network-level 
ITree

“zipper”
Skeleton ITree 
with just failures

Web Server

Written in Gallina
over POSIX API Monadic 

semantics



Server Tester

connect

“ab”

“ab”

An “Echo Server”



Acceptance Tester



Acceptance tester as 
an interaction tree:



More formally…

An M E X is the denotation of a program as a possibly infinite 
(coinductive) tree, parameterized over a type Event of observable 
events where:

• leaves correspond to final results labeled with X,

• internal nodes node are either 
• internal events (labeled Tau), or

• observable events (labeled Vis, with a child for every element of the event’s result type Y).

CoInductive M (Event : Type -> Type) X :=
| Ret (x:X)
| Tau (k: M Event X).
| Vis {Y: Type} (e : Event Y) (k : Y -> M Event X)



Network events

Posix socket events



Failure events

Nondeterminism events



Status

• “Echo server” correctness proof almost complete

Next steps
• Prove that CertiKOS implementation of POSIX socket API satisfies the 

axioms 

• Scale proofs up to web server…





Challenge: 
Exercising the HTTP specification 

from both sides



HTTP(S) + web service spec

Web service

Stock web servers

User-level spec 

HTTP-based 
application 
(running in 
browser)



Challenge: 
Upgrading CompCert



multicore

COMPCERT

Present-day CompCert is proved correct only 
for single-module, single-thread (sequential) 
programs; and only down to assembly 
language (not machine language); and only 
down to a block-structured memory model, 
not the flat address space of a real ISA.

Ongoing Work
Specifying and proving that 

CompCert is correct on shared-
memory concurrent programs.

New semantic approaches to
separate compilation

Assembly-to-machine-language
and structured-memory-model-

to-flat-memory-model 
specifications and proofs



Join us!

Summer schools

Technical workshops
(next one @ PLDI 2018)

Visit deepspec.org to see what’s happening
and join our mailing list

visitors program
PhD and

Thank you!
(any (more) questions?)

postdoc positions

Teaching materials


